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Abstract: Aiming at the difficulty of mining fault prognosis starting points and constructing prognostic models for
remaining useful life (RUL) prediction of rolling bearings, a RUL prediction method is proposed based on health
indicator (HI) extraction and trajectory-enhanced particle filter (TE-PF). By extracting a HI that can accurately track
the trending of bearing degradation and combining it with the early fault enhancement technology, early abnormal
sample nodes can be mined to provide more samples with fault information for the construction and training of
subsequent prediction models. Aiming at the problem that traditional degradation rate models based on PF are
vulnerable to HI mutations, a TE-PF prediction method is proposed based on comprehensive utilization of historical
degradation information to timely modify prediction model parameters. Results from a rolling bearing prognostic
study show that prediction starting points can be accurately detected and a reasonable prediction model can be
conveniently constructed by the RUL prediction method based on HI amplitude abnormal detection and TE-PF.
Furthermore, aiming at the RUL prediction problem under the condition of HI mutation, RUL prediction with
probability and statistics characteristics under a confidence interval can be obtained based on the method proposed.

Key words: health indicator; prediction model; prediction starting point; remaining useful life; trajectory-enhanced
particle filter

I. INTRODUCTION
As a typical rotating machinery part, rolling bearing is
widely used in mechanical equipment. Nowadays, there
are many researchers in the fields of rolling bearings’ state
monitoring [1], fault diagnosis [2], and degradation state
identification [3], but relatively few in the field of rolling
bearings’ remaining useful life (RUL) prediction [4]. Sci-
entific prediction of RUL can effectively improve the safety
performance of equipment and maximize the capacity of the
equipment. The prognostics of RUL is a systematic project
within the Prognostics and Health Management (PHM)
[5,6]. It requires a series of preliminary technical work,
such as data perception, health indicator (HI) extraction,
and state monitoring. Finally, it serves for intelligent oper-
ation and maintenance of equipment [7]. The logical rela-
tionship is shown in Fig. 1.

As one of the components of PHM, fault prognosis is
an indispensable link in the whole chain. Similarly, fault
prognosis research requires ‘thinking ahead and thinking
behind.’ The so-called ‘thinking ahead’ means that fault
prognosis needs to be based on fault diagnosis. If the target
object is in a healthy state, it does not make sense to predict
faults at this point. However, if the target object is on the
verge of failure, the significance of fault prognosis will not
be obvious. Therefore, it should be further clarified that the
fault prognosis work should be based on the early fault
diagnosis work. The early fault detection points are

obtained by relevant technical strategies, and then the early
fault occurrence points of the target object are approached
to determine the starting point of fault prognosis. In addi-
tion, unlike the condition indicator extracted for fault
diagnosis, the appropriate HI needs to be extracted for fault
prognosis. HI needs to meet the special requirements of
trend stability, consistency of working conditions, and
monotonicity, so HI extraction is also an important conno-
tation of fault prognosis. The so-called ‘thinking behind’
means that the purpose of fault prediction is to provide
scientific suggestions for the support decision of follow-up
equipment. For the equipment operation and maintenance
side, fault prognosis should not only give the RUL of the
target object but also carry out uncertainty evaluation of the
given prediction results, so as to provide scientific and
reasonable prediction results with high confidence for
maintenance decision-makers. Around how to realize
equipment RUL prediction, researchers have carried out
a lot of work and put forward a series of RUL prediction
methods. Specifically, the prediction work is based on the
extraction of appropriate HI, the determination of the
scientific starting point for prediction, and the construction
of an appropriate prediction model. The scientific HI can
accurately represent the degradation trend of predicted
objects and has good monotonicity, robustness, and ten-
dency. To extract the appropriate HI, researchers have
carried out a series of research work.

HI types include typical time-domain features and time-
frequency features, which are more common than frequency-
domain features. Typical time-domain characteristic indexesCorresponding author: Niaoqing Hu (email: hnq@nudt.edu.cn)
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include waveform indexes, root mean square (RMS), kurto-
sis indexes, etc. [8], and time-frequency characteristics
include various entropy values [9]. In addition to traditional
time-domain feature extraction methods, quantitative
description methods based on nonlinear signals are also
attracting more and more attention from researchers, such
as the Lyapunov index [10]. However, the computational
efficiency of current algorithms is low and takes a long time
[5,11]. With the rise of deep learning methods, HI extraction
methods based on deep learning have been mushroomed
[12,13]. In which, typical representatives based on deep
learning methods, namely the 1-dimensional deep convolu-
tional neural network (1-DDCNN) method, can mine the
distributed characteristics of the data adaptively [14]. Then,
early fault diagnosis is carried out based on the HI amplitude
anomaly detection method.

RUL prediction needs to be established based on the
failure of the predicted object. The previous researches on
RUL prediction rarely involve the determination of the
starting point of prediction. Aiming at this problem,
more and more scholars have carried out research on early
fault diagnosis. For vibration signals acquired by the early
perception of rotating parts’ damage, direct fault diagnosis
often fails to obtain ideal results, that is, fault features that
can accurately characterize early damage cannot be

extracted. Therefore, to solve the problem of early weak
fault diagnosis of rotating machinery, many researchers and
institutions have carried out beneficial exploration.

Due to the periodic impact characteristics of rotating
machinery faults, some pulse enhancement methods have
been proposed. One typical example is minimum entropy
deconvolution (MED) [1]. He et al. [15] proposed a decon-
volution method based on modified minimum entropy for
early weak fault detection of gears. H. Endo et al. [16]
proposed an autoregressive model enhancement method
based on MED for early gear fault feature enhancement.
Zhang et al. [17] proposed a bearing early fault diagnosis
method combining MED and adjustable quality factor wave-
let transform to solve the problem of weak impact character-
istics of bearing early fault and difficulty in identifying fault
information. However, MED methods are easily affected by
noise. To solve this problem, maximum correlated kurtosis
deconvolution (MCKD) was proposed [18], and more com-
bined methods based onMCKDwere derived. Zhu et al. [19]
proposed an early bearing fault diagnosis method based on
autocorrelation analysis and MCKD. McDonald G L et al.
[20] proposed multipoint optimal minimum entropy decon-
volution adjusted (MOMEDA), which is used to solve the
problem that the bearing fault cycle needs to be preset in
advance in the MCKD method. Further, Xia et al. [21]
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Fig. 1. Logical diagram of equipment RUL prediction.
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proposed a fault feature extraction method based on the
improved infographic andMOMEDAmethod. However, the
MOMEDA method still needs the prior period of the target
object to enhance the periodic pulse.

After the appropriate HI is extracted and the prediction
starting point is mined, the RUL prediction can be carried
out. Based on the different complexity of research objects,
the existing RUL prediction technology can be divided into
physical model-based prediction methods, data-driven pre-
diction methods, and hybrid prediction methods [7].
Among them, the prediction method based on a physical
model needs profound study on the fault mechanism of the
predicted object. For simple predicted objects (such as flat
plate and simply supported beam), the prediction method
based on a physical model can obtain the ideal prediction
accuracy of RUL. However, for complex predicted objects,
their failure mechanism is complex, and it is difficult to
establish an appropriate failure model. Therefore, physical
model-based prediction methods are not competent for the
RUL prediction on complex equipment [11]. Thanks to the
progress of data perception mean, more degradation state
data of complex equipment can be acquired. Then, the data-
driven RUL prediction method was born and developed.
However, the prediction results of the data-driven predic-
tion method are directly influenced by data, and it is difficult
to guarantee the accuracy of prediction when data are
missing or not ideal. Furthermore, RUL prediction based
on the hybrid method is proposed. Combining the advan-
tages of the physical model-based prediction method and
data-driven prediction method, the hybrid prediction
method has been widely used in the field of RUL prediction.
Among them, the typical representatives of the hybrid
methods include the prediction method based on particle
filter (PF) [22]. The PF method can optimize the model
parameters based on particle updating and obtain the pre-
diction statistical results by extrapolation, and give the
prediction results of RUL under the confidence interval,
which is more closely related to the actual engineering
requirements. Therefore, some researchers have carried out
relevant research on how to predict RUL based on the PF
method.

Luo et al. [23] and Miao et al. [24] applied the PF
method to predict the RUL of lithium batteries. Wang et al.
[25] proposed a method for predicting the RUL of equip-
ment based on degradation trajectory. Qian et al. [26]
proposed an enhanced particle filtering method for particle
degradation. Aiming at the problem that the prediction
algorithm takes a long time, Heraldo et al. [27] proposed
a method that allows to significantly reduce this computa-
tional cost in the case of particle-filter-based prognostic
algorithms. Aiming at the problem of the propagation of
structural parts crack prediction, Jian et al. [28,29] proposed
an online prognostic method for multiple cracks taking
advantage of the regularized PF and guided wave-based
structural health monitoring and proposed an online updat-
ing Gaussian process measurement model within the PF-
based crack prognosis framework. Aiming at the problem
that the adequacy of the picked process noise has a great
influence on the prediction result, Matteo et al. [30] pro-
posed an optimal and unbiased process noise model and a
list of requirements that the stochastic model must satisfy to
guarantee high prognostic performance. David E. et al. [31]
presented a novel prognostic method that allows a proper
characterization of the uncertainty associated with the
evolution in time of nonlinear dynamical systems based

on the PF method, and the proposed algorithm is tested and
validated using experimental data related to the problem of
lithium-ion battery state-of-charge prognosis. Based on the
multisource fusion and monotonicity-constrained particle
filtering, He et al. [32] carried out the RUL prediction for
the pump. However, the PF method still faces the problems
of a large amount of calculation, difficult selections of
prediction model, and unstable calculation results [11].
To construct an appropriate prediction model has always
been a difficult problem concerned by the researchers of
RUL prediction. In the prediction extrapolation stage, there
is no observation sample to modify the model, so the
prediction model directly determines the prediction results.
Simple prediction models are generally difficult to represent
the degradation trend of research objects, whereas complex
models will inevitably increase the difficulty of prediction
methods and calculation costs. Because of this situation,
Fan et al. [11] proposed the degradation rate tracking-based
particle filter (DRT-PF) method to locate the prediction
model parameter as the bearing degradation rate. The
parameters to be estimated for particle updating are greatly
reduced, and the prediction efficiency is greatly improved,
whereas the trend tracking ability of the prediction model is
guaranteed. However, in the DRT-PF method, the predic-
tion model parameters at time T are only related to the
observed value of the degradation index. As a matter of fact,
the parameters of the prediction model at time T are not only
determined by the sample observation point at the current
time but also by the current degradation trend. If the
parameters of the prediction model are only limited to
the observed samples at the current moment, it is easy to
lose the key information of the historical observed samples
and cause the prediction model to deviate from the actual
overall degradation trend of the research object.

For the RUL prediction problem of rolling bearing, the
overall idea of this paper is shown in Fig. 2. Firstly, an
appropriate HI is extracted based on the multi-feature assess-
ment. Secondly, based on the abnormal variation of HI
amplitude, the abnormal samples are mined. Furthermore,
based on the periodic characteristics of rotating machinery
faults, fast spectral kurtosis andMOMEDAmethods are used
to enhance early fault features, early fault occurrence node is
approximated, the starting point of RUL prediction can be
determined, and more samples with fault information for
subsequent RUL prediction can be provided. Finally, from
the perspective of making full use of the trend information of
the currently predicted object, the trajectory-enhanced parti-
cle filter (TE-PF) method is proposed to predict the RUL.
The degradation trend information of the existing samples is
comprehensively considered in the process of updating the
prediction model parameters, so as to effectively avoid the
model distortion caused by the slight mutation of the ampli-
tude of abnormal samples at the current moment.

To sum up, the innovations and contributions of this
paper are as follows:

(1) A method for mining the fault prognosis starting
points is proposed, which provides more prior knowl-
edge for the establishment of subsequent fault prog-
nosis model;

(2) A TE-PF method, namely TE-PF, is proposed to
construct a trend-strengthened fault prognosis model
by comprehensively utilizing historical information,
which can effectively deal with the fault prognosis
problem in the case of HI micro-mutation.
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II. EXTRACTION AND EVALUATION
OF HI

Based on the idea of the comprehensive evaluation of
multiple feature indexes, it is proposed to extract multi-
feature indexes for RUL prediction and then evaluate

monotonicity, robustness, and tendency, so as to obtain
relatively optimal HI by comprehensive evaluation.

Based on the above ideas, the commonly used charac-
teristic indexes as shown in Table 1 are extracted.

Where xi represents the original time series, T is the
measured signal length, and vðtÞ represents the speed at
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Fig. 2. The overall framework of this paper.

Table 1. Commonly used characteristic indexes extracted

Name Equation Name Equation

Mean square value
x2 = 1

N

XN
i=1

x2i
RMS Xrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
N
i=1 x

2
i

q

Waveform indicators S = Xrms
1
N

P
N
i=1

jxij
Peak metric S = maxfjxijg

Xrms

Margin index L = maxfjxijg
ð1N
P

N
i=1

ffiffiffiffiffi
jxij

p
Þ2 Pulse index I = maxfjxijg

1
N

P
N
i=1

xi

Kurtosis index K =
1
N

P
N
i=1

x4i
X4
rms

Shannon entropy HðXÞ = −
X
x

PðxÞlog2½PðxÞ�

Vibration intensity Vrms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T ∫

T
0 v

2ðtÞdt
q

1DDCNN_HI [14] yjk,m+1 = f ðzjk,m+1Þ
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which the object vibrates. f ðxÞ = 1
1+e−x, zjk,m+1 =XNm

n=1

Ij∶j+Lkern,m ∗ wk,n,m + bn,m, In,m represents the N-th data

sample of the M-layer network, there are n ×m of these
samples. In,m can be written as Ij∶j+Lkern,m , where Lker represents
the convolution kernel size and j represents the j-th point in
the sample. ∗ represents convolution algorithm, wk,n,m
represents the convolution kernel connecting the N-th
sample of m layer and the K-th sample of M+ 1 layer,
and bn,m represents the bias. zjk,m+1 represents the interme-
diate output of the convolution layer and f ð·Þ represents the
activation function.

To verify whether the extracted HI is scientific and
reasonable, the degradation feature evaluation method is
introduced into the proposed method to comprehensively
evaluate the HI. The main evaluation indexes include
monotonicity, robustness, and tendency. The mathematical
expression of each evaluation index is as follows:

Monotonicity:

Mon1ðXÞ =
1

K − 1
jNo:of d=dx > 0 − No:of d=dx < 0j

(1)

where X = fxkgk=1∶K represents the HI corresponding to the
HI sequence xk in time tk,K represents the number of the HI,
d=dx = xk+1 − xk represents the characterize differences in
HI sequences, No:of d=dx > 0 and No:of d=dx < 0 repre-
sent the plus and minus of the difference respectively, and
Mon1ðXÞ represents the sum of the derivatives of all HIs X.
The monotonicity index evaluation results range from 0 to
1, the higher the score is, the better the monotonicity is.

Robustness:

RobðXÞ = 1
K

XK
k=1

exp

 
−

����� xk − xTk
xk

�����
!

(2)

where xTk represents the mean trends of HIs at tk by
smoothing. Similar to the monotonicity evaluation results,
the higher the score is, the better the robustness is.

Tendency:

Tre1ðX,TÞ=
K

�XK
k=1

xktk

�
−
�XK

k=1

xk

��XK
k=1

tk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
K
XK
k=1

x2k−
�XK

k=1

xk

�2��
K
XK
k=1

t2k−
�XK

k=1

tk

�2�s

(3)

where the range of Tre1ðX,TÞ is−1 to 1; when it approaches
−1 or 1, there is a strong correlation between surface HI
and time.

III. RUL PREDICTION STARTING
POINT DETERMINATION METHOD

A. BRIEF INTRODUCTION TO THE MOMEDA
METHOD

The MOMEDA method constructs an optimal deconvolu-
tion filter using the multipoint D-norm as the objective cost
function f = ½f 1,f 2, ··· f L� (where L is the size of the filter) to
maximize the target cost function. The specific expression
of the target cost function is

MDNðy,t,f Þ = max
f

tTy

kyk (4)

where y is the target signal, t is the target vector of the same
length as the target signal, and T determines the position and
weight of the periodic pulse be convolved. In order to find
the maximum MDN, the derivative of the above Eq. (4)
about the filter coefficient f is taken, and the process is as
follows:

d
df

�
tTy

kyk
�

=
d
df

�
t1y1
kyk
�

+···+
d
df

�
tN−LyN−L

kyk
�

(5)

where N is the length of the original Y; set d
df
ð tT ykykÞ = 0, the

result can be obtained as follows:8<
: kyk−1X0t − kyk−3tTyX0y = 0

tT

kyk2 X0y = X0t
(6)

Based on the y = XT
0 f , and assuming ðX0X

T
0 Þ−1 exists,

the optimal convolution filter coefficient can be obtained:

f = ðX0X
T
0 ÞX0t (7)

X0 =

2
6664

xL xL+1 · · · xN
xL−1 xL · · · xN−1
..
. ..

. . .
.

· · ·
x1 x2 · · · xN−L+1

3
7775
L×ðN−L+1Þ

(8)

In order to obtain the pulse period, a series of assumed
periods Tm are obtained discreetly within a period range and
a series of target vectors tm are constructed, namely:

tm = δroundðTmÞ + δroundð2TmÞ + · · · δroundðsTmÞ (9)

where δn represents an impulse at position n in the time
series and roundðTmÞ represents the rounding of the period.
Then, a series of deconvolution signals ym can be obtained,
namely:

½y1,y2 · · · ym� = ðX0X
T
0 Þ−1X0½t1,t2 · · · tm� (10)

Obtain the spectral kurtosisMkurt of each convolution
signal ym:

MKurt =

 XN−L
n=1

t2n

!
2XN−L
n=1

ðtnynÞ4

XN−L
n=1

t8n

 XN−L
n=1

y2n

!
2 (11)

Then, based on the maximum spectrum kurtosis crite-
rion, the fault period is obtained to determine the optimal
deconvolution signal.

To sum up, the MOMEDA implementation processes
are as follows:

a. Set range vector r = ½r1 · · · rn� and window func-
tion w = ½1 · · · 1�;

b. Compute vectors tið1 + m � riÞ = 1m = 0,1,2 : : : and
store these vectors in matrices T = ½t1 · · · tn�;

c. Calculate the improved matrix T� = filterðw,1,TÞ;
d. Calculate F = ðX0X0

TÞ−1X0T∗ and Y = X0
TF;

e. Select Max Kurtosis yi from Y = ½y1 · · · yn�, then
this vector y is the best filtering result.
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B. THE PREDICTION STARTING POINT
MINING METHOD

The prediction starting point is mined based on anomalous
HI amplitude detection and MOMEDA. Appropriate HI
should be more sensitive to characterize what degradation
stage the target object is in, that is to say, the rolling bearing
in different fault degradation stages is directly expressed as
the amplitude of HI extraction will change accordingly. As
shown in Fig. 3, the HIs of rolling bearings are obtained
based on degradation data by using four HI construction
methods, respectively. Although the evolution trajectory of
each HI is different, the key nodes and overall trend change
are almost the same. Compared with considering only a
single HI, it is more scientific to comprehensively consider
multiple HIs’ amplitude changes and then fuse the decision.

After obtaining multiple HIs of the target object, early
fault diagnosis can be performed based on its amplitude
variation. Similarly, taking Fig. 3 as an example, it is
obvious that after the rolling bearing goes through the
health stage, multiple HI amplitude values begin to fluctuate
almost simultaneously, and the rolling bearing enters the
fault degradation stage. At this point, relevant fault infor-
mation can be obtained based on the original samples
corresponding to the later degradation stage to guide the
discovery of early fault occurrence nodes, which can be
called the fault backtracking stage. As shown in Fig. 4,
taking 4-HI as an example, original samples of correspond-
ing nodes can be extracted based on the change of HI
amplitude in the local enlarged image, and then fault
diagnosis can be carried out based on the original samples.

Testing point 1, for example, after extracting 27 050 s
corresponding to the original sample data, based on the
rapid spectral kurtosis and MOMEDA method, the optimal
demodulation frequency band (as shown in Fig. 5) and
enhanced envelope spectra (as shown in Fig. 6) can be
obtained. By analyzing the characteristic frequency of
bearing parts, the rolling bearing fault pattern recognition
can be realized. The testing points are gradually moved
forward until the fault features cannot be mined. Based on
this, the early fault occurrence nodes can be traced, and
more observation data with fault information can be pro-
vided for the RUL prediction on bearings at the current
time, so as to obtain more accurate prediction results
of RUL.

IV. RUL PREDICTION METHOD
BASED ON TE-PF

A. INTRODUCTION TO STANDARD PF
METHODS

PF is a recursive Bayesian estimation method based on
Monte Carlo sampling, which estimates the current state or
degradation model parameters of the system recursively
through a series of sample observations y1∶k =
fy1,y2, ··· ykg. Generally speaking, the PF method needs
to establish a state transition equation and measurement
equation of the dynamic system:

xk = f ðxk−1,ak,ωkÞ (12)

yk = hðxk,ηkÞ (13)

where xk and yk represent the state value and observation
value of the system at time k, respectively, and ωk and ηk
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represent state noise and measurement noise at time k,
respectively.

The PF method mainly includes two steps:

Step 1: Predict the status of the target object. Research
object state prediction is carried out based on the
prediction model constructed by historical samples
and generated samples. The prior probability calcula-
tion formula of the existing sample state is as follows:

pðxkjy1∶k−1Þ =
ð
pðxkjx1∶k−1Þpðxk−1jy1∶k−1Þdxk−1

(14)

Step 2: Update the prediction model. Based on the
observation value at the current moment, the prior
probability is updated to obtain the posterior probabil-
ity of the system state and then to guide the particle
resampling. The posterior probability calculation for-
mula is as follows:

pðxkjy1∶kÞ = pðykjxkÞpðxkjy1∶k−1Þ=pðykjy1∶k−1Þ (15)

where

pðykjy1∶k−1Þ =
ð
pðykjxkÞpðxkjy1∶k−1Þdxk (16)

The above formula involves integral calculation, and it
is generally difficult to obtain the analytic solution of
posterior probability directly. Therefore, the PF method
uses a series of particles to approximate the posterior
distribution using the Monte Carlo resampler idea, which
is called sequential importance sampling (SIS) [17].

The PF method can directly predict the health status of
the research object or estimate the parameters of the pre-
diction model, but the former will introduce multidimen-
sional hyperparameters, which greatly increases the
uncertainty of the model. The second method, adopted
by more researchers, is more straightforward. Therefore,
the basic steps of RUL prediction based on the PF method
are as follows:

Step 1: Extract the appropriate HI.

Based on the historical life span data of the same
research object and the currently observed value, the

prediction-oriented feature index extraction research and
pretreatment are carried out to construct the trend tracking
stable HI.

Step 2: Establish a scientific degradation model.

Based on historical prior knowledge or regression
fitting of historical statistical data, an appropriate prediction
degradation model is constructed.

Step 3: Establish state transition equation and measure-
ment equation:� ak = ak−1 + ωa,ωa∼Nð0,σaÞ

bk = bk−1 + ωb,ωb∼Nð0,σbÞ
···

(17)

hk = f ðθk,kÞ + η,η∼Nð0,σ0Þ (18)

where θk = ½ak,bk, ···� represents the degradation
model parameter vector at time k, and hk represents
the observed value obtained at time k. ωa, ωb, and η
represent random variables, and σa, σb, and σ0 are,
respectively, the variance of the above three variables.
f ð·Þ represents the degradation model. As the bearing
degradation process is complex and changeable, there
are many interference factors, not limited to Gaussian
noise. Therefore, the PF method is often used in fault
prediction of rotating machinery with bearings as an
example.

Step 4: Perform degradation model parameter estima-
tion based on the PF method.

Suppose the system has a total of K observation
samples, and at each moment of k (k= 1,2 : : : K), prior
probability can be updated based on observed samples.

Prediction: At time k, N particles are sampled based on
the importance distribution: θik = ½aik,bik, ···�,i = f1,2, ··· Ng
is used to represent the prior distribution of system state;

Update: Calculate the weight of each particle:

wi
k ∝ wi

k−1pðykjxikÞ (19)

wi
k =

wi
kP

N
i=1 w

i
k

(20)

The least mean square estimation of system state x at k
is

xk ≈
XN
i=1

wi
kx

i
x (21)

Resampling: Based on the weight size, a new particle
set fxi�1∶k,i = 1,2, ··· Ng can be obtained.

Step 5: RUL extrapolation prediction based on the
prediction model.

By updating the prediction model parameter, the RUL
of the research object is extrapolated to obtain the time and
the number of particles that reached the set threshold.

Step 6: Evaluation of the uncertainty of prediction
results.

The probability statistics of the results obtained in Step
5 are conducted to obtain the probability density distribu-
tion function under different failure times, and then the
corresponding probability distribution of each RUL predic-
tion time can be obtained, so as to provide decision-makers
with prediction results under different confidence levels.
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The above expression is the general process of the
standard PF method. Compared with other extrapolated
prediction methods, the standard PF method is character-
ized by its ability to provide prediction results under
uncertainty evaluation. However, the standard PF method
still faces the problem of how to construct a prediction
model with strong universality, and the prediction results
are largely limited by the updating state of particles, so the
stability and the prediction efficiency of the prediction
method need to be further improved.

B. BRIEF INTRODUCTION TO TE-PF
METHOD

The prediction accuracy and computational efficiency of the
standard PFmethod largely depend on the complexity of the
prediction model, that is, the number of parameters to be
estimated. The more complex the prediction model is, the
more factors it considers comprehensively, and the better its
prediction performance will be theoretically. However, the
parameters to be estimated in the complex prediction model
will increase, and the particle dimension used to estimate
the parameters will also increase exponentially, which will
inevitably lead to a decrease in computational efficiency
and an increase in the instability of the algorithm. On the
contrary, the simplified prediction model based on the
prediction object has fewer parameters, but its prediction
performance will also decrease. The simple model cannot
accurately describe the degradation trend of the research
object, and the number of parameters of the complex model
is bound to be large. In order to reconcile this problem, this
paper conducts in-depth research on the modeling and
parameter updating of the standard PF method.

In the degradation process of the research object, the
degradation trend between two adjacent time series obser-
vation samples can be approximated as a linear degradation
process. The prediction model based on bearing degrada-
tion rate is as follows:

xk = ak−1 × xk−1 (22)

yk = xk + ωk (23)

where yk is the observed value, xk is the status value, ωk is the
observation error, and ak−1 is the degradation rate of the
degraded state, ak−1 = xk=xk−1. This prediction model is
simple indeed and has a good ability to represent the trend
of stable and gradual degeneration processes. However, for the
nonstationary degradation process, the prediction model
parameters are only determined by the state value at the current
moment. Whereas, when the sample state value at the current
moment is abrupt, the model will have serious trend distortion.
Therefore, the parameter updating method of the above pre-
diction model still needs to be adjusted and improved.

In view of the above problems, the TE-PF method is
proposed in this paper, that is, during the process of
dynamic adjustment of state model parameters, various
useful information is taken into comprehensive consider-
ation, and parameter update of the decision prediction
model is integrated.

The prediction model parameter a in the TE-PF method
will consist of three parts, namely:

a = a1 + a2 + a3 (24)

where a1 is regression predicted value of degradation
rate of existing observed samples and particle generation

samples, a2 is the degradation rate of existing observed
samples and generated samples and a3 is the degradation
rate of historical observation data.

Instead of simply calculating the ratio between the state
value at the later moment and the state value at the previous
moment, the state degradation rate values aiði ∈ ½1,2,3�Þ at
multiple previous moments are calculated and weighted.
Weighting values are assigned according to the distance to
the current moment. The farther the distance is, the smaller
the weight value is. The specific calculation expression of
ak−1i (where k represents the length of the observed samples)
is as follows:

ak−1i =w1×
x2
x1
+w2×

x3
x2
+···+wk−2

×
xk−1
xk−2

ðw1≤w2≤···≤wk−2&w1+w2+···+wk−2=1Þ ð25Þ

Compared with standard PF methods, the core idea of
the TE-PF method is to make full use of the irreversibility
and consistency of the trajectory degradation process. For
the rotating machinery, taking rolling bearings as an exam-
ple, when it is in the stage of fault degradation, the degree of
failure is irreversible, and the trend of time series informa-
tion obtained by modern perception means shows a certain
stability or degradation law. Ideas based on exponential
smoothing suggest that trends in the recent past will con-
tinue to some extent into the near future. Therefore, when
the parameters of the state transition model are updated, the
weights are assigned to the recently acquired parameters.
With time forward, the influence of historical data will
gradually decrease, and the weight will also become smal-
ler. Based on the above operations, the trend information of
existing data can be effectively used to guide and strengthen
the trend of particle updating model parameters, and then, a
more stable prediction model can be obtained.

To sum up, the overall process of the TE-PF prediction
method proposed in this paper is shown in Fig. 7. The basic
process is consistent with the standard PF method. Com-
pared with the DRT-PF method, the TE-PF method is still
based on the general prediction model constructed by
degradation rate. The difference is that the method proposed
in this paper estimates the prediction model parameters
comprehensively through multiple information and further
extrapolates to predict the RUL of the research object in its
current state. The probability density distribution of the
uncertainty evaluation of the prediction results is given to
provide effective decision-making suggestions for equip-
ment maintenance.

V. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL VERIFICATION BASED
ON BEARING DATA SETS WITH DIFFERENT
FAULT DEGREES

In order to verify the prediction performance of the TE-PF
method, rolling bearing degradation experiments are carried
out. The existing public data sets of rolling bearings’ full
life are generally obtained by accelerating degradation, and
there are many uncontrollable factors in the process, such as
the running time. Therefore, different from the existing full
life accelerated degradation experiment of rolling bearings,
this experiment adopts the method of replacing rolling
bearings of the same type with different fault degrees to
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obtain multisection bearing fault degradation data and then
splices to obtain approximate full life degradation data of
bearings. The related conditions of the experimental plat-
form and bearing fault parts are shown in Fig. 8. In this
experiment, a total of 11 groups of rolling bearings with
different degrees of outer ring fault were replaced. Relevant
parameters of bearings are shown in Table 2, and related
parameters of faulty parts are shown in Table 3. The
working speed of each faulty bearing is 600 r/min, the
data sampling frequency is 25.6 kHz, the sampling duration
of a single sample is 20 s, and the characteristic frequency of
bearing outer ring fault is around 30 Hz. The full life
degradation data of 220 s long of the testing bearing
were obtained by splicing according to the relationship
of increasing fault degree. The computing platform param-
eters are as follows: Processor Model Intel(R) Core(TM)
I7–10750H CPU @ 2.60GHz 2.59 GHz.

The above 11 groups of bearing acceleration signals
with different outer ring faults are spliced together, and the
obtained time-domain waveform of bearing outer ring fault
degradation is shown in Fig. 9, and commonly used char-
acteristic indexes as shown in Table 1 are extracted as
shown in Fig. 10.

According to the evaluation results of the above char-
acteristic indexes, the comprehensive evaluation indexes of
feature No. 7 and feature No. 11 are relatively superior, and
the corresponding characteristic indexes are RMS and
vibration intensity. The RMS local magnified detail is
obtained as shown in Fig. 12. According to the changes

in RMS amplitude, the characteristic amplitude at 21 s
changed significantly, and the original signal corresponding
to this node is taken as the analysis object.

The original time-domain signal at 21 s and its enve-
lope spectrum are obtained as shown in Fig. 13. It is difficult
to find the corresponding characteristic frequency of bear-
ing outer ring fault directly and obviously from the enve-
lope spectrum, so it is necessary to conduct fault
enhancement processing for the original signal.

Before applying the MOMEDAmethod to fault feature
enhancement, it is necessary to obtain the optimal demod-
ulation frequency band. In this paper, the optimal demodu-
lation frequency band is obtained based on the fast spectrum
kurtosis, and the fast spectrum kurtosis of the original signal
at 21 s is obtained, as shown in Fig. 14.

According to the spectrum kurtosis shown in Fig. 14,
the optimal demodulation center frequency is 666.7 Hz and
the frequency bandwidth is 266.7 Hz. Based on the above
demodulation frequency information and combined with
the MOMEDA method, fault feature enhancement of the
demodulation signal is realized and the envelope spectrum
of the enhanced signal is obtained, as shown in Fig. 15. In
order to compare and verify the fault enhancement effect,
the envelope spectrum before and after the enhancement is
shown in Fig. 16.

Compared with the envelope spectrum before fault
enhancement, 30.01 Hz and its frequency doubling can
be obviously found in the envelope spectrum after enhance-
ment. According to the foregoing experimental parameters,
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it can be seen that this frequency corresponds to the
characteristic frequency 30 Hz of bearing outer ring fault,
indicating that the early bearing fault information has been
successfully excavated in 21 s, which can provide the
starting point for subsequent RUL prediction. Further,
the degradation data after 21 s is directly taken as the

prediction category, and the corresponding time-domain
waveform is shown in Fig. 17.

The data of the first 20 s are healthy signals, and then
the fault data are spliced in sequence according to the
increasing degree of fault, and finally, the time-domain
waveform of class bearing life is obtained. Based on this,
follow-up studies are carried out. According to the feature
indexes extracted shown in Fig. 10 and the feature evalua-
tion results shown in Fig. 11, it can be seen that the
comprehensive evaluation result of vibration intensity is
the best. It is obviously inappropriate to directly take the
extracted vibration intensity as the HI, and it needs to be
processed smoothly. The obtained vibration intensity after
pretreatment is shown in Fig. 18.

As shown in Fig. 18, after smoothing, the HI still
showed a stage of micro-mutation (taking 45 s and 120 s at
the marker as an example). When the prediction start time is
at this stage, the standard PF method and DRT-PF method
will have trend misdirection, leading to the distortion of the
prediction model. In order to verify the superiority of the
TE-PF method proposed in this paper, the RUL prediction
at the stage of micro-mutation will be carried out.

Vibration sensor Vibration sensor

Fault bearing Normal bearing

Fault location

0.2mm 0.42mm 0.8mm 1.02mm

1.7mm

1.4mm

2.17mm 2.3mm 2.71mm 3.29mm

Fig. 8. The experimental platform and fault degree of bearing outer ring.

Table 2. Experimental bearing parameter table

Name Information

Bearing model MB ER-10 K

Number of rolling
bodies Z

8

Rolling diameter d 0.3125 inches × 25.4= 7.9375 mm

Pitch diameter D 1.319 inches × 25.4= 33.5026 mm

Inner raceway
diameter D−d

25.5651 mm

Outer raceway
diameter D+ d

41.4401 mm

Contact Angle 0

Table 3. Dimension table of fault parts

Fault location Slot cutting width /mm Cutting depth/mm

Outer ring 0.2, 0.42, 0.8, 1.02, 1.4, 1.7, 2.17, 2.3, 2.71, 3.29 0.3
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The standard PF method intends to adopt the double-
indexmodel with a stronger trend tracking ability as follows
[33]:

x = a × expðb × tÞ + c × expðd × tÞ + δ (26)

Based on the historical prior data, the initial distribu-
tion interval of each parameter of Eq. (26) are as follows:

a ∈ ½1 × e−10,1 × e−3�, b ∈ ½0:005,0:03�

c ∈ ½0:2,0:3�, d ∈ ½1 × e−4,3 × e−3�, δ ∈ ½0:01,0:1�
And the initial distribution interval of each parameter

of Eq. (25) are as follows:
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Fig. 10. 12 Characteristic indexes extracted based on bearing full life.
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a ∈ ½1,1.03�, δ ∈ ½0:005,0:1�
In order to show the probability distribution of RUL

estimation results more intuitively, the probability distribu-
tion curve in the subsequent prediction graph is appropri-
ately scaled up and shifted. Suppose that the probability
density distribution function is f(x), the calculation expres-
sion can be as expressed follows:

ð
f ðxÞdx = 1 (27)

After translation amplification, the probability density
distribution function fnew(x) is expressed as:

f newðxÞ = f ðxÞ · ½0.2=f ðxÞ� + thres (28)

where thres is the set failure threshold, and its size is set to 1.
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The prediction starting point is selected at 45 s and
120 s, respectively, and the prediction results of the three PF
prediction methods are obtained as shown in Figs. 19–24. In
which, Figs. 19–21 showed the corresponding prediction
results when the prediction starting point is 45 s. Compared
with the overall degenerate data, the observed sample at this
time is not long enough, so the extrapolated prediction
results obtained are not particularly ideal. When the obser-
vation sample length increases to 120 s, the prediction effect
of the three prediction methods is significantly improved as
shown in Figs. 22–24.

Furthermore, to compare and analyze the performance
of the three PF methods, the median prediction accuracy
and calculation time obtained by the three methods under a
90% confidence interval of different observation sample
lengths are summarized in Table 4, where the prediction
accuracy calculation expression is shown as follows:

Acc = jTprediction − Tactualj=Tactual (29)

where Tprediction and Tactual represent the predicted failure
time and the actual failure time, respectively.

According to the above prediction results, with the
increase of the observed sample length, the prediction
accuracy of the three prediction methods is improved,
and the calculation time is also increased. Compared
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Fig. 19. Prediction results of original PF method under 45 s
observation sample duration.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

X: 45
Y: 0.125

X: 115.9
Y: 1.004

X: 177.5
Y: 1.005

V
ib

ra
tio

n 
in

te
ns

ity
 V

/m
m

/s

Time t(s)
Original features Pretreatment features  

Failure threshold Median forecast

90% confidence intervals 
predict boundaries

Probability distribution of 
failure time

Fig. 20. Prediction results of DRT-PF method under 45 s
observation sample duration.
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with the standard PF method, the DRT-PF method and the
TE-PF method have better prediction accuracy when facing
the RUL prediction problem at the stage of micro-mutation.
When the observation sample length is increased to 120 s,
the prediction accuracy of the median value based on TE-PF
has reached 92.11% under the 90% confidence interval. In
general, compared with the PF method and the DRT-PF
method, the TE-PF method proposed in this paper has the
most ideal performance.

B. EXPERIMENTAL VERIFICATION BASED
ON ACCELERATED DEGENERATE BEARING
FULL-LIFE DATA SET

To further verify the prediction performance of the TE-PF
method on the accelerated degenerate bearing full-life data
set, this paper continues to compare and verify the perfor-
mance of the above three prediction methods based on the
IEEE PHM2012 challenge bearing full-life data set. To
obtain the full-life degradation data of bearings in a short
time, a radial load of 4000 N was added to the bearings
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Fig. 21. Prediction results of TE-PF method under 45 s
observation time.
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Fig. 22. Prediction results of original PF method under 120 s
observation time.
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Fig. 23. Prediction results of DRT-PF method under 120 s
observation time.
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Fig. 24. Prediction results of TE-PF method under 120 s
observation time.
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through cylinder loading in the data set acquisition experi-
ment of the IEEE PHM2012 challenge. Experimental bear-
ing degrades rapidly from a healthy state to failure under
extreme conditions. Relevant experimental conditions and
data acquisition parameters are as follows: the speed is
1800 r/min, the sampling frequency is 25.6 kHz, the
sampling interval is 10 s, and the sampling time of a single
sample is 0.1 s. Bearing1-1 data set, Bearing1–3 data set,
and Bearing1–4 data set in the data set have a relatively
stable gradual trend, so they are selected as method verifi-
cation objects. Figure 25 shows the time-domain waveform
of the above three data sets and the extracted vibration
intensity indicator. Taking bearing data set Bearing1-1 and
data set Bearing1–4 as training sets, relevant prior knowl-
edge can be obtained. Then, a prediction test is carried out
for the Bearing1–3 data set, and the performance of the
three prediction methods is compared and analyzed.

It is unscientific to directly use the extracted vibration
intensity for prediction, so it needs to be preprocessed.
Taking the Bearing1–1 data set as an example, the vibration
intensity after pretreatment is shown in Fig. 26. After
smoothing, the HI still showed a stage of micro-mutation
(e.g. the 2700 s and 10 400 s at the marker). In order to
verify the superiority of the TE-PF method proposed in this
paper, RUL prediction at the stage of micro-mutation has
been carried out.

When the observation sample length is 2700 s, the
prediction results of RUL obtained based on standard PF
method, DRT-PF method, and TE-PF method are shown in
Figs. 27–29, respectively. According to the prediction
results, due to the insufficient sample observation length,
the prediction accuracy obtained is not very high.

However, compared with the standard PF methods, the
DRT-PF method and the TE-PF method have relatively
strong trend tracking ability in the initial extrapola-
tion stage.

When the sample observation length is 10 400 s, the
prediction results of RUL obtained based on standard PF
method, DRT-PF method, and TE-PF method are shown in
Figs. 30–32, respectively.

When the observation sample time increases to
10 400 s, obviously, the prediction accuracy of various
PF methods can be effectively improved. This is also

Table 4. Comparison results of prediction performance of different methods under different observation sample
duration

Methods

Duration of observed sample 45 s Duration of observed sample 120 s

Prognosis accuracy (%) Computing time (s) Prognosis accuracy (%) Computing time (s)

Standard PF 48.68 12.78 78.54 13.42

DRT-PF 65.30 14.31 88.28 19.16

TE-PF 81.13 15.41 92.11 18.31
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Fig. 25. Original time-domain waveform and vibration intensity extracted.
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consistent with the actual law, that is, the more the degra-
dation information obtained, the prediction results will be
closer to the actual real results. Compared with the DRT-PF
method and TE-PFmethod, the standard PFmethod still has
a large deviation in the adjustment of the prediction model
at the initial stage of extrapolation. While the DRT-PF
method is obviously inferior to the TE-PF method in trend
tracking performance in the face of a larger HI amplitude
mutation. To further compare and analyze the performance
of the three PF methods, the median prediction accuracy
and calculation time obtained by the three methods under a
90% confidence interval under different observation sample
lengths are summarized as shown in Table 5.

As can be seen from the summary results in Table 5,
when the number of observed samples is insufficient, the
prediction accuracy of all particle filtering methods is not
particularly ideal. When the sample observation length
increases, the prediction accuracy of each method can be
improved effectively. Due to the low parameter dimension
of the prediction model, compared with the standard PF
method, the computational efficiency of the DRT-PF
method and TE-PF method is higher relatively. In face
of fault prognosis in the case of small abrupt HI amplitude,
the TE-PF method proposed in this paper has both accuracy
and computational efficiency advantages and has better
comprehensive trend prediction performance.
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Fig. 27. Prediction results of the standard PF method under
2700 s observation time.
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Fig. 28. Prediction results of DRT-PF method under 2700 s
observation time.
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Fig. 29. Prediction results of TE-PF method under 2700 s
observation time.
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Fig. 30. Prediction results of the standard PF method at 10 400 s.
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VI. CONCLUSION
Aiming at the problem of determining the starting point of

RUL prediction and the construction of the prediction

model, a bearing RUL prediction method based on HI

and TE-PF is proposed in this paper. Firstly, by extracting
multiple characteristic indexes and carrying out the multi-
index evaluation, the HI that can accurately characterize the
bearing degradation state is screened and obtained. Sec-
ondly, based on the anomalous HI amplitude detection and
the MOMEDA fault feature enhancement technology, the
original sample’s fault feature information is mined to
determine the early fault occurrence node, namely the
starting point of RUL prediction. Finally, based on the
TE-PF prediction method proposed in this paper, the RUL
prediction results of bearing under the probability interval
are obtained. The experimental results also verified the
effectiveness of the proposed method. However, experi-
mental verification shows that the particle depletion phe-
nomenon still exists in the TE-PF method, which will be
further studied in the future.
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