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Abstract: The transient impulse features caused by rolling bearing faults are often present in the resonance
frequency band which is closely related to the dynamic characteristics of the machine structure. Informative
frequency band identification is a crucial prerequisite for envelope analysis and thereby accurate fault diagnosis of
rolling bearings. In this paper, based on the ratio of quasi-arithmetic means and Gini index, improved Gini indices
(IGIs) are proposed to quantify the transient impulse features of a signal, and their effectiveness and advantages in
sparse quantification are confirmed by simulation analysis and comparisons with traditional sparsity measures.
Furthermore, an IGI-based envelope analysis method named IGIgram is developed for fault diagnosis of rolling
bearings. In the new method, an IGI-based indicator is constructed to evaluate the impulsiveness and
cyclostationarity of the narrow-band filtered signal simultaneously, and then a frequency band with abundant
fault information is adaptively determined for extracting bearing fault features. The performance of the IGIgram
method is verified on the simulation signal and railway bearing experimental signals and compared with typical
sparsity measures-based envelope analysis methods and log-cycligram. The results demonstrate that the proposed
IGIs are efficient in quantifying bearing fault-induced transient features and the IGIgram method with appropriate
power exponent can effectively achieve the diagnostics of different axle-box bearing faults.
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I. INTRODUCTION

Rolling bearings are widely used in rotating machinery
equipment in the fields of transportation, energy and chemical
industries, such as high-speed trains, aero engines, automo-
bile engines, wind turbine generator sets, and steam turbine
generator sets. Unexpected damage or failure in rolling
bearings may lead to serious human injury or huge economic
losses [1]. Thus, fault diagnosis of rolling bearings in key
transportation, energy and chemical equipment is of great
significance to ensure operational safety and improve eco-
nomic benefits. Up to now, many signal processing-based
methods have been developed for fault diagnosis of rolling
bearings, such as blind deconvolution [2], signal decomposi-
tion [3], envelope analysis [4], stochastic resonance [5,6],
morphological filtering [7], cyclic spectral analysis [8,9] and
modulation signal bispectrum [10]. Among these methods,
envelope analysis is one of the most commonly used methods
for fault diagnosis of rolling bearings and other rotating
mechanical components. In this method, band-pass filtering
is usually performed on a resonance frequency band to extract
the fault-caused transient impulses hidden in the noisy
vibration signals [11]. Therefore, informative frequency
band identification (IFBI) is a crucial prerequisite for rolling
bearing fault diagnosis based on envelope analysis.

At present, many IFBI methods have been established
for fault diagnosis of rolling bearings, which can be roughly
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divided into blind methods and targeted methods [12]. It
should be emphasized that the “blind” and “targeted” here
are only for the characteristics of the frequency band
identification criteria rather than the method itself and its
implementation process. This is a key point to note so as not
to cause ambiguity.

The blind IFBI method makes no assumptions about the
periodicity of the bearing fault features in the analyzed signal
[12], and can adaptively identify an informative frequency
band (IFB) closely related to transient fault features. A
representative blind IFBI method is the fast kurtogram
proposed by Antoni [4]. In this method, a 1/3-binary tree
filter bank is designed to split the vibration signal into a group
of narrowband filtered signals with different center frequen-
cies and bandwidths, and the kurtosis of the narrowband
filtered signal is taken as a criterion to identify the IFB by
evaluating the impulsiveness of bearing fault features. How-
ever, the fast kurtogram tends to select the fault-unrelated
frequency band when confronted with vibration signals
polluted by strong random impulse noise, which may attribute
to the inherent limitation of kurtosis susceptible to outliers.
Subsequently, the protrugram [13] was developed for IFBI by
employing the kurtosis of the envelope spectrum of the
narrowband filtered signal as the evaluation criterion of the
fault information. The autogram was proposed for bearing
diagnosis in [14] by using the kurtosis of the autocorrelation
of the squared envelope of the filtered signal as the frequency
band identification criterion. Similarly, correlation spectral
negentropy was proposed in [15] to identify IFB. Since the
protrugram is dedicated to evaluating the cyclostationarity
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rather than the impulsiveness of bearing fault features and the
autogram aims to characterize the periodicity of bearing fault
features, they are more robust to random impulse noise in
comparison with the fast kurtogram. However, the protru-
gram delivers low robustness to discrete harmonic interfer-
ence from shaft rotation or gear meshing, which exhibits a
high-level peak in the envelope spectrum; the autogram has
difficulty extracting the desired repetitive transient fault
features when strong discrete harmonics are present. Tse
and Wang [16] used the ratio of L2 to L1 norm (L2/L1)
of the power spectrum of the narrowband filtered signal to
determine IFB for bearing fault diagnosis. However, L2/L1 is
also susceptible to large outliers, thus its normalized version
namely Hoyer index (HI) [17] may be an alternative evalua-
tion criterion. Antoni [18] fused both the impulsiveness and
cyclostationarity into the infogram using the arithmetic mean
of the negentropy (NE) of the squared envelope and the NE of
the squared envelope spectrum (SES) for IFBI. Hebda-Sob-
kowicz et al. [19] replaced the arithmetic mean of partial
infograms with the logarithmic mean, geometric mean and
normalizing of partial infograms to improve the robustness of
the classical infogram to non-Gaussian noise. HI and NE have
weaker sensitivity to random impulses compared with kurto-
sis, but they also show poor IFBI performance in the presence
of strong random impulses. In addition, Gini index (GI),
originally used in the field of economics, was introduced into
the field of mechanical fault diagnosis to quantify impulse
features and guide the selection of IFB [20,21]. GI is less
sensitive to non-Gaussian noise than kurtosis, NE and HI,
whereas its fault-impulse discernibility is weaker than kurto-
sis, NE and HI [22]. Thus, it is necessary to develop robust
transient feature quantification metrics for improving the
accuracy of frequency band identification. In addition, the
L-kurtosis [23], stability index [24], conditional variance
statistic [25], averaged local kurtosis [26] and subband
averaging kurtogram [27] were proposed to distinguish bear-
ing fault-related frequency band in the presence of non-
Gaussian noise. The works in [21,22,28,29] summarized
and compared the performance of typical blind IFBI methods
in bearing fault diagnosis.

The targeted IFBI method focuses on the (quasi)
periodicity of bearing fault features to extract the cyclic
components in the signal to be analyzed, requiring knowl-
edge of the impulse period (in the time domain) or the fault
characteristic frequency (in the frequency domain) before
identifying IFB. For example, the harmonic-to-noise ratio
[30] and correlated kurtosis [31,32] using the impulse
period have been employed to construct the IFBI methods
for extracting periodic bearing fault features. In recent
years, the cyclostationarity of bearing fault signals has
received increasing attention, and the IFBI methods using
fault characteristic frequency have been continuously pro-
posed, such as the ratio of cyclic content [33], indicator of
second-order cyclostationarity [34], frequency domain cor-
related kurtosis [35] and weighted cyclic harmonic-to-noise
ratio [36]. These methods mainly use the SES and the fault
characteristic frequency of interest to construct the evalua-
tion indicator of cyclostationarity as the frequency band
identification criterion. Inspired by the works in [37,38]
where the log-envelope spectrum was discovered to be a
robust tool for characterizing cyclostationarity in the pres-
ence of high impulse noise, the IFBI methods based on the
log-envelope spectrum were established, such as log-cycli-
gram (LC) [12], cyclic harmonic ratio [39] and LEASgram
[40]. In addition, by exploiting the insensitivity of

correntropy to impulse noise, FECgram [41] was proposed
to identify IFB for bearing diagnostics. The works in
[12,42] comparatively investigated the performance of
the blind and targeted IFBI methods in distinguishing
IFB. Benefiting from the frequency band identification
criteria using impulse period or fault characteristic fre-
quency, the targeted IFBI methods are generally more
robust than the blind IFBI methods in the presence of
high impulsive noise. However, the targeted IFBI methods
require an accurate impulse period or fault characteristic
frequency as a prerequisite to ensure the accurate identifi-
cation of fault-related frequency bands. In contrast, the
blind IFBI methods do not require impulse period and fault
characteristic frequency in distinguishing fault-related fre-
quency band, thus exhibiting wider adaptability. Therefore,
this paper aims to develop a blind IFBI method which is
robust to impulse noise and can achieve fault diagnosis
performance similar to those of the targeted IFBI methods.

In recent years, the design of new quantitative indica-
tors of machine fault features has received increasing
attention. Wang et al. [43] proposed the sum of weighted
normalized squared envelope as a framework to character-
ize the repetitive transients for machine condition monitor-
ing. Hou et al. [44] discovered that typical sparsity
measures can be reformulated into the ratio of different
quasi-arithmetic means (RQAM). RQAM has been proved
to be a powerful tool for designing quantitative indicators
for characterizing repetitive transients [44—46]. To improve
the accuracy of IFBI for bearing fault diagnosis, the design
of new sparsity measures and their application in bearing
fault diagnosis are investigated. The main novelties and
contributions of this paper include:

(1) Based on RQAM, a novel generalization method of
GI is developed, which allows the single parameter
generalization of classic GI by using the power
function-based quasi-arithmetic means and leads to
new quantitative indicators named improved GIs
(IGIs) for quantifying transient features.

(2) The sparse quantization capability and repetitive
transient discriminability of IGIs are investigated
using simulations, and the results show that IGIs
exhibit rich sparse quantization capabilities and can
achieve improved repetitive transient discriminability
compared with traditional sparsity measures.

(3) An IGI-based IFBI method named IGIgram is pro-
posed for bearing fault diagnosis, which utilizes 1GI
to adaptively identify an IFB with rich fault informa-
tion by evaluating both the impulsiveness and cyclos-
tationarity of bearing fault features.

(4) The effectiveness of IGIgram is validated using sim-
ulation and experimental signals, and the results
confirm that IGIgram with appropriate power expo-
nent can achieve accurate IFBI for effective extrac-
tion of repetitive transients and fault diagnosis of
railway axle-box bearings.

The remainder of this paper is arranged as follows. In
Section II, the traditional sparsity measures for IFBI are
briefly reviewed and the formal definition and performance
analysis of IGIs are presented. Section III introduces the
envelope analysis method based on IGIs for bearing fault
diagnosis. In Sections IV and V, the simulation signals and
railway axle-box bearing experimental signals are analyzed to
validate the effectiveness of the proposed fault diagnosis
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method, and the performance is compared with the IFBI
methods based on typical sparsity measures. Section VI
presents the comparison results with the LC method. The
main conclusions of this paper are summarized in Section VII.

Il. TRADITIONAL AND NOVEL
SPARSITY MEASURES

A. TRADITIONAL SPARSITY MEASURES

Sparsity measures are usually regarded as the measure of
the energy concentration of a signal [47]. Specifically, if all
energy is concentrated in one element of the signal, the
sparsity value of the signal is maximum. On the contrary, if
all elements have the same energy, the sparsity of the signal
is minimum. Let x = [x},x,, - -+ ,xy] be a discrete vibration
signal with N samples, the typical sparsity measures for
characterizing transient impulse features in IFBI are intro-
duced as follows.
Kurtosis (Kurt) [48]:

13N\
Kurt = — Zx‘*/(ﬁzx,%) (1)

n= n=1

Negentropy [18]:

x2 x2
" In u )
;11v Nt X ﬁZﬁ:Mﬁ
Ratio of L2 to L1 norm (L2/L1) [16]:
(B3I
L2/L1 = \/‘H ” 3)
1
Hoyer index [17]:
x
HI = (\/JV——HxH‘)/(\/zT/— 1) 4)
2

Gini index [49]:

or=1- an( _nm) ®

where ||x||, and ||x|, denote the L1 norm and L2 norm,
respectively; X . = [X(1)-X(2), *** X(v)] is the permutation
of sequence x = [x;,x5, --- ,xy] in ascending order, i.e.,
X(1) £ X2y <+ < x(y)- Note that the input sequence of Gl is
nonnegative.

These sparsity measures are typical indicators of tran-
sient impulse features in a signal and have been applied to
the condition monitoring and fault diagnosis of rolling
bearings by characterizing the impulsiveness or cyclosta-
tionarity of bearing fault signals. However, traditional
sparsity measures have exposed some shortcomings in
practical applications. The value of kurtosis varies largely
with the signal amplitude, especially outliers, which is not
conducive to the detection of bearing fault impulses in
industrial scenarios. Moreover, the range of kurtosis cannot
be accurately estimated. The sensitivity of NE, L2/L.1 and
HI to outliers is lower than kurtosis, but their fault impulse
detection performance will still be affected when encoun-
tering strong random impulses [22,50]. GI is robust to
outliers and has a clear range of [0,1], but its ability to
identify bearing fault impulses under noise interference is
weaker than kurtosis and NE [22]. Therefore, it is necessary
to develop new sparsity measures that are robust to random
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impulses and background noise for transient feature char-
acterization and bearing fault diagnosis.

B. IMPROVED GINI INDICES

To overcome the limitations of traditional sparsity measures
in characterizing transient impulse features and detecting
bearing faults, new sparsity measures or statistical indica-
tors have been explored recently. Based on RQAM, Hou
et al. [45] proposed generalized Gini indices (GGIs) by
introducing the nonlinear weights into the classic GI, as
follows:

N N
Xn
GGI=1- Z an(n)/ ZN (6)
n=1 n=1

where w, = 2(N —n) +1]9/ >N [2(N —n) + 1]¢ is the
nonlinear weight and a > 0 is the weight parameter.

Compared with GI and other traditional sparsity mea-
sures, GGIs can achieve different sparse quantization
capabilities and tunable random transient resistibility by
adjusting weight parameter. However, the repetitive tran-
sient discriminability of GGIs with different weight param-
eters shows small differences and is inferior to Kurt, NE and
HI, which will be elucidated in Section II.C. Moreover, both
GI and GGlIs employ a line function as the generator of the
quasi-arithmetic means. Given the nonlinear property of
power functions, it is worth investigating the construction
of sparsity measures by using quasi-arithmetic means based
on power function. Therefore, based on RQAM and classi-
cal GI, IGIs are proposed as a new family of statistical
indicators, as follows:

p| X
;Wr:xfn)/;ﬁ

IGI=1-

=1‘"Z|x|P< N)+l> @

where |[x||, is the Lp norm, p > 0 is the power exponent,
wy=[2(N-n)+1]/N*> and YN w,=1. IGIs are
reduced to GI when the power exponent p = 1. The power
exponent of IGIs allows their performance or capability to
be tunable. In addition, the definition in Eq. (7) indicates the
following important properties:

* IGIs are scale-invariant, which means that the ampli-
tude of each element multiplied by a constant factor
will not change IGIs of a signal.

 IGIs are positive and their values are always between 0
and 1.

A numerical example is used to illustrate the motiva-
tion for using power functions to construct quasi-arithmetic
means, as shown in Fig. 1. Fig. 1a displays a non-negative
sequence (p = 1) with the largest element greater than 1 and
its square (p = 2) and square root (p = 0.5). Fig. 1b displays
anon-negative sequence with the largest element less than 1
and its square (p=2) and square root (p=0.5). Two
prominent impulses can be observed in the original
sequence (i.e., power exponent p =1). For sequences
with power exponents p =1, 2 and 0.5, the ratios of the
largest element to the smallest element of the three se-
quences are 72.88, 5310.97 and 8.54, respectively. Note
that the quantization results for the sequences shown in
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Fig. 1. Non-negative sequence (p = 1) and its square (p =2) and
square root (p =0.5): (a) the largest element of the sequence is
greater than 1, and (b) the largest element of the sequence is less
than 1.

Fig. la, b are the same. It can be discovered that the
nonlinear characteristic of the power function can be
used to non-uniformly scale the sequence amplitude. Fur-
thermore, increasing the power exponent p of the sequence
can increase the salience of the impulses relative to other
elements, regardless of whether the largest element of the
non-negative sequence is greater than 1.

As shown in Eq. (7), a linear weight sequence is
applied to the normalized sequence xp /||x||p, /
x5, ..., J/||x||p when calculating the IGI of tl)l
sequence. Since increasing the power exponent p can
increase the salience of the impulses relative to other
elements, it can increase the sensitivity of the IGI to
transient features. Conversely, decreasing the power expo-
nent p can reduce the salience of the impulses relative to
other elements, thereby increasing the resistibility of the IGI
to random transients. Therefore, the power exponent of IGI
allows its performance or capability to be tunable. The
following numerical analysis will confirm these properties
of IGL

C. PERFORMANCE ANALYSIS

This section illustrates the important properties of IGIs in
transient feature characterization by simulation signals, and
the performance is compared with existing sparsity mea-
sures, including Kurt, NE, L2/L1, HI, GI and GGls.
Bernoulli distributions with different success probabil-
ities are often used to generate data sequences with different
sparsity [45,47]. To evaluate the sparse quantification
capability of IGIs, a series of data sequences with different
sparsity were generated when the success probability of the
Bernoulli distribution is increased from 0.005 to 1 in
increments of 0.005. The length of each data sequence is
20,000 data points. Figs. 2 and 3 show the GGIs with
different weight parameters and the IGIs with different
power exponents of the data sequences generated by the
Bernoulli distribution with different success probabilities,
respectively. The weight parameter a of GGIs includes
increasing from 0.1 to 1 in increments of 0.1 and from
1.5 to 10 in increments of 0.5. The power exponent p of IGIs

0.8 i

g
=N

Scaled value
>
~

e
o

L2/L1
L

0 0.2 0.4 0.6 0.8 1
Success probability

Fig. 2. Traditional sparsity measures and GGIs with different
weight parameters of the data sequences generated by Bernoulli
distribution with different success probabilities.
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Fig. 3. Traditional sparsity measures and IGIs with different
power exponents of the data sequences generated by Bernoulli
distribution with different success probabilities.

includes increasing from 0.1 to 1 in increments of 0.1 and
from 1.5 to 10 in increments of 0.5. Five traditional sparsity
measures are also displayed for comparison. Note that all
indicators are scaled between 0 and 1.

When the success probability of the Bernoulli distri-
bution increases from 0.005 to 1, the sparsity of the data
sequence gradually becomes weaker. Similar to GGIs, IGIs
with different power exponents can monotonically quantify
the sparsity of a data sequence, i.e., increase gradually as the
sparsity of the data sequence increases. It can be observed
that the sparse quantization capability of IGIs can be tuned
by changing the power exponent. In addition, the descend-
ing gradient of the sparse quantization curve can reflect the
random transient resistibility of the indicator. The smaller
the descending gradient, the stronger the random transient
resistibility of the indicator. The results show that decreas-
ing the power exponent can improve the random transient
resistibility of IGIs, and IGIs with appropriate power ex-
ponents show stronger random transient resistibility than
the five traditional sparsity measures. Therefore, IGIs and
GGls exhibit similar characteristics in random transient
resistibility.

Repetitive transient features caused by defects in rotat-
ing machinery are often contaminated by background noise,

JDMD Vol. 1, No. 2, 2022



IGlgram: An Improved Gini Index-Based Envelope Analysis

thus, the repetitive transient discriminability is of great
importance for the indicators. To evaluate the repetitive
transient discriminability of IGIs, a set of mixed signals of
the periodic impulses s,(¢) and Gaussian noise s, () are
generated by changing the SNR of Gaussian noise. 100
impulses are evenly distributed in the periodic impulse
signal. The Gaussian noise is generated by the “awgn”
function in MATLAB. The periodic impulse signal and
Gaussian noise signal have a length of 20,000 data points.
The sampling frequency is assumed as 20,000 Hz.

s(t) = s,(t) + 5,(2) 8)

100
sp(t) =2 e710000=1/100) sin (27 - 3500(¢ — i/100)) (9)

i=1

Figs. 4 and 5 exhibit the GGIs with different weight
parameters and IGIs with different power exponents of the
envelopes of the mixed signals of periodic impulses and
Gaussian noise when SNR is increased from —20 dB to 40 dB
in increments of 0.1 dB, respectively. Figure 6 shows the
partial enlargements of Figs. 4 and 5. The weight parameter a
of GGIs includes increasing from 0.1 to 1 in increments of 0.1
and from 1.5 to 10 in increments of 0.5. The power exponent
p of IGIs includes increasing from 0.1 to 1 in increments of
0.1 and from 1.5 to 10 in increments of 0.5. Five traditional

GGLa=0.1

Scaled value

30 40
SNR (dB)

Fig. 4. Traditional sparsity measures and GGIs with different
weight parameters of the envelopes of the mixed signals of
periodic impulses and Gaussian noise with different SNRs.
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Fig. 5. Traditional sparsity measures and IGIs with different
power exponents of the envelopes of the mixed signals of
periodic impulses and Gaussian noise with different SNRs.
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Fig. 6. (a) Partial enlargement of Fig. 4 and (b) partial
enlargement of Fig. 5.

sparsity measures are also displayed for comparison. Note
that all indicators are scaled by using Eq. (10):

Smjxed (m) B Snoise (m)
- Snoise (m>

where Sy ieq(m) and S, (m) are the indicator values of the
envelopes of the mixed signal and Gaussian noise signal
under an SNR of m, respectively; Simpuise 18 the indicator value
of the envelopes of the periodic impulse signal; S.eq(m) is
the scaled indicator value under an SNR of m.

When the SNR increases from —20 dB to 40 dB, the
scaled indicator value gradually increases from O to 1, and
the increasing gradient of the quantization curve can reflect
the repeated transient identification ability of the index. The
greater the increasing gradient, the stronger the repetitive
transient discriminability of the indicator. Figs. 4 and 6a
show that the repetitive transient discriminability of GGIs
with different weight parameters is similar to that of
classical GI and inferior to Kurt, NE and HI. Reducing
the weight parameter can slightly improve the repetitive
transient discriminability of GGIs, but the effect of the
weight parameter on improving the repetitive transient
discriminability of GGIs is limited. In contrast, IGIs with
different power exponents exhibit rich repetitive transient
discriminability and can achieve stronger repetitive tran-
sient discriminability than five traditional sparsity measures
and GGIs with different weight parameters, as exhibited in
Figs. 5 and 6b. In addition, increasing the power exponent
can effectively improve the repetitive transient discrimina-
bility of IGIs, but too high power exponents make IGIs
susceptible to interference noise.

The above results lead to the following important
remarks: (1) IGIs with different power exponents can
quantify the sparsity of data sequences; (2) IGIs with
appropriate power exponents can simultaneously possess
strong random transient resistibility and repetitive transient
discriminability; (3) IGIs with appropriate power exponents
can achieve excellent transient feature quantization com-
pared to traditional sparsity measures.

Sscaled (m) = (10)

Simpulse

lll. IMPROVED GINI INDEX-GUIDED
ENVELOPE ANALYSIS

Recently, Hebda-Sobkowicz et al. [19] investigated the
extension of the classic infogram by substituting the
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arithmetic mean with the weighted mean, logarithmic mean
and geometric mean for IFBI. The experimental results
showed that the infogram based on the geometric mean
(called geometric infogram) performs better than the arith-
metic mean and logarithmic mean in bearing diagnostics.
Inspired by the geometric infogram, the geometric mean of
squared envelope IGI and squared envelope spectrum IGI
(abbreviated as GMIGI) is proposed as the new criterion for
IFBI, as follows:

GMIGI = +/IGIgeIGIggs (11)

where IGIgg and IGlggg are the IGI values calculated from
the squared envelope and squared envelope spectrum
(SES), respectively.

In envelope analysis, frequency band division is the
prerequisite for IFBI to extract fault impulse features from
noisy machine vibration signals. The 1/3-binary tree filter
bank [4] has the merits of high computational efficiency and
variable bandwidth, thus it is adopted in this study for
frequency band division. For each decomposition level k of
the filter bank, k = 0,1,1.6,2,2.6,3, ---, the full frequency
band [0,F,/2] is split into 2* narrow frequency bands with
equal bandwidth F,/2**!, where F, denotes the sampling
frequency, as shown in Fig. 7. Further, a total of 2f
narrowband filtered signals can be obtained correspond-
ingly by band-pass filtering. The details of the 1/3-binary
tree filter bank are reported in [4].

On the basis of frequency band division, GMIGI is
employed to evaluate the bearing fault features contained in
the narrowband filtered signals. Finally, the GMIGI values
of different narrow bands can form a two-dimensional map,
named IGIgram, which can be used to identify an optimal
narrowband filtered signal with abundant transient impulse
features for fault diagnosis. A flowchart of IGI-guided
envelope analysis for bearing fault diagnosis is shown in
Fig. 8. The implementation procedure of the proposed fault
diagnosis method is described as follows:

Step 1: Collect the bearing vibration signals using data
acquisition equipment and acceleration sensors.

Step 2: Conduct band-pass filtering on the measured
vibration signal by the 1/3-binary tree filter bank to
generate a group of narrowband filtered signals with
different bandwidths and center frequencies.

0 + 1
1 | + 2
1.6 | | + 3 z
g
1L =
2 4 z
o) E
pu 1 ] T 1t
= ]
3 | | | 1383
=
£
ol LI LTI L] fge2
ol LT e
-+ 2F
k .o 7
: : : : >
0 /8 /4 3r/8 "/2

Spectral frequency (Hz)

Fig. 7. Structure of 1/3-binary tree frequency bands.
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Squared envelope spectrum - K
Squared envelope spectrum analysis
MLJM- )
! Rolling bearing fault diagnosis l
Frequency 1)

Fig. 8. Flowchart of proposed bearing fault diagnosis method.

Step 3: Calculate the squared envelope and SES of the
narrowband filtered signal and calculate the GMIGI
value of each narrowband filtered signal.

Step 4: Select the optimal narrowband filtered signal
from the obtained candidates by the maximum GMIGI
criterion.

Step 5: Perform SES analysis on the selected narrow-
band filtered signal and identify bearing faults based on
characteristic fault frequencies.

IV. SIMULATION VERIFICATION

A. NUMERICAL MODEL OF BEARING FAULT
SIGNAL

A numerical simulation signal of bearing inner race fault is
generated to validate the effectiveness of the IGIgram
method in extracting repetitive transient features. The
simulation signal considers the repetitive transient impulses
caused by bearing defect shown in Eq. (13) and interference
noises often encountered in industrial scenarios, including
random transients in Eq. (14), discrete harmonics in
Eq. (15) and background noise, as follows:

x(t) = x1(t) + x2(t) + x3(¢) + n(r) (12)

97
x (t)=Ze—10°0<f—i/97—Af>sin(2n~5000(z—i/97—Ai)) (13)

i=1

3
%() =Y A9 sin(27 - 1700(t — 7)) (14)

J=1

x3(1)=0.1[sin(2z - 10¢ +7/6) +sin(27-20r—x/3)]  (15)
A=) 8  §~U(-V3/9700,1/3/9700)  (16)
k=1
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A =2a

j =2¢;,  a~N(10.1) a7

7,~U(0,1) (18)
where A, is the time jitter caused by the slippage effect of
the rolling element [10,51]; A; and 7; denote the amplitude
and occurrence time of the jth random transient, respec-
tively; N(-, -) and U(-, -) represent a normal distribution
and a uniform distribution, respectively. In addition, the
Gaussian noise with an SNR of —12.5 dB is added to
simulate the background noise. The fault characteristic
frequency of the bearing inner race is assumed to be
97 Hz. The sampling frequency and length are set to
12,800 Hz and 1 s, respectively.

B. SIMULATION RESULTS

The simulation signal of bearing inner race fault and its
magnitude spectrum and SES are depicted in Fig. 9. Only
two discrete harmonics, 10 Hz and 20 Hz, can be detected in
the magnitude spectrum, and the inner race fault character-
istic frequency f;=97 Hz and its harmonics cannot be
observed in SES.

To extract the repetitive transients, IGIs with power
exponents p =0.1, 0.3,0.5, 0.8, 2, 3, 4 and 6 are introduced
into the IGIgram method to select IFB. For comparison,
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Fig. 9. Simulation of bearing inner race fault signal:

(a) waveform, (b) magnitude spectrum and (b) SES.

Table I. Frequency bands selected by different criteria
on the simulation signal of bearing inner race fault

Criterion

Kurt, L2/L1

NE, HI, GI, GGIs with a=0.1, 0.3, 0.5
and 0.8, IGI with p=2

GGIs with a =2, 3, 4, 6, IGIs with
p=0.1,03,0.5 and 0.8

IGIs with p=3, 4 and 6
Note: (Central frequency, Bandwidth) in Hz.

Frequency band

(1800, 400)
(5,000, 400)

(3,200, 6,400)

(5,067, 533)
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Kurt, L2/L.1, HI, GI and GGIs with @ = 0.1, 0.3, 0.5, 0.8, 2,
3, 4 and 6 are employed to replace NE in the geometric
infogram for selecting IFB. The decomposition level of the
entire frequency band is set to 4 for all methods. Table I
shows the frequency bands selected by different criteria on
the simulation signal of bearing inner race fault. It can be
observed that four different frequency bands are selected by
these indicators. As some examples, Fig. 10 displays the
geometric kurtogram, geometric infogram, IGIgram with p
= 0.8 and IGIgram with p = 3. Furthermore, the envelopes
and SESs of the band-pass filtered signal obtained from
these four frequency bands are presented in Figs. 11 and 12,
respectively.

Two large random impulses are exhibited in Fig. 11a,
showing that Kurt and L2/L1 select the resonance fre-
quency band of random impulses and fail to identify
the resonance frequency band of repetitive transients.

(a Kurt@ level 4, Fc = 1800Hz, Bw = 400Hz
12
1 6 10
£ 8
9 2.6
3 6
3.6
4 4
Frequency (kHz)
(b) NE@ level 4, Fc =5000Hz, Bw = 400Hz
1.1
1
)
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=
0.8
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0 1 2 3 4 5 6
Frequency (kHz)
(¢) IGI(p=0.8)@ level 0, Fc = 3200Hz, Bw = 6400Hz
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1.6
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Fig. 10. (a) Geometric kurtogram, (b) geometric infogram,
(c) IGIgram with p =0.8 and (d) IGIgram with p =3.
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Fig. 11. Envelopes of the band-pass filtered signals obtained
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(5,000, 400), (c) band (3200 6400) and (d) band (5,067, 533).

In contrast, the repetitive transient features can be observed
in Fig. 11b, d and the inner race fault characteristic fre-
quency f; =97 Hz and its harmonics can be easily detected
in Fig. 12b, d. These results indicate that NE, HI, GI, GGIs
witha=0.1,0.3,0.5 and 0.8 and IGIs with p =2, 3,4 and 6
discriminate the correct resonance frequency bands (5,000,
400) and (5,067, 533). In addition, due to the wider
frequency band, IGIs with p =3, 4 and 6 achieve relatively
good feature extraction results. The above results prelim-
inarily verify the effectiveness of IGIs in identifying IFBs
and extracting repetitive transient features.

V. EXPERIMENTAL RESULTS

In this section, the vibration signals acquired from railway
axle-box bearings under different operating conditions are

@ o2 ;
[} N ~
ERY ]
% -
< 0 :

0 100 200 300 400 500
(b) Frequency (kHz)
L 0.2 - o T - —
E T/ T A 57,
=, 0.1 : 1
g
< 0 "

0 100 200 300 400 500
©) Frequency (kHz)
L 0.2 T o - T —
E R/ VR L L 7
a 0.1 | : : : H : T
E - - N :
< O M S\, AN AWV PMV' MAA ,Am,lg“_w AMAANNA

0 100 200 300 400 500
@) Frequency (kHz)
L 0.2 T o T - —
E S, laf iy, 4 s
iy 0.1 H : 1
g
<

0 100 200 300 400 500
Frequency (kHz)

Fig. 12. SESs of the band-pass filtered signals obtained from
different frequency bands: (a) band (1800, 400), (b) band (5,000,
400), (c) band (3200 6400) and (d) band (5,067, 533).

used to validate the efficiency of the proposed fault diag-
nosis method, and the performance is compared with the
improved geometric infogram based on state-of-the-art
sparsity measures.

The experimental signals were collected from a railway
axle-box bearing test rig. The test rig mainly consists of the
driving device, wheelset mounted with axle-box bearings
and loading device, as shown in Fig. 13a. The outer race
fault and rolling element fault bearings were tested under
different operating conditions. All bearing faults were
implanted artificially with a depth of 0.2 mm and a width
of 0.6 mm, as exhibited in Fig. 13b, c. The pitch diameter,
rolling element diameter, number of rolling elements and
contact angle of the tested axle-box bearings were
187.2 mm, 26.7 mm, 17 and 12.08°, respectively. Accel-
erometers were mounted along the vertical direction of the
axle box to collect the vibration signals. The sampling

Loading device

Fig. 13. (a) Railway axle-box bearing test rig, (b) damaged bearing outer race, and (c) damaged bearing rolling element.
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Fig. 14. Vibration signal of outer race fault bearing:
(a) waveform, (b) magnitude spectrum and (c) SES.

Table ll. Frequency bands selected by different criteria

on the vibration signal of outer race fault bearing
Frequency

Criterion band

Kurt (4,800, 3,200)

NE, GI, GGIs with a =2, 3, 4 and 6, IGIs
with p=2 and 3

L2/L1, HI, GGI with a=0.1

GI, GGIs with a=0.3, 0.5 and 0.8, IGIs
with p=0.3, 0.5 and 0.8

IGIs with p=0.1 and 6
IGI with p=4

(5,600, 1,600)

(4,800, 1,067)
(5,067, 533)

(3,200, 6,400)
(5,333, 2,133)

frequency and length of the vibration signal were set to
12.8 kHz and 8,192 sampling points, respectively.

A. BEARING OUTER RACE FAULT

In this case, the vibration acceleration signal of the railway
axle-box bearing with outer race fault is analyzed. The
vibration signal was collected at a constant speed of
590 rpm, as shown in Fig. 14a. The transient impulse
features induced by the bearing outer race fault are
completely buried in the strong background noise, making
it difficult to detect the fault characteristic frequency of the
bearing outer race (f, =71.88 Hz) and its harmonics from
SES shown in Fig. 14c.

The IGIgram using IGIs with p =0.1,0.3,0.5,0.8, 2, 3,
4 and 6 are employed to extract the fault impulse features of
bearing outer race. The geometric infogram and its
improved methods using Kurt, L2/LL1, HI, GI and GGIs
with a=0.1, 0.3, 0.5, 0.8, 2, 3, 4 and 6 are also applied to
the signal in Fig. 14a for comparison. The decomposition
level of the entire frequency band is set to 4 for all methods.
Table II shows the six frequency bands selected by different
criteria for bearing outer race fault diagnosis. The envelopes
and SESs of the band-pass filtered signals obtained from six
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selected frequency bands are displayed in Figs. 15 and 16,
respectively.

The repetitive impulse features can be clearly observed
in Fig. 15a—f, and the outer race fault characteristic fre-
quency f, and its first six harmonics can be easily detected in
Fig. 16a—d and f. These results indicate that five frequency
bands (4,800, 3,200), (5,600, 1,600), (4,800, 1,067), (5,067,
533) and (5,333, 2,133) contain repetitive impulse features
caused by bearing outer race fault. Because the frequency
bands (5,600, 1,600), (4,800, 1,067) and (5,067, 533) have
relatively narrow bandwidths, the SESs of their correspond-
ing filtered signals exhibit better fault diagnosis effects. In
addition, IGIs with p = 0.1 and 6 fail to effectively identify
the fault-related resonance frequency bands, which may be
caused by the weaker repetitive transient discriminability of
IGI with p =0.1 and the susceptibility to the noise of IGI
with p = 6. These results verify the effectiveness of IGIs in
fault diagnosis of axle-box bearing outer race and also show
that the power exponent of IGIs should not be too large or
too small in the application.
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Fig. 15. Envelopes of the band-pass filtered signals obtained
from different frequency bands: (a) band (4,800, 3,200), (b) band
(5,600, 1,600), (c) band (4,800, 1,067), (d) band (5,067, 533),
(e) band (3,200, 6,400) and (g) band (5,333, 2,133).
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Fig. 16. SESs of the band-pass filtered signals obtained from
different frequency bands: (a) band (4,800, 3,200), (b) band
(5,600, 1,600), (c) band (4,800, 1,067), (d) band (5,067, 533),
(e) band (3,200, 6,400) and (g) band (5,333, 2,133).

B. BEARING ROLLING ELEMENT FAULT

The vibration signal of the rolling element fault bearing
collected at a constant speed of 885 rpm is used to further
validate the proposed method, as displayed in Fig. 17a. The
repetitive impulse features induced by the rolling element
fault are buried in the strong background noise. Although
the harmonics 2f,, 3f, and 6f;, can be observed from SES
shown in Fig. 17c¢, the fault characteristic frequency of the
bearing rolling element (f;, = 48.15 Hz) and other harmonics
are not obvious, resulting in the inability to accurately judge
the health status of the axle-box bearing.

To extract the fault impulse features of bearing rolling
element, the IGIgram using IGIs with p =0.1, 0.3, 0.5, 0.8,
2,3, 4 and 6, geometric infogram and its improved methods
using Kurt, L2/L1, HI, GI and GGIs with ¢ =0.1, 0.3, 0.5,
0.8, 2, 3, 4 and 6 are applied to the vibration signal shown in
Fig. 17a. The decomposition level of the entire frequency
band is set to 4 for all methods. Table III displays the six
frequency bands selected by different criteria for fault
diagnosis of bearing rolling element. Figs. 18 and 19
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Fig. 17. Vibration signal of rolling element fault bearing:
(a) waveform, (b) magnitude spectrum and (c) SES.

Tablelll. Frequency bands selected by different criteria
on the vibration signal of rolling element fault bearing

Criterion Frequency band

Kurt (5,867, 1,067)
NE (5,200, 800)

L2/L1, HI, GGIs with a=0.1, 0.3, 0.5 (5,400, 400)
and 0.8, IGI with p =2

GI, GGIs with a=2, 3, 4 and 6, IGI
with p=0.8

IGIs with p=0.1, 0.3 and 0.5

IGIs with p=3, 4 and 6

(4,000, 1,600)

(3,200, 6,400)
(5,600, 1,600)

show the envelopes and SESs of the band-pass filtered
signals obtained from the six selected frequency bands,
respectively.

As shown in Fig. 18a—c and f, the repetitive impulse
features can be clearly observed. Correspondingly, in
Fig. 19a— and f, the fault characteristic frequency of
bearing rolling element f;, and its first three harmonics
can be easily identified, and the sidebands can also be
detected. Thus, the results obtained from the band fre-
quency bands (5,867, 1,067), (5,200, 800), (5,400, 400)
and (5,600, 1,600) confirm the rolling element fault of the
axle-box bearing. Furthermore, the SESs obtained from the
frequency bands (5,867, 1,067) and (5,600, 1,600) achieve
better effects than that of the other two frequency bands.
The above results further verify the effectiveness of IGIs in
IFB identification and bearing fault diagnosis.

VI. COMPARISON WITH
LOG-CYCLIGRAM

To further illustrate the performance of the proposed
method in bearing fault diagnosis, a state-of-the-art
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Fig. 18. Envelopes of the band-pass filtered signals obtained
from different frequency bands: (a) band (5,867, 1,067), (b) band
(5,200, 800), (c) band (5,400, 400), (d) band (4,000, 1,600)
(e) band (3,200, 6,400) and (f) band (5,600, 1,600).

envelope analysis method, LC [12], is applied to the
simulation and experimental signals in Sections IV and
V for comparison. The decomposition level of the entire
frequency band is also set to 4. The bearing fault charac-
teristic frequency calculated from the nominal speed and
bearing geometric parameters is used as an input parameter
of the LC method to guide the frequency band selection.
Fig. 20 shows the frequency bands selected by the LC
method on the simulation signal in Fig. 9a and experimental
signals in Figs. 14a, and 17a, which are (5,000, 400),
(4,600, 400) and (5,000, 400) respectively. Figs. 21 and
22 display the envelopes and SESs of the band-pass filtered
signals for processing the simulation signal of bearing inner
race fault, the experimental signal of bearing outer race fault
and the experimental signal of bearing rolling element fault,
respectively.

As shown in Fig. 21, the repetitive transient features
can be observed in the envelopes of the band-pass filtered
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Fig. 19. SES of the band-pass filtered signals obtained from
different frequency bands: (a) band (5,867, 1,067), (b) band
(5,200, 800), (c) band (5,400, 400), (d) band (4,000, 1,600)
(e) band (3,200, 6,400) and (f) band (5,600, 1,600).

signals. In Fig. 22, the bearing fault characteristic fre-
quencies and their harmonics (indicated by the red dotted
lines) can be detected in the SESs of the band-pass filtered
signals. These results show that the LC method effec-
tively extracts the transient features related to different
bearing faults. Nevertheless, only the rolling element
fault characteristic frequency lf;, and its harmonic 2f,
can be clearly observed in Fig. 22¢ and the other harmo-
nics are not prominent, which seems to be slightly inferior
to the results shown in Fig. 19c, and f, where 3f;, and even
other harmonics can be detected. In addition, it should be
pointed out that IGIgram can adaptively extract fault-
related transient features, unlike the LC method which
aims to extract repetitive transient features with a speci-
fied characteristic frequency. This shows that the IGIgram
with appropriate power exponent p can achieve a fault
diagnosis effect similar to the LC method and has ad-
vantages in the adaptive extraction of bearing fault
features.
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Fig. 20. Log-cycligrams of different signals: (a) simulation
signal of bearing inner race fault, (b) experimental signal of
bearing outer race fault and (c) experimental signal of bearing
rolling element fault.
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Fig. 21. Envelopes of the band-pass filtered signals obtained by
LC on different signals: (a) simulation signal of bearing inner race
fault, (b) experimental signal of bearing outer race fault and
(c) experimental signal of bearing rolling element fault.
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Fig. 22. SES of the band-pass filtered signals obtained by LC on
different signals: (a) simulation signal of bearing inner race fault,
(b) experimental signal of bearing outer race fault and
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VIl. CONCLUSIONS

In this paper, a generalization method of the classic GI is
developed from the perspective of the quasi-arithmetic
mean generator, and IGIs are proposed as new statistical
indicators for sparse quantification. Further, the IFBI
method that uses IGI as the fault information metric, named
IGIgram, is introduced for envelope analysis-based bearing
fault diagnosis. Simulations and experiments are conducted
to verify the performance of IGIs and IGIgram against the
typical sparsity measures. The following important conclu-
sions can be drawn:

(1) The proposed generalization method of classic GI is
reasonable and effective. IGIs can monotonically
quantify the sparsity of the signal and can achieve
strong repetitive transient discriminability under
noise contamination.

(2) The IGIgram method using IGI with appropriate
power exponent can accurately discriminate IFB of
the vibration signals to extract repetitive transients for
bearing fault diagnosis.

(3) Compared with Kurt, L2/LL1 and GI, IGIs with power
exponents p =2, 3 and 4 exhibit high random tran-
sient resistibility and strong repetitive transient
discriminability simultaneously, therefore they are
recommended for applications.

In future work, the performance comparison of IGIgram
and other targeted IFBI methods in rotating machinery fault
diagnosis is worth investigating. The fault diagnosis per-
formance of IGIgram based on the log-envelope spectrum is
also worth exploring. Furthermore, IGIs can be used to
develop machine fault feature extraction methods and
condition monitoring methods.
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