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Abstract: This paper proposes an intelligent process fault diagnosis system through integrating the techniques of
Andrews plot and convolutional neural network. The proposed fault diagnosis method extracts features from the
on-line process measurements using Andrews function. To address the uncertainty of setting the proper dimension
of extracted features in Andrews function, a convolutional neural network is used to further extract diagnostic
information from the Andrews function outputs. The outputs of the convolutional neural network are then fed to a
single hidden layer neural network to obtain the final fault diagnosis result. The proposed fault diagnosis system is
compared with a conventional neural network based fault diagnosis system and integrating Andrews function with
neural network and manual selection of features in Andrews function outputs. Applications to a simulated CSTR
process show that the proposed fault diagnosis system gives much better performance than the conventional neural
network based fault diagnosis system and manual selection of features in Andrews function outputs. It reveals that
the use of Andrews function and convolutional neural network can improve the diagnosis performance.
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I. INTRODUCTION
Industrial chemical processes have become more produc-
tive and automated. Consequently, they become more
complicated, making the failure-related risks easily to
hide in the production processes. Undetected process faults
can lead to serious consequences, such as inferior products,
environmental contamination, or even causing casualties in
a plant accident. These quintessentially consequences can
reduce profitability and affect the reputation of enterprise.
Since process faults are hard to completely eliminate in
industry processes, modern industries demand some advan-
tageous initiatives to acquire better process monitoring.
Numerous researches in process monitoring focus on devel-
opment of fault diagnosis systems to against this
conundrum.

The various fault diagnosis approaches for industrial
processes proposed in the past can be roughly divided into
knowledge based approaches, model based approaches, and
data based approaches [1–4]. Industrial process operations
are composed by known principles and unknown uncer-
tainties. The unpredictable disturbances in processes are
omnipresence and time-varying. As more and more process
operation data are monitored and archived, the widely
accepted methods in process fault diagnosis are based on
multivariate statistical analysis [5–9] and neural networks
[10–15]. With the advent of the era of big data, neural
networks have been evolved from shallow networks to deep
networks. A myriad of studies in the research area of fault
diagnosis evidenced that a fault diagnosis system based on
deep neural network can achieve encouraging performance
improvement [16–19]. A normalised sparse autoencoder is
used to extract features from mechanical signals for fault
diagnosis in mechanical systems [16]. Convolutional neural
network (CNN) and domain adaption are used in [17] to

address the inconsistence between the training data and
testing data in mechanical system fault diagnosis. A fault
diagnosis method based on federated learning and CNN is
proposed in [18] for rolling bearing fault diagnosis. A
CNN-long short-term memory (LSTM) approach for fore-
casting the system parameters in future sampling windows
is proposed in [19] for fault prognosis. To address the
difficulty of recurrent neural networks in directly extracting
degradation features from original monitoring data, a resid-
ual convolution layer is stacked to a LSTM network for the
prediction of remaining useful life [20].

In chemical process monitoring, the on-line measured
process data generally forms the on-line monitoring infor-
mation sources. Key features reflecting the process opera-
tion states are hidden in the multivariate process
measurements. Discovering these features is important
for successful process fault diagnosis. This research work
proposes a method for extracting these features using
Andrews plot and CNN. The matrix dimensions of the
Andrews function outputs can be flexibly changed to an
appropriate size according to the specific processes. This
gives the potential that the fault diagnosis system develop-
ment can easily be integrated with CNN, since the matrix
size can be adjusted flexibly and CNN can handle large
input matrix sizes.

The techniques utilized in the proposed fault diagnosis
method include principal component analysis (PCA), An-
drews plot, and convolutional neural network. PCA, as a
multivariate statistical data analysis method, is widely
adopted in various fields for data dimension reduction. In
the monitoring of an industrial chemical process, a PCA
model is developed from the historical process operation
data when the process is under normal operation. Due to the
correlation between the monitored process, the number of
retained principal components is usually much less that the
number of monitored variables. In the method developed in
this paper, the purpose of PCA is to eliminate the influence
of variable ordering on the results of Andrews plot and,Corresponding author: Jie Zhang (email: jie.zhang@newcastle.ac.uk)
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hence, all the principal components are retained. Andrews
plot is a technique for the visualization of high-dimensional
data with applications in many fields including analysing
the UK general election data in 2001 [21,22]. The algorithm
is advantageous in setting the dimension of the extracted
features. Since the number of monitoring variables in an
industrial process is fixed, traditional process data analysis
methods are generally utilized for dimension reduction.
Andrews plot method can adjust the dimensions of moni-
toring dataset while maintaining the main feature of moni-
toring information. However, the different selection of
parameter is generally accompanied by hard-predictable
and ineliminable uncertainties to affect the results of data
analysis. Despite this limitation, Andrews plot gives a
potential to expand possibilities of data processing in fault
diagnosis [12]. Convolutional neural network is a deep
neural network with convolutional structure, which is one
of the most popularly deep neural network structures in the
past decade. The study of process fault diagnosis has also
progressively accepted CNN in recently years. Numerous
prior studies evidenced that CNN has strong adaptability,
exceptional local feature data mining capability, global
training feature extraction and classification [23–26]. Our
previous work [12] shows that integrating Andrews plot
with neural networks can enhance fault diagnosis perfor-
mance and proposes a method for determining the features
in Andrews function outputs. However, implementing this
approach for determining the features in Andrews function
outputs still needs some subjective decision. To overcome
the uncertainty in determining the dimension in the An-
drews function outputs, the paper proposes using a CNN to
further process the Andrews function outputs as CNN can
efficiently handle high dimensional inputs. The final ex-
tracted features by Andrews plot and CNN are then classi-
fied by a feedforward neural network to give the final
diagnosis results.

In order to demonstrate the feasibility and superiority
of the proposed method, it is compared with a traditional
neural network based diagnosis scheme and our previous

method with manual selection of features in Andrews
function outputs with applications to a simulated continu-
ous stirred tank reactor (CSTR) system. The contributions
of this paper are summarised as follows: 1). Andrews plot
and CNN are used to extract features in the monitored
process data and this would ease the task of fault classifi-
cation in the neural network. The use of CNN after Andrews
plot is to ease the task of determining the appropriate
numbers of features in Andrews function. 2). The proposed
method is comprehensively evaluated through mechanistic
model based simulation for both abrupt and incipient faults
and compared with a conventional neural network based
fault diagnosis approach and the previous approach of
manual selection of features in Andrews function outputs.

The paper is structured as follows. A CSTR system
used as a case study is given in Section 2. Section 3 presents
the proposed diagnosis system and details of parameter
selection. Fault diagnosis results are given in Section 4
where they are also compared with those from a conven-
tional neural network based fault diagnosis system and
integrating Andrews plot with neural networks and manual
selection of features in Andrews function outputs. Some
concluding remarks are given in Section 5.

II. A CSTR PROCESS WITH RECYCLE
The CSTR process with recycle, shown in Fig. 1, is taken
from [27] and is used as a case study. The operation of this
CSTR system is simulated using a dynamic mechanistic
model, which is based on material and energy balances, as
well as reaction kinetics. The historical process operation
data under normal operation and different considered faults
are generated from simulation. In this process, the on-line
monitoring information sources include 10 on-line mea-
sured process variables and 3 controller outputs. In this
study, 11 faults shown in Table I are considered and they
represent typical faults in industrial processes. The simu-
lated process operation data are corrupted with typical
measurement noise to represent the practical situations

Fig. 1. A CSTR with a recycle.
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where measurement noises always exist. The measurement
noise ranges are given in Table II. The sampling time used
in the control system is 4 s.

In industrial processes, a fault can appear in two forms:
1). an abrupt fault with a sudden variation of the process
parameter corresponding to the fault; or 2). an incipient
fault with the fault severity gradually growing with time. An
abrupt fault is usually simulated as a step change in the
process parameter corresponding to the fault. An incipient
fault can be represented as the following [11]:

Mf ðtÞ = Mnð1þ γtÞ (1)

whereMf(t) is the faulty value of a process parameter at time
t, Mn stands for the normal value of the same process
parameter, γ represents the fault developing speed, and t
is the time from the initiation of the fault. The above
equation can generally describe the commonly encountered
incipient faults in industrial processes.

III. FAULT DIAGNOSIS SYSTEM
DEVELOPMENT

A. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is one of the most widely used
data dimension reduction algorithms. Its main idea is to
reduce the dimension of a correlated data set into a set of
lower dimensional uncorrelated principal components with
minimal loss of information. These principal components
are linear combinations of the original variables [28,29]. In
this study, the principal components instead of the original
measured information are used to remove the impact of
variable ordering in Andrews plot. Hence, the entire set of

principal components are used without data dimension
reduction. The principal components are not influenced
by variable ordering. In practice, one of the most commonly
used methods to obtain the principal components is singular
value decomposition (SVD).

For a process dataset Xn collected under normal process
operation, its SVD decomposition is as the following:

Xn = U × Σ × VT (2)

where Xn is a set of normal data with size m × n, U is a
matrix ofm ×m,V is a matrix of n × n,Σ is a matrix ofm × n
and the values of all elements except the main diagonal of
the top sub-matrix are 0, and the elements on the main
diagonal are called singular values, which are nonnegative
and arranged in descending order.

Dimensionality reduction of the monitoring dataset,
e.g. reducing to k principal componentsX 0

k, can be achieved as:

X 0
k = XnVk (3)

where Vk is a matrix containing the first k columns of V.

B. ANDREWS PLOT

Andrews plot or Andrews curve is named after David F.
Andrews [30], who proposed the curves to visualize high-
dimensional data. Each sample of an a-dimensional data
set, X = ðx1,x2,x3, · · · ,xaÞ, can be mapped into a curve
using the following function:

f xðtÞ =
x1ffiffiffi
2

p þ x2sintþ x3costþ x4 sin 2tþ · · · ; (4)

where t ∈ ½−π,π�.
The dimension of the extracted features can be adjusted

to an appropriate size by using different values of t in
Andrews function. In applications to industrial process
monitoring, each sample of the original monitored data
is converted into a feature vector through the Andrews
function by employing a certain number of t-values. The
size of feature vector is equal to the number of t-values.
Previous studies reveal that the outcome of Andrews func-
tion processing is sensitive to the data arrangement
(i.e. variable ordering) and will produce uncertainties
[31]. Hence, the principal components are generally used
in place of the original process measurement as the inputs to
Andrews function.

Figure 2 gives the details of Andrews function proces-
sing. The historical process data, X = ðx1,x2,x3, · · · ,xaÞ,
are first scaled to zero mean and unit variance before its
principal components are calculated. Then these principal
components are used as the inputs to the Andrews function
with n values of t. The final processed feature dataset has a
dimension of n and contains the main information of the
historical process data X.

Figure 3 shows an example of Andrews function
application to the data from the CSTR process. The An-
drews function is given by Eq. (6) and 50 samples from each
class with 63 t values uniformly distributed in the range
from −π to π being used. Figure 3 shows the Andrews
function outputs for the normal process operation data
represented by the red solid curves, the process operation
data under fault No. 3 represented by the blue dashed
curves, and the process operation data under fault No. 5
represented by the black dotted curves. The curves shown in
Fig. 3 reveal that the process operation data pre-processed
by Andrews function can lead to clear separations between

Table I. List of considered faults

Fault No. Descriptions of faults

1 Blockage of pipe 1

2 Too high flow rate in reactant feed rate

3 Blockage of pipe 2 or 3 or pump fails

4 Blockage of pipe 10 or 11 or control valve 1
fails low

5 Abnormal temperature in feed-reactant

6 Control valve 2 fails high

7 Blockage of pipe 7, 8, or 9 or control valve 2
fails low

8 Control valve 1 fails high

9 Blockage of pipe 4, 5, or 6 or control valve 3
fails low

10 Control valve 3 fails high

11 Too low concentration in external feed reactant

Table II. Ranges of measurement noise

Measurements Noise Range

Flow −1∼ 1 cm3/s

Temperature −0.25∼ 0.25 °C

Level −0.1∼ 0.1 cm

Concentration −0.5 %∼ 0.5 %
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the normal process operation data and various faulty pro-
cess operation data. Thus using Andrews function to pre-
process data could enhance fault diagnosis.

C. CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network is a type of deep neural
network with convolutional structure. In recent years, CNN
has become one of the most popular technique of artificial
intelligence. Its development has gone through decades,
with several great advances from LeNet to AlexNet, VGG,
ResNet etc. [32–35]. CNN includes the non-linear trainable
convolutional layers, sub-sampling layers (referred as pool-
ing layer) and a fully connected layer. Figure 4 shows a
basic structure of a convolutional neural network.

In a convolutional layer, the outputs represent feature
maps. Each neuron in the output map is connected to a local
patch in the input map via a weight kernel. Each convolu-
tional operation shares the same weight kernel [36].
Assume that the size of original input data is W0 ×H0 ×
D0, where W0 ×H0 represents a sample of pre-processed
features, and D0 represents the number of samples. The
number of weight kernel θ is N, the spatial extent of weight
kernel is F × F, the stride is S, the amount of zero padding is
P. Then the output feature map can be calculated by the
following equation [37]:

xlj = f

 X
i=1, : : : ,D0

xl−1i � θlij þ blj

!
, j = 1, : : : ,N (5)

where xl−1i represents the ith input map, xlj represents the jth
output map, θlij represents the jth kernel connected to the ith
input map, blj represents bias corresponding to the jth kernel,
f represents activation function, and * represents the con-
volutional operation.

The size of output map after convolution operation is
W ×H ×D:

W =
W0 − F

S
(6)

H =
H0 − F

S
þ 1 (7)

D = N (8)

The commonly used activation functions in CNN
include sigmoid function f(x)sigm, hyperbolic tangent func-
tion f(x)tanh, and rectified linear unit (ReLU) function
f(x)ReLU.

Figure 5 gives an example of convolutional operation,
where the size of input layer ism ×m × 1, the size of weight
kernel θ is a × a × 1, the stride is 1, the amount of zero

Fig. 2. Andrews function processing.
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Fig. 3. Andrews plot on datasets from the CSTR system.

Fig. 4. The basic structure of a convolutional neural network.
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padding is 0. The size of output map is n × n × 1, where
n =m− a + 1.

The pooling layer (sub-sampling layer) is applied to
merge the similar local features. The pooling operation can
enhance the reliability of the CNN model and reduce the
number of parameters sharply [38]. The pooling operation
is similar to the convolution operation without the kernel
weight. Input values in the operating range of pooling map
are calculated for a patch of its output feature map base on
selected operations, such as calculating the maximum value
(max pooling) or average value (average pooling). The
pooling operations in most cases are max pooling and
average pooling. A frequently used size of pooling layer
is 2 × 2, with stride as 2 and maintaining the size of depth.
The zero-padding method is generally used before pooling
operation in the case where the input size is not an integer
multiple of two.

D. THE PROPOSED FAULT DIAGNOSIS
SYSTEM

The fault diagnosis system proposed in this paper first pre-
processes the measured information by using PCA and then
Andrews function. Then the Andrews function outputs are
fed into a specific CNN. The length of the first convolution
kernel would better be the same as the dimension of inputs.
Its depth can be set to 1 or higher according to the need,
e.g. 2-D CNN or 3-D CNN. Subsequent convolutional
operations are the same as regular CNN. In order to
show the good performance of the proposed fault diagnosis
scheme (scheme A), this study also developed a fault
diagnosis system based on a conventional neural network
(scheme B). In scheme B, the monitored process variables
are normalised to zero mean and unit variance and then fed
to a single hidden layer neural network. The normalisation
equation is as follows:

Xi,p =
Xi − �Xi,normal

Xstd
(9)

where Xi is the actual measured value for the ith on-line
measurement, Xi,p is its scaled value, �Xi,normal and Xstd are,
respectively, the mean and the standard deviation of the
normal data.

Scheme A uses Andrews function and CNN to pre-
process the monitored data and the extracted features are
used as the inputs of a classifier. The classifier of scheme A
and scheme B use same method, i.e. a single hidden layer
feedforward neural network.

The framework of the proposed fault diagnosis scheme
A is shown in Figure 6. Scheme A can be divided into
3 main parts: Andrews function processing, CNN, and
classifier. Andrews function and CNN are integrated as a
complete process information pre-processing system. The
dimension of the final processed feature dataset is deter-
mined by Andrews function outputs, i.e. the numbers of
t-values, and the adopted convolutional operations.

As previously mentioned, the principal components X′

are used in place of the original variables X to remove the
impact of variable ordering on the results of Andrews
function. The feature dataset Fx(t) is then obtained by using
Andrews function from X′ by using a specific number of t-
values (typically a large value). Then Fx(t) is fed to the input
layer of a trained CNN to acquire the final processed
features which are then fed to a neural network classifier.
The process data used in this study is generated from the
simulated CSTR system. Each sample of the monitored data
consists of 13 variables. Figure 7 gives the processing of
each sample in scheme A. In this case, each sample
X = ½x1,x2, : : : ,x13� is first converted into principal compo-
nents X 0 = ½x 01,x 02, : : : ,x 013�, which are then fed into An-
drews function, Eq. (2), with 24 values of t uniformly
distributed in [−π, π]. Then the offline trained CNN is
used to process the Andrews function values. Convolution
layer 1 converts the data into a feature matrix with size of
24 × 24, which are then processed by convolution layers 2
and 3. After the convolutional operations, the data are
converted into a feature matrix with size of 4 × 4. Finally
this matrix is transformed into a feature vector with

Fig. 5. An example of convolutional operation.
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16 elements before feeding to the input layer of the classi-
fier, i.e. a single hidden layer neural network. Figure 8
shows the baseline scheme (scheme B) for comparison. In
this baseline scheme, the monitored process variables are
scaled using the means and standard deviations of the

normal data and then fed to a neural network. In addition,
the proposed method is also compared with integrating
Andrews plot with neural network proposed in our previous
work [12] (referred to as scheme C here). In scheme C, the
selected features in Andrews function are directly fed to a
neural network for fault diagnosis [12]. In all the three
schemes, the neural networks for final fault classification
are single hidden layer neural networks with sigmoid
function in both the hidden and output layers. All three
networks have 11 output layer neurons with each corre-
sponding to a particular fault. An output layer neuron with
an output close to one indicates the corresponding fault
occurred while an output close to zero indicates the corre-
sponding fault did not occur. Thus, the normal operating
condition is represented by all the 11 output layer neurons
having close to zero outputs.

E. PARAMETER SELECTION

In this study, the selected 24 t-values used in Andrews
function are uniformly distributed in [−π, π]. Spatial extent
of kernel θ1,θ2 and θ3 in convolution layer 1, convolution
layer 2 and convolution layer 3 are 1 × 24, 5 × 5 and 3 × 3,
respectively. The data for developing the fault diagnosis
systems were generated using mechanistic model based
process simulation. Simulated historical process opera-
tional data under the normal and faulty operation were
generated. When a fault is initiated in the process, its impact
may not appear immediately. Therefore, when one or more
of the process variables exist three times of their normal
standard deviations, it is considered that the process is under
faulty operation. For the process under normal operation
and under each of the 11 considered faults (abrupt faults),
80 samples were collected. Thus a data set of 960 samples
are generated for building the fault diagnosis system. These
960 samples are partitioned into a training data set contain-
ing 600 samples with 50 samples randomly selected in each

Fig. 7. Processing of each sample in scheme A.

Fig. 6. A block diagram of the proposed fault diagnosis system.
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class (normal and 11 faulty classes) and a testing data set
containing the remaining 360 samples. The purpose of
training data set is for network training, whereas that of
the testing data set is for the determination of network
structure and implementation of the “early stopping”mech-
anism in neural network training. To prevent over-fitting,
the “early stopping” mechanism stops training when the
network error on the testing data reaches minimum. In order
to determine the appropriate network structure (e.g. number
of hidden neurons), a number of networks with different
structures are developed and tested on the testing data. The
one giving the best performance is considered to have the
appropriate network structure. Table III gives the classifi-
cation accuracy on the testing data from networks with
different numbers of hidden neurons in the classifier, i.e. a
single hidden layer neural network in proposed diagnosis
scheme A. Table IV gives the accuracy on the testing data of different numbers of hidden neurons in diagnosis scheme B.

In Tables III and IV, the highest classification accuracy is
marked with bold font. The numbers of neurons in different
layers of scheme A are given in Table V.

IV. RESULTS
The proposed fault diagnosis scheme A, the traditional
diagnosis scheme B, and scheme C where the features of
Andrews function outputs are manually selected [12] are
applied to the simulated CSTR system and compared in
terms of the diagnosis performance. Fault diagnosis is
indicated by the neural network outputs. When the neural
network output corresponding to a fault exceeds the diag-
nosis threshold (set to 0.8) while other neural network
outputs remain lower than 0.2 (i.e. close to 0), then a fault
is diagnosed. When the neural network output correspond-
ing to a fault exceeds the advance warning threshold (set to
0.4) while other neural network outputs remain lower than
0.2, then an advance warning is issued for the correspond-
ing fault. Setting the diagnosis threshold as 0.8 is based on
the following considerations. The output layer neurons use
the sigmoid activation function with output bounded
between 0 and 1. From the plot of the sigmoid function
output, it can be seen that the output flatten off when the
output is greater than 0.8. Thus setting the threshold higher
than 0.8 would delay fault diagnosis. On the other hand,

Fig. 8. The baseline scheme (scheme B).

Table III. Accuracy on testing data with different num-
bers of hidden neurons in scheme A

Numbers
of HN Accuracy

Numbers
of HN Accuracy

10 83.89% 16 92.78%

11 88.78% 17 97.22%

12 87.78% 18 96.67%

13 93.89% 19 92.78%

14 96.11% 20 85.83%

15 90.56% 21 89.17%

Table IV. Accuracy on testing data with different
numbers of hidden neurons in scheme B

Numbers
of HN Accuracy

Numbers
of HN Accuracy

10 65.28% 16 62.78%

11 66.39% 17 76.67%

12 71.67% 18 71.67%

13 68.33% 19 68.33%

14 64.72% 20 58.06%

15 75% 21 61.67%

Table V. Numbers of neurons in scheme A

Layer Kernel size Neuron

Input of CNN 24

CONV 1 1 × 24 24 × 24

CONV 2 5 × 5 20 × 20

MAX POOL 2 × 2 10 × 10

CONV 3 3 × 3 8 × 8

MAX POOL 2 × 2 4 × 4

Input of Classifier 16

Hidden 17

Output 11
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lowering this threshold below 0.8, there could increase the
chance of incorrect diagnosis. These threshold values were
also used in [11]. Diagnosis performance is generally
evaluated by the diagnosis speed and accuracy. The
advance warning time and the diagnosis time are defined,
respectively, as the time periods elapsed from a fault
occurred to a correct advance warning being issued and
to it being successfully diagnosed.

A. DIAGNOSTIC PERFORMANCE ON
ABRUPT FAULTS

Table VI gives 3 sets of fault relative magnitudes (Mag. 1 to
Mag. 3) for the 11 abrupt faults. These magnitudes are
different from those in the training data. Thus, these faults
are used as unseen validation data to evaluate the perfor-
mance of fault diagnosis scheme in diagnosing abrupt faults
with unseen magnitudes.

Table VII gives the diagnosis times of these abrupt
faults shown in Table VI. The performance from scheme C
is taken from [12]. The results indicate that all three fault
diagnosis schemes successfully diagnosed all these 11
abrupt faults. Diagnosis speed comparison in abrupt faults
shows that the proposed fault diagnosis system (scheme A)
successful diagnosed the faults 8.6 s earlier on average than
the conventional neural network based fault diagnosis
system (scheme B) and 3.15 s earlier than scheme C.
The difference between schemes A and C is that, instead

of selecting 11 important features in Andrews function in
scheme C [12], 24 t-values uniformly distributed in [−π, π]
are used in Andrews function and a CNN is then used to
further extract features from Andrews function outputs in
scheme A. Thus, the improvement of fault diagnosis speed
in the proposed scheme A is mostly likely due to that
Andrews function and CNN have extracted features in the
process data and this helps the subsequent neural network in
classifying (diagnosing) the faults.

Figures 9 and 10 show, respectively, the diagnosis
outputs from scheme A and scheme B in diagnosing abrupt
fault no. 1, with a relative magnitude of 1.67%. In Figures 9
and 10, as well as the latter plots, F1 to F11 represent the 11
network outputs which correspond to Fault No. 1 to No. 11
respectively. In this study, all the abrupt faults are initiated at
40 s and the incipient faults are initiated at 0 s. In Figs. 9 and
10, as well as the subsequent plots, the upper dash–dotted
straight lines indicate the diagnosis threshold and the lower
dash–dotted lines represent the advance warning threshold.
A fault diagnosis or advance warning result is issued only
when the corresponding neural network output exceeds the
corresponding thresholds for a consecutive number of sam-
ples. Any isolated samples exceeding the thresholds can be
ignored as “noise”. Scheme A successfully diagnosed the
fault at 12 s after it occurred (at 40 s) as shown in Fig. 9. The
overall responses of the output curves are quite stable.
Figure 10 shows that the network output from scheme B
representing fault no. 1 responded quickly, when the fault
occurred, but then a period of oscillation occurred in the
region of advance warning. Then it rose and remained over
the diagnosis threshold (0.8). At the same time, the network
outputs corresponding to other faults were close to 0.
Therefore, scheme B successfully diagnosed the fault at
48 s after it occurred. The proposed schemeA diagnosed this
particular fault 36 s earlier than scheme B.

Figures 11 and 12 show, respectively, the neural
network outputs of scheme A and scheme B in diagnosing
abrupt fault no. 8 with the fault relative magnitude of
2.10%. It can be seen from Fig. 11 that the network output
representing fault no. 8 from scheme A responded quickly
and soon exceeded the upper threshold (0.8). Hence, the
proposed fault diagnosis system successfully diagnosed this
fault 16 s after it occurred. Figure 12 indicates that the
output corresponding to fault no. 8 in scheme B has a
relatively long period of oscillations before crossing over

Table VI. Relative magnitudes of abrupt faults

Faults Mag. 1 Mag. 2 Mag. 3

1 1.67% 2.33% 3.33%

2 1.67% 2.00% 2.33%

3 6.50% 7.50% 10.00%

4 4.56% 6.78% 11.22%

5 9.09% 14.29% 19.49%

6 38.73% 49.83% 66.48%

7 16.76% 27.86% 33.41%

8 2.10% 3.65% 4.32%

9 2.46% 4.97% 7.47%

10 2.54% 3.79% 5.03%

11 6.25% 8.75% 12.50%

Table VII. Fault diagnosis time (s) for abrupt faults

Fault No.

Scheme A Scheme B Scheme C

Mag. 1 Mag. 2 Mag. 3 Mag. 1 Mag. 2 Mag. 3 Mag. 1 Mag. 2 Mag. 3

1 12 4 4 48 24 12 24 12 4

2 16 8 4 32 12 12 20 8 4

3 16 8 8 44 32 28 36 28 12

4 32 8 8 32 28 8 32 12 4

5 20 12 4 36 24 8 32 16 8

6 36 32 16 12 8 8 60 28 12

7 32 16 8 52 36 16 36 16 8

8 16 8 8 52 20 4 24 8 8

9 24 12 12 40 8 8 20 8 8

10 20 12 8 36 20 4 20 8 4

11 8 8 8 12 8 8 16 8 8

Average 13.58 22.18 16.73
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the upper threshold. Scheme B successfully diagnosed the
fault at 52 s after the fault occurred. For this fault, scheme A
diagnosed the fault 36 s earlier than scheme B.

B. DIAGNOSTIC PERFORMANCE ON
INCIPIENT FAULTS

Table VIII gives 3 sets of fault developing speeds for
incipient faults. Table IX gives the diagnosis times of
the three schemes for the incipient faults given in
Table VIII. The results show that all three fault diagnosis
schemes successfully diagnosed all these incipient faults.
Diagnosis speed comparison in incipient faults shows that
the average diagnosis time of the proposed scheme A is
18.43 s shorter than that of scheme B and 4.61 s shorter than
that of scheme C.

Figures 13 and 14 show, respectively, the diagnosis
outputs of scheme A and scheme B when incipient fault no.
3 with a fault developing speed of γ = −1.29 × 10−4ðs−1Þ
occurred. As can be seen from Fig. 13, the output
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Fig. 9. Outputs of scheme A in diagnosing abrupt fault no.1
(relative magnitude: 1.67%).
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Fig. 10. Outputs of scheme B in diagnosing abrupt fault no.1
(relative magnitude: 1.67%).
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Fig. 11. Outputs of scheme A in diagnosing abrupt fault no. 8
(relative magnitude: 2.10%).

Table VIII. Fault developing speeds of incipient faults

Faults γ1 (s−1) γ2 (s−1) γ3 (s−1)

1 −6.67 × 10−5 −1.67 × 10−4 −3.67 × 10−4

2 6.67 × 10−5 1.67 × 10−4 3.67 × 10−4

3 −1.29 × 10−4 −6.29 × 10−4 −9.29 × 10−4

4 −1.67 × 10−4 −3.67 × 10−4 −6.67 × 10−4

5 1.12 × 10−4 5.12 × 10−4 9.12 × 10−4

6 6.67 × 10−4 1.67 × 10−3 3.67 × 10−3

7 −3.12 × 10−4 −1.12 × 10−3 −3.12 × 10−3

8 7.13 × 10−5 1.13 × 10−4 6.13 × 10−4

9 −1.23 × 10−4 −5.23 × 10−4 −9.23 × 10−4

10 6.71 × 10−5 1.71 × 10−4 6.71 × 10−4

11 −6.67 × 10−5 −6.67 × 10−4 −1.67 × 10−4
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Fig. 12. Outputs of scheme B in diagnosing abrupt fault no. 8
(relative magnitude: 2.10%).
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representing fault no. 3 rises rapidly after a period of
damage accumulation of the fault, whereas all other net-
work outputs are much lower than 0.2. The proposed
scheme A successfully diagnosed this fault at 68 s after
it occurred. As can be seen from Fig. 14, the network output
corresponding to fault no. 3 responds quickly but has a long
duration of fluctuations. Finally, scheme B gave the correct
diagnosis result at 152 s after the fault occurred. For this
incipient fault, the diagnosis time of scheme A is 84 s
shorter than that of scheme B. The network outputs in
scheme A appear to be more stable than those in scheme B.

Figures 15 and 16 show, respectively, the network
outputs of schemes A and B when incipient fault no. 8
occurred with a fault developing speed of γ =
7.13 × 10−5ðs−1Þ. As can be seen from Figs. 15 and 16,
after the initial accumulation fault impact, the network
output representing fault No. 8 in scheme A raises quickly
to close to 1, but that in scheme B raises slowly. All other
outputs are close to 0. The output curves in scheme A are
very smooth. Scheme A and scheme B successfully diag-
nosed the fault at 56 s and 96 s, respectively, after the fault
occurrence. For this particular fault, the diagnosis time of
the proposed scheme A is 40 s shorter than that of the
conventional scheme B.

Table IX. Fault diagnosis time (s) for incipient faults

Fault No.

Scheme A Scheme B Scheme C

γ1 (s−1) γ2 (s−1) γ3 (s−1) γ1 (s−1) γ2 (s−1) γ3 (s−1) γ1 (s−1) γ2 (s−1) γ3 (s−1)

1 68 36 32 92 64 48 96 52 40

2 68 48 40 88 56 44 80 48 44

3 80 40 36 152 68 52 104 48 40

4 68 48 32 84 76 44 76 48 40

5 108 60 52 152 72 60 116 64 44

6 112 92 60 156 136 88 132 100 80

7 128 92 56 160 100 64 144 96 60

8 56 48 36 96 80 40 88 76 32

9 112 108 72 136 72 48 88 44 44

10 92 68 36 124 80 40 96 68 44

11 124 84 56 144 96 44 128 88 52

Average 68.12 86.55 72.73
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Fig. 14. Outputs of scheme B under incipient fault no. 3
(γ = −1.29 × 10−4 s−1).
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Fig. 13. Outputs of scheme A under incipient fault no. 3
(γ = −1.29 × 10−4 s−1).
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Fig. 15. Outputs of scheme A under incipient fault no. 8
(γ = 7.13 × 10−5 s−1).
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Figures 17 and 18 show, respectively, the network
outputs of scheme A and scheme B when incipient fault no.
10 occurred with a fault developing speed of γ =
6.71 × 10−5ðs−1Þ. Figures 17 and 18 show that, after a
period of fault development, the network output represent-
ing fault No. 10 in scheme A raises quickly to close to 1, and
that in scheme B raises relatively slowly. The network
output representing fault No. 10 in scheme A has some
fluctuations before reaching close to 1. Scheme A and
scheme B successfully diagnosed the fault at 92 s and
124 s, respectively, after the fault occurred. For this fault,
the diagnosis time of the proposed scheme A is 32 s shorter
than that of scheme B.

V. CONCLUSIONS
This paper proposes a fault diagnosis method for industrial
processes by integratingAndrews plots, convolutional neural
network, and neural networks. Features within the on-line

monitored measurements are extracted by using Andrews
plot. To address the uncertainty of setting the proper dimen-
sion of extracted features in Andrews plot, a convolutional
neural network is used to further process the extracted
features. The CNN outputs are then used as the inputs to
a single hidden layer neural network to classify extracted
features into various classes, i.e. the diagnosis results. The
proposed fault diagnosis system is compared with a conven-
tional neural network based fault diagnosis system, as well as
integrating Andrews plot with neural network and manual
selection of features in Andrews function outputs, through
application to a simulated CSTR system. It is shown that the
proposed fault diagnosis system performs better than the
conventional neural network based fault diagnosis system
andmanual selection of features in Andrews function outputs
in diagnosing both abrupt and incipient faults. Future works
will consider integration of Andrews function with alterna-
tive deep neural networks such as light-weight CNN for on-
line process fault diagnosis.

ACKNOWLEDGEMENTS

Partial financial supports from the European Commission (Project
No.: PIRSES-GA-2013-612230) and National Natural Science
Foundation of China (project No.: 61673236) are gratefully
acknowledged.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

ETHICS OF HUMAN SUBJECT
PARTICIPATION

Not applicable.

References

1. V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N.
Kavuri, “A review of process fault detection and diagnosis:
Part I: Quantitative model-based methods”, Comput. Chem.
Eng., vol. 27, no. 3, pp. 293–311, 2003.

25 50 75 100 125

time(s)

0

0.4

0.8

1
F1:-red;F2:--blue;F3:-.black

25 50 75 100 125

time(s)

0

0.4

0.8

1
F4:-red;F5:--blue;F6:-.black

25 50 75 100 125

time(s)

0

0.4

0.8

1
F7:-red;F8:--blue;F9:-.black

F7

F8

F9

25 50 75 100 125

time(s)

0

0.4

0.8

1
F10:-red;F11:--blue

Fig. 16. Outputs of scheme B under incipient fault no. 8
(γ = 7.13 × 10−5 s−1).

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F1:-red;F2:--blue;F3:-.black

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F4:-red;F5:--blue;F6:-.black

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F7:-red;F8:--blue;F9:-.black

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F10:-red;F11:--blue

F10

F11

Fig. 17. Outputs of scheme A under incipient fault no. 10
(γ = 6.71 × 10−5 s−1).

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F1:-red;F2:--blue;F3:-.black

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F4:-red;F5:--blue;F6:-.black

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F7:-red;F8:--blue;F9:-.black

25 50 75 100 125 150 175

time(s)

0

0.4

0.8

1
F10:-red;F11:--blue

F10

F11

Fig. 18. Outputs of scheme B under incipient fault no. 10
(γ = 6.71 × 10−5 s−1).

An Intelligent Process Fault Diagnosis System 137

JDMD Vol. 1, No. 3, 2022



2. V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri,
“A review of process fault detection and diagnosis: part II:
qualitative models and search strategies”, Comput. Chem.
Eng., vol. 27, no. 3, pp. 313–326, 2003.

3. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, and
K. Yin, “A review of process fault detection and diagnosis:
part III: process history based methods”, Comput. Chem.
Eng., vol. 27, no. 3, pp. 327–346, 2003.

4. J. Zhang, and P. D. Roberts, “Process fault diagnosis with
diagnostic rules based on structural decomposition”, J. Pro-
cess Control, vol. 1, no 5, pp. 259–269, 1991.

5. J. F. MacGregor and T. Kourti, “Statistical process control of
multivariate processes”, Control Eng. Pract., vol. 3, no. 3,
pp. 403–414, 1995.

6. S. J. Qin, “Survey on data-driven industrial process monitor-
ing and diagnosis”, Annu. Rev. Control, vol. 36, no. 2,
pp. 220–234, 2012.

7. J. MacGregor and A. Cinar, “Monitoring, fault diagnosis,
fault-tolerant control and optimization: data driven methods”,
Comput. Chem. Eng., vol. 47, pp. 111–120, 2012.

8. Z. Ge, “Review on data-driven modeling and monitoring for
plant-wide industrial processes”, Chemometr Intell Lab Syst,
vol. 171, pp. 16–25, 2017.

9. Y. Wang, Y. Si, B. Huang, and Z. Lou, “Survey on the
theoretical research and engineering applications of multi-
variate statistics process monitoring algorithms: 2008–2017”,
Can. J. Chem. Eng., vol. 96, no. 10, pp. 2073–2085, 2018.

10. S. Wang and J. Zhang, “An intelligent process fault diagnosis
system integrating Andrews plot, PCA and neural networks”,
in 2019 25th Int. Conf. Autom. Comput. (ICAC2019), Lan-
caster, UK, 5–7 September, IEEE, pp. 1–6, 2019.

11. J. Zhang, “Improved on-line process fault diagnosis through
information fusion in multiple neural networks”, Comput.
Chem. Eng., vol. 30, no. 3, pp. 558–571, 2006.

12. S. Wang and J. Zhang, “An intelligent process fault diagnosis
system based on neural networks and Andrews plot”, Pro-
cesses, vol. 9, no. 9, article 1659, 2021.

13. T. Mao, Y. Zhang, Y. Ruan, H. Gao, H. Zhou, and D. Li,
“Feature learning and process monitoring of injection mold-
ing using convolution-deconvolution auto encoders”, Com-
put. Chem. Eng., vol. 118, pp. 77–90, 2018.

14. W. Sun, A. R. C. Paiva, P. Xu, A. Sundaram, and R. D.
Braatz, “Fault detection and identification using Bayesian
recurrent neural networks”, Comput. Chem. Eng., vol. 141,
article 106991, 2020.

15. S. Wang and J. Zhang, “Improved process fault diagnosis by
using neural networks with Andrews plot and autoencoder”,
in 2020 IEEE 18th Int. Conf. Ind. Inform. (INDIN2020),
University of Warwick, UK, 20–23 July 2020, 1, pp. 787–
792, 2020.

16. F. Jia, Y. Lei, L. Guo, J. Lin, and S. Xing, “A neural network
constructed by deep learning technique and its application to
intelligent fault diagnosis of machines”, Neurocomputing,
vol. 272, pp.619–628, 2018.

17. X. Yu, Z. Zhao, X. Zhang, Q. Zhang, Y. Liu, C. Sun, and X.
Chen, “Deep-learning-based open set fault diagnosis by
extreme value theory”, IEEE Trans. Ind. Inform., vol. 18,
no. 1, pp. 185–196, 2022.

18. Z. Zhang, X. Xu, W. Gong, Y. Chen, and H. Gao, “Efficient
federated convolutional neural network with information
fusion for rolling bearing fault diagnosis”, Control Eng.
Pract., vol. 116, Article number 104913, 2021.

19. R. Arunthavanathan, F. Khan, S. Ahmed, and S. Imtiaz, “A
deep learning model for process fault prognosis”, Process
Saf. Environ. Protect., vol. 154, pp. 467–479, 2021.

20. W. Wang, Y. Lei, T. Yan, N. Li, and A. Nandi. “Residual
convolution long short-term memory network for machines
remaining useful life prediction and uncertainty quantifica-
tion”, J. Dyn. Monit. Diagnost., vol. 1, no. 1, pp. 2–8, 2021.
doi: 10.37965/jdmd.v2i2.43.

21. N. H. Spencer, “Investigating data with Andrews plots”, Soc.
Sci. Comput. Rev., vol. 21, no. 2, pp. 244–249, 2003.

22. R. N. Khattree and D. N. Naik, “Andrews plots for multivar-
iate data: Some new suggestions and applications”, J. Stat.
Plan. Inference, vol. 100, no. 2, pp. 411–425, 2002.

23. H. Wu and J. Zhao, “Deep convolutional neural network
model based chemical process fault diagnosis”, Comput.
Chem. Eng., vol. 115, pp. 185–197, 2018.

24. K. Wang, C. Shang, L. Liu, Y. Jiang, D. Huang, and F. Yang,
“Dynamic soft sensor development based on convolutional
neural networks”, Ind. Eng. Chem. Res., vol. 58, no. 26,
pp. 11521–11531, 2019.

25. L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional
neural network-based data-driven fault diagnosis method”,
IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5990–5998,
2017.

26. X. Guo, L. Chen, and C. Shen, “Hierarchical adaptive deep
convolution neural network and its application to bearing
fault diagnosis”, Measurement, vol. 93, pp. 490–502, 2016.

27. J. Zhang and P. D. Roberts, “On-line process fault diagnosis
using neural network techniques”, Trans. Instit. Meas. Con-
trol, vol. 14, no. 4, pp. 179–188, 1992.

28. J. Zhang, E. B. Martin, and A. J. Morris, “Fault-detection and
diagnosis using multivariate statistical techniques”, Chem.
Eng. Res. Design, vol. 74, no. 1, pp.89–96, 1996.

29. M. Misra, H. H. Yue, S. J. Qin, and C. Ling, “Multivariate
process monitoring and fault diagnosis by multi-scale PCA”,
Comput. Chem. Eng., vol. 26, no. 9, pp. 1281–1293, 2002.

30. D. Andrews, “Plots of high-dimensional data”, Biometrics,
vol. 28, no. 1, pp. 125–136, 1972.

31. S. Boonprong, C. Cao, P. Torteeka, and W. Chen, “A novel
classification technique of Landsat-8 OLI image-based data
visualization: the application of Andrews’ plots and fuzzy
evidential reasoning”, Remote Sens., vol. 9, no. 5, p. 427, 2017.

32. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition”, Proc. IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

33. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks”,
Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097–1105,
2012.

34. K. Simonyan, and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition”, arXiv preprint
arXiv: 1409.1556, 2014.

35. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition”, in Proc. IEEE Conf. Comput. Vision
Pattern Recogn., pp. 770–778, 2016.

36. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”,
Nature, 521(7553), pp.436–444, 2015.

37. J. Bouvrie, Notes on Convolutional Neural Networks. Tech.
Rep., MIT, Cambridge, MA, USA, 2006.

38. G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks”, Science,
vol. 313, no. 5786, pp. 504–507, 2006.

138 S. Wang and J. Zhang

JDMD Vol. 1, No. 3, 2022

https://doi.org/10.37965/jdmd.v2i2.43

