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Abstract: Data-driven methods are widely considered for fault diagnosis in complex systems. However, in
practice, the between-class imbalance due to limited faulty samples may deteriorate their classification perfor-
mance. To address this issue, synthetic minority methods for enhancing data have been proved to be effective in
many applications. Generative adversarial networks (GANs), capable of automatic features extraction, can also be
adopted for augmenting the faulty samples. However, the monitoring data of a complex system may include not
only continuous signals but also discrete/categorical signals. Since the current GAN methods still have some
challenges in handling such heterogeneous monitoring data, a Mixed Dual Discriminator GAN (noted as M-
D2GAN) is proposed in this work. In order to render the expanded fault samples more aligned with the real
situation and improve the accuracy and robustness of the fault diagnosis model, different types of variables are
generated in different ways, including floating-point, integer, categorical, and hierarchical. For effectively
considering the class imbalance problem, proper modifications are made to the GAN model, where a normal
class discriminator is added. A practical case study concerning the braking system of a high-speed train is carried
out to verify the effectiveness of the proposed framework. Compared to the classic GAN, the proposed framework
achieves better results with respect to F-measure and G-mean metrics.

Key words: braking system; fault diagnosis; generative adversarial network; heterogeneous data; high-speed train;
imbalanced data

1. INTRODUCTION
With the development of information technology and the
increase of automation, industrial equipment are becoming
not only more functional but also more complex. Complex-
ity is such that a small fault may cause the loss of the whole
system functionality, with possible large economic losses,
environmental damages, and injuries to personnel and
people from the public [1]. For preventing this to occur,
condition monitoring and fault diagnosis technologies are
becoming increasingly applied to system health and safety
management [2,3]. In particular with the digitization of
industry and the associated availability of large amounts of
data from system operation, data-driven methods are widely
considered for fault diagnosis in complex systems [4,5].

Among the data-driven methods, those of the neural
network family have been widely used for fault diagnosis
in various complex systems due to other powerful nonlin-
ear modeling ability. For example, using the deep con-
volutional neural network (DCNN), an efficient fault
diagnosis model was proposed in [6] for rotating machin-
ery. By comparison, it was shown that the proposed model
is superior to other models in terms of accuracy, memory
space, computational complexity, transfer performance,
etc. Reference [7] presented a condition monitoring and
fault diagnosis method for wind turbine generator (WTG),
using artificial neural network (ANN), and empirical mode
decomposition (EMD). The proposed approach can

identify the differently imbalanced faults in WTG. Again,
the deep neural network (DNN) was adopted to recognize
faults in high-speed train bogies in [8]. This fault diagnosis
model achieved very high diagnostic accuracy when
applied to high-speed trains with different speeds and
different faults. In [9], an efficient fault diagnosis method
for smart grid systems was designed based on long short-
term memory (LSTM) recurrent neural networks. And,
using echo-state networks, the multiclass classification
task can be processed by application of different
dimensionality reduction techniques.

However, neural networks typically need to be trained
based on large amounts of relevant data to obtain a high-
precision model. In practice, the monitoring data from real
applications are imbalanced, especially for high-reliability
systems. Due to the large contribution of the majority class
samples in model fitting, the classification hyperplane of a
deep learning-based fault diagnosis model may be biased
toward the majority class with imbalanced data, resulting in
a quite poor classification accuracy on the minority class.
For fault diagnosis, the data related to faults are scarce and
with such imbalanced data, satisfactory results cannot be
achieved.

Nowadays, there are three main categories of methods
to deal with imbalanced data [10,11]:

(1) Resamplingmethods, such as undersampling [12], over-
sampling [13,14], and heterogeneous sampling [15];

(2) Algorithm-level methods, such as modifying loss
function [16], modifying classification threshold
[17], and cost-sensitive learning [18];Corresponding author: Jie Liu (e-mail: liujie805@buaa.edu.cn)
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(3) Ensemble learning, such as using boosting ensembles
to conduct iterative training [19].

These methods improve the classification accuracy, as
verified in various fields [11]. Among them, the Synthetic
Minority Over-sampling TEchnique (SMOTE) is a popular
method to adjust the data distribution by adding synthetic
minority class samples, so as to improve the classification
performance.

The recently proposed generative adversarial network
(GAN) has also been used to generate synthetic samples.
Differently from SMOTE and its variants, which rely on
expert knowledge for designing synthetic minority genera-
tion rules, a GAN method can learn automatically the
inherent distribution and generate minority samples similar
to the real ones. A GAN includes two variable networks: a
generator and a discriminator (respectively denoted as G
and D), which are trained in a mutual game [20]. The
generated samples of G are judged and evaluated by D, and
then G is optimized according to the evaluation results. By
so doing, the efficiency and quality of the sample generation
process can be greatly improved [20]. At present, GAN and
its variants have been successfully applied in many fields,
such as image inpainting [21], scene synthesis [22], and
face recognition [23].

For imbalanced data in fault diagnosis, the research
based on GAN has been developed gradually in recent
years. For example, a new fault diagnosis method based
on GANs was proposed in [24] to process insufficient
vibration monitoring data of rotating machinery. As the
actual fault data of bearing are limited, an imbalanced
fault diagnosis model based on GAN was established in
[25], and a detailed comparative study was conducted.
Reference [26] proved that a new bearing fault diagnosis
method based on Switchable Normalization Semi-Super-
vised GAN (SN-SSGAN) is effective. Based on an
improved GAN, the dataset for fault diagnosis of recip-
rocating machines was balanced in [27]. In [28], synthe-
sized data generated by a Dual-Discriminator Conditional
GANs (D2CGANs) was used for data expansion, which
evidently improved the accuracy of fault diagnosis for
rolling bearing. An Auxiliary Classier Wasserstein GAN
with Gradient Penalty (ACWGAN-GP) was proposed in
[29], which can stably generate high-quality transmission
gear fault samples. Reference [30] combined the Semi-
Supervised GAN with Wavelet Transform to design a
new fault diagnosis model (noted as WT-SSGAN) for
application to rotating machinery. Reference [31] pro-
posed a method for generating fault samples of rolling
bearings based on GAN and autoencoder (AE) and veri-
fied the effectiveness of this method. GAN was effec-
tively employed to balance the training dataset of
automatic fault detection and diagnosis (AFDD) for chil-
lers in [32]. In [33], a method based on Conditional
Variational AE and GAN (CVAE-GAN) was proposed
for imbalanced fault diagnosis of planetary gearbox.
Reference [34] designed a multilabel one-dimensional
GAN (1-DGAN) fault diagnosis framework and con-
firmed that the generated data are informative. Other
similar works have been published, and interested readers
can refer to the review of [35].

The previous work focuses mainly on continuous and
high sampling frequency data, whereas the actual data
often contain also both (low sampling frequency) numeric
and categorical variables, which make the so-called

heterogeneous data. For example, factors that affect the
braking system of high-speed trains include numerical
variables such as voltage and current, as well as categori-
cal variables, such as operating mode and braking status.
The categorical and some of the numerical variables are
discrete. Proper GAN structure for generating discrete
values remains a challenge, as pointed out in [35].
Although some GAN models have been proposed for
discrete variables, as in [36], some difficulties still need
to be solved. To the best knowledge of the authors, no
published work has reported a solution for the heteroge-
neity of the monitoring variables with GAN. The common
way is to encode directly the discrete variables into
numeric ones by one-hot code [37]. However, the direct
use of one-hot code is likely to cause information loss, and
the values of the samples generated by GAN with one-hot
code are no longer discrete and may exceed the values
range of the original discrete values, with no engineering
interpretation. In addition to the data heterogeneity, the
previous work assumes the availability of enough recon-
structed fault data for GAN training, with a sampling
frequency as high as several thousand hertz. This is
because training a GAN model on limited fault samples
may cause severe over-fitting or under-fitting problems.
Normal/majority samples which are large in size can be
borrowed for improving the performance of a GANmodel.

In this paper, a fault sample generation method with
heterogeneous imbalanced monitoring data is proposed by a
modified GAN (Mixed Dual Discriminator GAN, M-
D2GAN). Based on the proposed M-D2GAN, simulation
samples can be generated with the same data structure and
distribution as the actual fault samples and without aggra-
vating the class overlapping, which can allow effectively
processing imbalanced data when used for fault diagnosis.
Also, the addition of these generated samples will not affect
the impact of the fault diagnosis model on the real data
structure. To make the generated fault samples more in line
with the actual situation, different types of variables, such as
floating-point type, integer type, indifferent category type,
and hierarchical category type, are output in the last layer of
the generator G in different coding and output forms. A
double discriminator framework is used to avoid the gen-
erated samples to enhance class intersectionality. The first
discriminator D is used to discriminate whether the gener-
ated sample is real, and the second discriminator F is used to
discriminate whether the generated sample is a faulty
sample. Firstly, F is trained based on the real normal
samples and, then, G and D are trained iteratively based
on real fault samples and F. Using the real monitoring data
from a high-speed train braking system, the proposed
method is proved to be effective in generating fault samples.
A comparative experiment is performed in two steps. In the
first step, it is verified that the samples generated by M-
D2GAN can effectively improve the accuracy of fault
diagnosis models. In the second step, it is verified that
the proposed model improves performance compared to the
classical GAN.

The rest of this manuscript is structured as follows.
In Section 2, the proposed M-D2GAN for generating
heterogeneous fault samples is introduced in detail.
Comparative experiments based on real monitoring
data from a high-speed train are considered in Section 3.
Section 4 draws the conclusions and gives some
perspective.
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2. THE PROPOSED M-D2GAN FOR
FAULT DIAGNOSIS WITH
HETEROGENEOUS AND

IMBALANCED MONITORING DATA
A. BRIEF INTRODUCTION OF GAN

GAN is proposed in [20] to generate samples by an
adversarial process in which two networks, i.e. a generator
G and a discriminator D, are trained simultaneously and
compete against each other. The structure of a classic GAN
is shown in Fig. 1.

In [20], the two competing networks are of the multi-
layer perceptron (MLP) type and can be trained with back
propagation. G is trained to generate samples similar to the
real data, whereas D is used to calculate the probability that
a generated sample comes from the same distribution of the
real samples. By capturing the distribution of real data, G
generates real-like samples. The training goal of G is to
make D unable to distinguish the generated samples from
the real ones, i.e. the probability calculated by D ap-
proaches 0.5.

For the real sample x and a Gaussian random noise z,
the generated sample can be defined as G(z). Then, the
objective of GAN is a min-max optimization with objective
value function V(G,D) as follows:

min
G

max
D

VðD,GÞ = Ex~pdata ½logDðxÞ�

+ Ez~pz ½logð1 − DðGðzÞÞÞ� (1)

where Dð�Þ is the probability that a sample comes from the
same distribution as the real data rather than G, Eð�Þ
represents the calculated expectation, and pdata and pz
are, respectively, the distributions of x and z.

GAN is trained in an iterative manner, so to optimize G
and D alternatively. First one can fix G and optimize D by:

max
D

VðD,GÞ = Ex~pdata ½logDðxÞ�
+ Ez~pz ½logð1 − DðGðzÞÞÞ� (2)

After the optimization of D, G can be optimized by:

min
G

VðD,GÞ = Ez~pz ½logð1 − DðGðzÞÞÞ� (3)

This is repeated iteratively updating the two networks
until the GAN system reaches a dynamic equilibrium (as
Nash equilibrium). By setting the output structure of G,
several new samples can be generated that follow the x
distribution.

In fact, the generator G and the discriminator D are not
trained alternately, rather D is trained t-times and G is
trained once, simultaneously. This is because in the
early training period, the generated sample GðzÞ is easily
negated by D, i.e. DðGðzÞÞ is very small, resulting in
logð1 − DðGðzÞÞÞ quite close to 0. In this case, G should
be optimized by maxG½logðDðGðzÞÞÞ� instead
of minG½logð1 − DðGðzÞÞÞ�.

B. THE PROPOSED FAULT DIAGNOSIS
FRAMEWORK WITH M-D2GAN

As discussed in the Introduction, there are several chal-
lenges for building a GAN model for heterogeneous and
imbalanced data. A M-D2GAN is proposed in this work for
tackling the heterogeneous imbalanced data problem. The
structure of the proposed method is shown in Fig. 2.

For the original heterogeneous data with N samples
X = (X1, X2, : : : , XK), Xi= (xi1,xi2, : : : ,xiN)

T (i= 1,2, : : : ,K),
different types of variables need different encoding strate-
gies before they can be input into the fault diagnosis model.
Thus, in the encoded data, one column refers to a certain
original variable. The last layer of G needs to generate
samples of the same size as the samples in the encoded data.
Let the columns represent Xi in the encoded data or
generated data as the corresponding columns of Xi (herein-
after referred to as the columns corresponding to Xi). The
proposed M-D2GAN develops in two steps:

(1) Identify different types of variables and design the
output rules of the last layer in the generator G for the
columns corresponding to the different types of vari-
ables. In general, the heterogeneous monitoring data
can be divided into the following four types: floating-
point type, integer type, indifferent category type, and
hierarchical category type. The different softmax
formats for columns corresponding to the different
types of variables are as follows: for floating-point
variables, the output columns are not processed; for
integer and hierarchical category variables, the ones
are rounded to the nearest whole number; the Gum-
bel-softmax applied in [38] is used to generate indif-
ferent category variables.

Fig. 1. The structure of a classic GAN. Fig. 2. The structure of M-D2GAN.
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(2) Build a double discriminator to discriminate the
generated samples, in which the discriminator D
distinguishes whether the generated samples are
real and F distinguishes whether the generated sam-
ples are normal. Then, the training goals of G are to
make D unable to distinguish the generated samples
from the real ones and to make F able to distinguish
the generated samples from normal ones. The calcu-
lated probability of D approaches 0.5, and the calcu-
lated probability of F approaches 0.

C. CODING AND OUTPUT RULES FOR
HETEROGENOUS DATA

The coding and output rules for different types of variables
are designed as follows:

(1) Floating-point variables are directly input into D, F,
and the fault diagnosis model. When generating
samples in G, the corresponding columns do not
need to be processed;

(2) Integer variables are also directly input into D, F and
the fault diagnosis model. When generating samples
in G, the corresponding columns in G are rounded;

(3) Hierarchical category variables are input to the mod-
els after label coding, according to the grade from
small to large. When generating samples in G, set the
output range for the corresponding columns and
round them;

(4) Indifferent category variables are input to the models
after one-hot coding. When generating samples in G,
Gumbel-softmax is used to obtain the columns corre-
sponding to the coded variables.

The classical GAN can handle well continuous data,
and the optimal model can be obtained by first-order
differential calculations. For discrete variables, the sam-
pling process is nondifferentiable, so the parameters are
difficult to update. Therefore, the columns corresponding to
continuous variables do not need to be processed in the G
output layer. Integer variables can also be directly input into
the models, but the corresponding columns need to be
rounded when generating samples. For category variables
with levels, label coding according to the grade from small
to large is applied as a numerical method. And, the corre-
sponding columns need to be rounded uniformly with
integer variables in the output layer of G. Moreover, the
differentiable Gumbel-softmax in [38] can be used to obtain
indifference discrete variables. To improve the efficiency
and make the generated data conform to practical signifi-
cance, the output of the generator G can be designed to
remain within a value range. Here, the value range of each
variable can be obtained according to experience and the
distribution of the existing data.

In order to prevent information loss, based on one-hot
encoding technology, indifference discrete variables are
converted into multidimensional vectors, suitable for effi-
cient Boolean constraint propagation [39]. Thus, one-hot
encoding is used in this work for encoding the indifference
discrete variables. Similarly, to generate indifference dis-
crete variables, the output of G needs to work with one-hot
vectors, usually obtained by implementing the softmax
function in the output layer. Instead of the classical softmax
function, theGumbel-softmax function is appended after the
decoder in this paper.

For the d-dimensional vector h = ðh1,h2, : : : ,hdÞ,
the corresponding d-dimensional one-hot vector y =
ðy1,y2, : : : ,ydÞ can be determined by the maximum value
of the h’s components. For example, for (1,5,8,0.2), whose
third component is the largest, the corresponding one-hot
vector is (0,0,1,0), which can represent a certain category.
Obviously, this method cannot calculate the gradient nor
can it update the network. The usual improvement method
is to normalize the vector by a softmax function so that the
gradient can be calculated and the obtained value can
represent the probability:

p = sof tmaxðhÞ = ðp1,p2, : : : ,pdÞ (4)

where pi = expðhiÞ=Σd
j=i expðhjÞ,i = 1,2, : : : ,d.

The softmax function tends to make the probability of
the maximum value significantly larger than other values,
but the vector p which represents the probability has no
probability meaning and the sampling process of output
from softmax is nondifferentiable during the model training
process. In this case, based on softmax transformation, a
differentiable function named as Gumbel-softmax is pro-
posed to make the generated data more realistic [36]:

y 0 = sof tmax

�
1

τðh + gÞ
�

(5)

where g = ðg1,g2, : : : ,gdÞ and gi(I= 1,2, : : : ,d), are
independent of each other and conform to a Gumbel
distribution, and τ is a control parameter of the soft
degree in the softmax function. When τ → 0, y 0 → y,
and when τ → ∞, y 0 approximately satisfies a uniform
distribution.

Based on the processing method of different types of
variables described in the previous paragraphs, samples
heterogeneous as the real samples can be generated. Then,
in GAN training and fault diagnosing, the generated sam-
ples can allow achieving higher performance.

In addition, in this paper, the most commonly used
rounding method is adopted for getting integer and hierar-
chical category variables, i.e. the nearest integer value.

1) GAN FOR IMBALANCED DATA. In this work, the
GAN takes a dual discriminator for tackling imbalanced
data. In the current use of GAN for fault diagnosis,
convolution and deconvolution layers are widely adopted
for tackling high-frequency monitoring data [35]. Actu-
ally, the structures of G, D, and F are all flexible, and the
model can be adjusted according to the actual needs of
practice. In this work, MLP network is selected to build G,
D, and F. The input of G is randomGaussian noise, and the
output is synthetic faulty samples. The synthetic faulty
samples are the input of D and F. Considering the limited
fault data, ANNs, instead of a deep learning layout are
adopted for building D and F. ANNs can recognize the
complex nonlinear relationship between input and output
data and have been widely applied to solve complex
practical problems [40]. Moreover, for these models,
the number of nodes and hidden layers are gradually
increased for the considered problem until the model’s
performance does not change or decline.

In this case, the generator G is a neural network whose
input is noise z and output is a group of simulated samples
following the same structure as the actual data. The number
of output samples is usually set to be the same as the number
of real normal samples participating in training D, so as to
avoid D being affected by data imbalance problems. Thus,
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G can be considered as mapping ~x = GðzÞ, and the training
goal of G is to make ~x obey the distribution of x.

For fault diagnosis in a high-reliability system, the
generated samples should not only be similar to the real
fault data but also different from the real normal data. Thus,
an extra item is added to the classic loss function in Eq. (1),
to prevent the generated data from exacerbating the class
overlapping problem. Finally, the objective function in this
work is

min
G

max
D

VðD,GÞ = Ex~pdata ½logDðxÞ�
+ Ez~pz ½logð1 − DðGðzÞÞÞ
+ Ez~pz ½logðFðGðzÞÞÞ� (6)

where Fð�Þ is the probability that a generated sample is in
normal state, Dð�Þ is the probability that a sample comes
from the same distribution as the real data rather than G,
Eð�Þ represents the calculated expectation, and pdata and pz
are, respectively, the distributions of x and z.

Since the normal samples are large in size, we can get a
good F just by training the MLP model with the normal
samples. The MLP encoder trained with back propagation
based on normal samples is considered to be a one-class
learning model, which can judge whether new samples
belong to the normal class. Considering that if the generated
samples or fault samples are added to the training model F,
the generated samples may locate closely to the actual fault
samples, resulting in failure diagnosis unable to identify
random faults and nonoccurring faults. In this work, the
generated samples are expected to deviate from the normal
samples. Thus, the model F is no longer optimized in the
process of training M-D2GAN. Moreover, M-D2GAN is
also trained in an iterative manner, and the objective
function can optimize G and D alternatively. When G is
fixed, the loss function of D is

max
D

VðD,GÞ = Ex~pdata ½logDðxÞ�
+ Ez~pz ½logð1 − DðGðzÞÞÞ� (7)

And, when D is fixed, G can be optimized by:

min
G

VðD,GÞ = Ez~pz ½logð1 − DðGðzÞÞÞ�

+ Ez~pz ½logFðGðzÞÞ� (8)

In this work, Adam algorithm [41], which is insensitive
to hyperparameters, is used for model optimization. The
process of generated data is offline, without the need of
consideration on the amount of calculation. Therefore, in
order to prevent the model from reaching local optimiza-
tion, we set a low learning rate as 0.001. Moreover, same as
in the classic GAN training process introduced in Section A,
actually, D is trained t-times and G is simultaneously
trained once in M-D2GAN.

3. APPLICATION RESULTS
The braking system is one of the most important compo-
nents of high-speed trains, ensuring their effective deceler-
ation during operation. Due to the requirements of high
reliability, there have been many related fault diagnosis
studies for high-speed train braking systems, including
expert systems [42,43], physical mechanism analysis
[44,45], and data-driven modeling techniques [46,47].

Since high-speed train braking system is a complex system,
it is difficult to analyze the function subdivision and
corresponding failure mechanisms. Using traditional fault
diagnosis methods consumes a lot of manpower and mate-
rial resources and often fails to achieve good results. With
the development of information technology, sensors for
system monitoring are widely used, and data-driven fault
diagnosis is developing rapidly.

Data related to the state of the braking system can be
collected by arranging sensors and capturing system state
information. Data-driven fault diagnosis technology has
made some breakthroughs in high-speed train braking
systems. For example, based on support vector machine
(SVM), high precision and stability fault diagnosis frame-
works for high-speed train braking systems were proposed
in [48,49]. These optimized SVMmodels can achieve good
results in the classification of highly imbalanced data,
which is helpful for fault diagnosis of complex systems.

Based on the monitoring dataset of a high-speed train
braking system in 1-year operation, in this section, a
comparative experiment is designed to verify that the
samples generated by the proposed method can signifi-
cantly improve the fault diagnosis accuracy. In addition, to
show the improvement of the proposed method on GAN,
the classic GAN with one-hot code is considered as a
comparison benchmark in the experiment. The classic
GAN here refers to the model with one generator G and
one discriminator D. G and D are all MLP networks. The
process of this comparative experiment is shown in Fig. 3.

In order to avoid the influence of random factors on the
results of the comparison, different commonly used classi-
fication algorithms are considered as the fault diagnosis
model in this experiment, including logistic regression
(LR), K-nearest neighbor (KNN), MLP, and convolutional
neural network (CNN). A fivefold cross-validation is used
to compare the average generalization accuracy of each
fault diagnosis model. The actual training data for the fault
diagnosis model under fivefold cross-validation are training
data and generated data. All the models are optimized by
gradually increasing structural complexity and iterations,
until the generalization accuracy remains stable or
decreases.

The monitoring dataset contains 43 variables related to
brake system failure, including 18 floating-point variables,

Fig. 3. Flow chart of the comparative experiment.
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3 integer variables, 2 hierarchical category variables, and 20
indifferent category variables, such as speed, voltage, cur-
rent, temperature, traction effort, level of access, operation
mode, and braking state. Due to the restriction of confi-
dentiality, we do not list these variables with their names
and represent them as V1, V2 : : : V43. These samples are
marked as failure or normal state without distinguishing
different faults. Before generating new fault samples by
different methods, necessary data processing, such as data
cleaning and standardization, are performed.

Figure 4 is a 2D projection of the dataset, based on t-
distributed stochastic neighbor embedding (t-SNE), where
red ‘o’ represents fault samples and gray ‘*’ represents
normal ones. The t-SNE is a common algorithm for explor-
atory analysis of high-dimensional data. It can project high-
dimensional data into 2-D or 3-D spaces by converting the
similarity between data points into probability, so as to
realize the visualization of high-dimensional data [50].
Moreover, only 10% of the normal samples are used in
the t-SNE projection, because otherwise the fault samples
would be completely covered when using all normal data. It
has been confirmed that the projection distribution of the
10% normal samples is roughly consistent with that of the
whole normal data.

There are 28 837 normal samples and 159 fault samples
in the original monitoring dataset, whichmeans that the data
are highly imbalanced (this can also be seen from Fig. 4).
Thus, the classification interface of the fault diagnosis
model will seriously deviate to the normal state, resulting
in the prediction accuracy of fault class being extremely
low. Although we pay more attention to the fault state than
to the normal state, too few fault samples have little effect
on the overall accuracy. Therefore, the overall generaliza-
tion accuracy cannot be the indicator for comparing gener-
ating methods; rather, only the fault state should be focused
to meet the actual needs. The precision and recall of the fault
state can be used as the evaluation indexes for the generated
samples.

However, from Fig. 4, we can see that the data of
different states are largely overlapped. Therefore, high
precision and high recall are impossible to be achieved
simultaneously. In this case, F-measure and G-mean are
applied as the comparison metrics to comprehensively
evaluate the effects of different methods.

Whereas TP, TN, FP, and FN, respectively, represent
the number of true positives, true negatives, fault positives,

and fault negatives, F-measure and G-mean can be calcu-
lated by:

F − measure = 2 � precision � recall
precision + recall

(9)

G − mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR � TNR

p
(10)

with precision = TP=ðTP + FPÞ, recall = TPR = TP=
ðTP + FNÞ, and TNR = TN=ðTN + FPÞ.

As shown in Fig. 3, in the fivefold cross-validation, M-
D2GAN is trained based on each training data to obtain a
satisfactory generator, and then sufficient generated sam-
ples are generated to reduce the imbalance between classes.
Here, the generator and discriminators are MLPs with three
hidden layers, and the number of nodes are set as the
commonly used ones, i.e. 16, 32, 64, 128, etc., and the
parameters are fine-tuned for different training data. The
original 43 variables are encoded by the coding method
presented in the previous section and transformed into 45
new variables. Thus, the input layers of D and F contain 45
nodes, and the outputs are one-dimensional values. The
input layer of G contains one node, and the output is a
127 × 45-dimensional data group. Based on each training
data, after usingM-D2GAN to obtain an excellent generator
in the distribution of z, several batches of generated samples
can be obtained by inputting different z to eliminate the
imbalance between classes in the training data.

Different classification algorithms are used as the fault
diagnosis model to verify the effectiveness of the proposed
method. After comparison, the data in this paper can get
better feature extraction effect by using the network with
three hidden layers. Therefore, MLP and CNN fault diag-
nosis models are also three-layer hidden layer structures. In
the same operating environment, the experimental results
are reported in Table I.

It can be seen that imbalanced data will seriously affect
the fault diagnosis result, and both the proposed method and
the classical GAN can improve the fault prediction accuracy
by adding fault samples. Among them, the proposed M-
D2GAN can further improve the fault diagnosis results. It is
because of this that the samples generated by M-D2GAN
are close to the distribution of real fault samples and
significantly different from the normal ones, which makes
the new samples to be more easily identified.

Fig. 4. The 2-D t-SNE projection for the dataset.

Table I Comparison of different generating methods

Model Method F-measure G-mean

LR Untreated 0.21884 0.42733

GAN 0.42424 0.79723

M-D2GAN 0.56111 0.82432

KNN Untreated 0.21429 0.47034

GAN 0.66316 0.78208

M-D2GAN 0.72414 0.82305

MLP Untreated 0.53020 0.68825

GAN 0.66949 0.78591

M-D2GAN 0.75238 0.84135

CNN Untreated 0.38095 0.81494

GAN 0.77396 0.8559

M-D2GAN 0.82245 0.88741
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It can also be seen from the t-SNE projections of the
datasets balanced with different methods that

(1) M-D2GAN and GAN in the experiment can improve
the separability of the elements in the dataset, thereby
improving the accuracy of the fault diagnosis model;

(2) Comparing Figs. 5 and 6, one finds out that the
conventional GAN may overfit the scarce fault data
and that it generates synthetic samples close to each
the original fault data, showing a large number of
clusters; on the contrary, the proposed M-D2GAN
generates synthetic samples with a better generaliza-
tion capability, which can also be seen from the
comparison results in Table I;

(3) Fundamentally, the samples generated byM-D2GAN
have the same heterogeneous structure as the original
ones, i.e. discrete, nominal, and continuous variables
can be generated within the same value ranges, while
using multisource information fusion technology, the
effective features of different types can be extracted
by different activation functions and then fused into
the diagnosis model.

4. CONCLUSIONS
In Prognostics and Health Management (PHM) of high-
reliability systems, imbalanced data appear, which may
seriously deteriorate the fault diagnosis performance of a
data-driven method. In addition to the between-class imbal-
ance caused by limited fault samples, the monitored signals
from a complex system are usually heterogeneous, i.
e. including both numeric and categorical variables. To
deal with imbalanced heterogeneous data, a modified GAN
fault diagnosis method is proposed in this work. In this
method, to make the generated fault samples more in line
with the actual situation, different types of variables are
generated in different ways, including floating-point, inte-
ger, categorical, and hierarchical. Furthermore, the dual
discriminator is designed to avoid the generated samples to
exacerbate class overlapping, thus improving the effective-
ness for imbalanced data. The fault data generated by M-
D2GAN can be transformed to the heterogeneous variables
as in the raw data, and the fault samples are enriched to
improve the fault diagnosis performance. In comparison
with classic GAN in a real case study concerning a high-
speed train braking system, M-D2GAN has been shown to
generate higher-quality fault samples, thus improving the
prediction accuracy of the data-driven fault diagnosis
model. In this paper, almost all the models used to verify
the generated data are ready-made models. In fact, the
design of fault diagnosis model often adopts different
activation functions for different types of data before feature
fusion. Therefore, it is necessary to keep the data types of
simulation samples consistent with those of real samples.

Finally, for other PHM analyses of high-reliability
complex systems, M-D2GAN has also potential value in
fault prediction and regression.Wasserstein GAN (WGAN)
can also be used to further optimize the generating method.
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