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Abstract ： Any malfunctions of the actuators of the robots have the potential to destroy the
robot's normal motion，and most of the current actuator fault diagnosis methods are difficult to
meet the requirements of simplifying the actuator modeling and solving the difficulty of fault
data collection. To solve the problem of real-time diagnosis of actuator faults in the 3-PR(P)S
parallel robot, the model of 3-PR(P)S parallel robot and data-driven-based method for the fault
diagnosis is presented. Firstly, only the input-output relationship of the actuator is considered for
modelling actuator faults, reducing the complexity of fault modelling and reduces the time
consumption of parameter identification, thereby meeting the requirements of real-time diagnosis.
A Simulink model of the electromechanical actuator (EMA) was constructed to analyze actuator
faults. Then the Short-term analysis method is employed for collecting the sample data of the
slider position on the test platform of the EMA system and feature extraction. Training samples
for neural networks are obtained. Furthermore, we optimized the Back Propagation (BP) neural
network using the Dung Beetle Optimization Algorithm (DBO), which effectively resolved the
weights and thresholds of the BP neural network. Compared to BP and PSO-BP, the DBO-BP
has better convergence, convergence rate, and the best-classifying quality. So, the classification
for the different actuator faults is obviously improved. Finally, a fault diagnosis system was
designed for the actuator of the 3-PR(P)S parallel robot, and the experimental results
demonstrate that this system can detect actuator faults within 0.1 seconds. This work also
provides the technical support for the fault-tolerant control of the 3-PR(P)S Parallel robot.
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Introduction

Parallel robots have the advantages of high
stiffness, strong load-bearing capacity, and
high motion accuracy[1,2]. It is widely used in
the fields of medical equipment[3] and
aerospace[4]. In harsh operating

environments or amidst significant
disturbances , various faults can emerge
within the parallel robots. These faults can
hinder the performance of a parallel robot,
possibly leading to system failure or even
casualties. The faults in parallel robots
primarily arise from both the mechanical
body and the control system. As the actuator



is the weakest part of the control system, it's
imperative to promptly diagnose its faults to
enhance the overall reliability of the parallel
robots [5].

To improve the performance and the
reliability of parallel robots, and to satisfy
safety and environmental requirements,
research and developments in the field of
actuator fault diagnosis have been
continuously progressing during the last
decades. The fault diagnostic methods
mainly contained the model-based methods
[6,7]and the data-driven methods [8]. The most
used model-based method is focused on
state estimation, which achieves fault
isolation by building the model of the
controlled object, constructing a state
observer, and obtaining the residual by
comparing the actual output of the system
with the output of the observer. Rahme[9]

proposed an adaptive sliding mode observer
for the actuator fault diagnosis in linear
parameter changing systems, the main
advantage is its ability to handle the time-
varying distribution matrices. Xu[10] used an
infinite dimensional observer, which was
related to the coupling parameter updating
law to diagnose the actuator faults with the
dead zone nonlinearity. Zhu[11] aimed at the
discrete systems with the actuator faults. The
state equation affected by the external
disturbances is built. The design method of
reduced-order observers and the interval
estimation method based on the theory of
polytope were studied. So, the actuator fault
detection method based on interval
estimation was proposed. However, the
model-based methods apply to linear
systems, it is difficult to construct an
accurate model of nonlinear systems due to
the time-varying disturbances and the
complex structure of nonlinear systems.

The data-driven methods have been widely
used in recent years owing to adaptively
extracting fault features and learning fault

symptoms from large amounts of monitoring
data without establishing an accurate
mathematical model for the system, and the
errors caused by human intervention are
reduced. Chen[12] combined the fuzzy theory
with the BP neural network to solve the
limitations of the neural network in the fault
diagnosis and applied it to the actuator fault
diagnosis. Guo[13] proposed a new fault
diagnosis method for the dynamic flight
state of the UAV actuators based on the
Uncertain-ty-Aware LSTM (UA LSTM),
which has superiority in detecting the
actuator faults under dynamic flight
conditions. Li[14] tested the proposed
actuator fault detection method based on the
extreme learning machines, on the self-made
propeller system experimental platform. The
result showed that the method was sensitive
and effective in both large and small fault
situations. Hou[15] improved the deep forest
diagnosis method for the electric actuator
fault, and the difficult parameter adjustment
in existing diagnosis methods was solved.
Wang[16] proposed a diagnosis algorithm
based on evidence fusion, which can
effectively learn the fault data features of
actuators in closed-loop systems. This can
improve the diagnostic capabilities and
overcome the single-method misjudgment.
However, the data-driven methods typically
require a large amount of data to train
models, which may be difficult to obtain in
certain fields.

The actuator fault diagnosis methods
discussed earlier have shown some progress,
but most struggle to meet the requirement of
concurrently simplifying actuator modelling
and addressing the difficulty of collecting
fault data. Therefore, a model and data-
driven-based method for fault diagnosis in
the actuator of a 3-PR (P) S parallel robot is
put forward in this paper. Firstly, the single-
fault mathematical models of the actuator
are developed by solely considering the
input-output relationship of the actuator



(motor) speed, and the actuator faults are
considered in the Simulink model of the
electromechanical actuator (EMA) for
analysis. Then the test platform of the EMA
is built and data on the slider position under
various actuator faults is collected.
Subsequently, a short-term analysis method
is applied to extract fault features. The BP
Neural Network optimized by the Dung
Beetle Algorithm (DBO-BP) is employed
for actuator fault classification. Ultimately, a
diagnostic system for actuator faults is
established in LABVIEW, which is then
subjected to real-time diagnostic testing. In
this paper, a fault diagnosis method for the
actuator of the 3-PR(P)S parallel robot based
on both model and data-driven approaches is
proposed. This method simplifies the
complexity of the model by considering the
input-output relationship separately and
solves the difficulty of obtaining fault data.
The real-time fault diagnosis of the actuator
is realized.

2. Fault analysis of the actuator

2.1. 3-PR (P) S Parallel Robot

The physical platform and structural
diagram of the 3-PR (P) S parallel robot [17]

are shown in Fig.1. The ontology structure
of the 3-PR(P)S parallel robot is composed
of the moving platform �1�2�3 and the
three branching chains ������ (� = 1,2,3)
evenly distributed on the fixed platform
�1�2�3 . The slider ��(� = 1,2,3) on each
branching chain is linked with the column
through the prismatic pair, and it is
connected with the length-variable
connecting rod ���� (� = 1,2,3) by the
revolute pair. The other end of the
connecting rod ���� is linked with the
moving platform �1�2�3 by the spherical
pair. The position and pose of the moving

platform are controlled by adjusting the
position of the three sliders.

As shown in Fig.2, the electromechanical
actuator (EMA) which is composed of the
motor (referred to uniformly as the actuator
later in the paper), the ball screw and the
slider, is regarded as the driving component
of the 3-PRS parallel robot.

Fig. 1. 3-PR(P)S parallel robot. (a) The
physical platform(b) The structure diagram

Fig. 2. Diagram of the electromechanical
actuator

2.2. Types of the actuator faults

In practical work, the failure of the internal
transmission system of the actuator (motor),
damage to bearings, or jamming may lead to
an abnormal increase in the actuator (motor)
speed. If the internal coils and brushes of the
actuator (motor) are damaged or the load
exceeds the design capacity range of the
actuator (motor), the actuator (motor) may
fail to attain the anticipated speed. As this
article mainly focuses on the study of
actuator faults that affect the movement of



the slider and moving platform, the
emphasis is placed solely on the relationship
between the input and output speeds of the
actuator for the fault modelling, without
considering its internal operating principles.
The expression of the actuator faults is as
follows:

��(�) = (1− �) ⋅ �(�) + �(�) （1）

Where ��(�) represents the output speed
of the actuator; �(�) is the rated input speed
of the actuator; � represents the coefficient
of lost efficiency, within the range [0,1] ;
�(�) is the deviation value.

The expression varies based on the different
types of actuator faults, as outlined below:

��(�) = �(�) when � = 0 and �(�) = 0.
The actuator is not faulty;

��(�) = (1− �)�(�) when 0 < � < 1
and �(�) = 0 . The actuator partially loses
efficiency, and the fault degree increases
with the increase of �. A linear relationship
exists between the output speed and the
input speed.

��(�) = �(�) +� when � = 0 and
�(�) = � ( � is a constant value). The
constant-deviation fault arises in the actuator,
causing a constant deviation of value �
between the output and the input speed.

��(�) = 0 when � = 1 and �(�) = 0. The
stuck fault occurs in the actuator, and the
output speed is 0.

2.3. Simulation of actuator faults

A simulation model for the EMA (Fig.3) is
established in Simulink, assuming that faults
solely originate from the actuator. Variations
in actuator speed due to different faults will
influence the position changes of the slider.
Therefore, the stuck fault, the 20%
efficiency-loss fault, the 40% efficiency-
loss-fault and the 1mm/s constant-deviation
fault are injected into the Simulink model of
the EMA and the position change of the
slider is analyzed. The input speed is set as
� = 1.5� ⋅ 푐�� ( 0.5� ⋅ �) and converted
into the pulse signal, which is inputted into
the Simulink model. The simulation time is
set to 4� .The EMA experienced the
aforementioned actuator faults at � = 3�.

From Fig.4, it's evident that the position
curves of the slider coincide before the
actuator malfunctions. When the actuator
becomes stuck, an abrupt shift in the output
speed to 0 occurs, leading to a cessation of
slider position changes. The partial loss of
efficiency in the actuator causes a reduction
in its output speed, consequently leading to a
slowed-down rate of position change
compared to the scenario without faults. The
occurrence of the constant-deviation fault
prompts a sudden rise in the actuator's
output speed by a positive constant, leading
to a faster change in position compared to
the situation without faults. It is concluded if
the position deviation of the slider solely
arises from distinct single faults of the
actuator, the slider's position change can
effectively reflect different types of actuator
faults. Therefore, the actuator fault diagnosis
of the 3-PR (P) S parallel robot can be
regarded as the analysis of the slider position.



Figure 3. Fault Simulation Model

Figure 4. Position curves of the slider

3. Fault diagnosis algorithm for the
actuator

3.1. Back propagation neural network

It is difficult to construct an accurate model
of nonlinear systems due to the time-varying
disturbances and the complex structure of
nonlinear systems. Because the 3-PR(P)S
parallel robot is a nonlinear system, the
model-based fault diagnosis method is not
suitable for the 3-PR(P)S parallel robot.
Therefore, a model and data-driven-based
method for fault diagnosis in the actuator of
a 3-PR (P) S parallel robot is put forward in
this paper.

The BP （ Back Propagation ） neural
network is a widely used artificial neural
network model for solving classification and
regression problems[18,19]. The application of

BP neural networks proves it to be a viable
approach for detecting and diagnosing
actuator faults. Its basic structure is shown
in Fig. 5.

The BP neural network is comprised of the
input layer, the hidden layer and the output
layer. A properly functioning BP neural
network includes two primary processes[21]:
the forward propagation of signals and the
backward propagation of errors. The BP
neural network relies on the gradient descent
algorithm to minimize the error between the
predicted output and the actual target. This
is achieved by continuously adjusting the
network parameters throughout the training
process.
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Figure 5. The basic structure of BP neural
network.

But, when the BP neural network is applied
to fault diagnosis, there are some defects,
which mainly include three aspects:

(1) Uncertainty of initial weights and
thresholds.

(2) It is easy to fall into local optimal values.

(3) There is no effective hidden layer node
selection method.

3.2. DBO (the Dung Beetle Algorithm)
-BP model



The improper setting of the initial thresholds
and weights of the BP neural network can
result in the network getting stuck in local
optima, reducing the convergence speed[21].
The dung Beetle Optimization Algorithm
(DBO) is a biological optimization
algorithm inspired by dung beetle behavior.
To enhance classification accuracy and
expedite convergence, the research is
focused on employing the Dung Beetle
Algorithm [22] to optimize the initial weights
and thresholds of the BP neural network.
The specific steps are as follows:

Step 1: Initialize the BP neural network.
The initial parameters of the network are
determined. In the process of determining
the hidden layer nodes, the general empirical
formula is � = �+ � + � . � and �
represent the number of nodes in the input
and output layers, respectively, determined
by the dimensionality of the sample input,
� ∈ [1~10] . In numerous experiments and
practical applications, it has been observed
that the optimal number of hidden layer
nodes typically falls within the following
range [23]:

� = �+�
2
≤ � ≤ (�+ �) + 10 = � （2）

Where � is the minimum number of the
hidden layer nodes, � is the maximum
number of the hidden layer nodes.

Step 2: Determine the fitness function of the
DBO. The MSE (mean-square error)
function composed of the actual output
���� and the predicted output ���� of the
BP neural network is used as the fitness
function. The weights and thresholds of the
network serve as the independent variables
of the fitness function.

Step 3: Initialize the parameters of the Dung
Beetle Population. Multiple populations of
dung beetles are randomly created and
segregated into distinct groups: ball-rolling

dung beetles, son dung beetles, foraging
dung beetles, and thief dung beetles,
following a ratio of 6:6:7:11, Subsequently,
their fitness is calculated.

Step 4: The iterative optimization process
updates the position of the ball-rolling dung
beetle according to the following method.

No-obstacle mode:

��
�+1 = ��

� + � ⋅ � ⋅ ��
�−1 + � ⋅ ��

� −

�푤����
� （3）

Where t represents the number of iterations.
� ∈ (0,0.2] is a constant value that
represents the deflection coefficient. � ∈
(0,1). � is assigned either the value of 1 or -
1., 1 represents the original direction, and -1
represents diverging from the original
direction. �푤����

� is the global worst

position ， ��
� −�푤����

� is utilized to
simulate changes in light intensity.

For the value of � , setting the probability
value�:

�� � > � (0<� < 1)
� = 1
�푙��
� =− 1 （4）

Obstacle mode:

��
�+1 = ��

� + ��� (�) ⋅ ��
� −��

�−1 （5）

Step 5: During the iterative optimization
process, the update process for the birth
position of the son dung beetle is as follows.

��
�+1 = �푔����

� + �1 ⋅ (��
� −퐿�∗ ) +

�2 ⋅ (��
� −��∗ )（6）

Where �1 , �2 are the two different
independent random vectors with the size of



1 ×� , and � is the dimension of the
optimization variables.

The son dung beetles need to obey the
following boundary rule during the process
of being given birth.

퐿�∗=��� {�푔����
� ⋅ (1−�), Lb}

��∗=��� {�푔����
� ⋅ (1 +�), Ub}

（7）

Where � = 1− �
����

,Ub and Lb are the

upper and lower bounds of the optimization

problem, respectively.

Step 6: During the iterative optimization
process, the method for updating the
position of the foraging dung beetle is as
follows.

��
�+1 = ��

� +�1 ⋅ ��
� −퐿�푙 +�2 ⋅

��
� −��푙 （8）

Where 1C represents a randomly generated
number following the normal distribution.

2C is a random vector belonging to the range
of (0, 1), with the dimensions of 1 D .

Similarly, the foraging dung beetles also
need to obey the following boundary rule:

퐿�푙 =��� {�푔����
� ⋅ (1−�), Lb}

��푙 =��� {�푔����
� ⋅ (1 +�), Ub}

（9）

Step 7: During the iterative optimization
process, the method for updating the
position of the thief dung beetle is as follows.

��
�+1 = �푙����

� +� ⋅ 푔 ⋅（ ��
� −

�푔����
� + ��

� − �푙����
� )（10）

Where � is a constant value. 푔 is a random
vector with the dimensions of 1 ×�, which
obeys the normal distribution.

Step 8: Start the iterative optimization and
update the location of dung beetles. Find the
position of the dung beetle corresponding to
the optimal fitness value, which is the
optimized initial weights and the thresholds.

Step 9: Reinitialize the initial weights and
thresholds of the network.

Step 10: Train the BP neural network to
obtain the training results, and the network

is tested. The overall flowchart is shown in
Fig.6
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Figure 6. The Flowchart of DBO-BP model.

4. Experiments and simulations

4.1. Data acquisition and feature
extraction

According to the test requirements, this
paper builds a test platform for the EMA
system and the specific structure is shown in
Fig.7. The speed command� = 1.5� ⋅
푐�� ( 0.5� ⋅ �) is inputted to the EMA. The
linear encoder is employed to separately
collect the position data of the slider when
the actuator is in the no-fault, the stuck fault,
the 20% efficiency-loss fault, the 40%
efficiency-loss fault and the 1mm/s constant-
deviation fault modes. The sampling period
is 4T s and the sampling frequency is
50 HZ . The sensor used is a DC11 linear
grating ruler with a measuring range of
150mm, an accuracy of 1um and a
resolution of 0.1um.

Computer Controller Driver Motor

Linear encoder Slider

Ball screw

Power 
source

pulse angle

linear 
displacement

measurement

Electromechanical 
actuator

position 
data

signal

Figure 7. The test platform of the EMA
system

Due to the evolving feedback position data
over time, notable discrepancies exist in the
position data captured at different points in
time, so the method of short-term analysis[24]

is introduced. The sampling period� = 4�
is segmented into K frames with equal
lengths �, each frame contains 푙 position
data. Given the necessity for subsequent
real-time fault diagnosis experiments on the
upper computer, the speed of running the
neural network model in LABVIEW was



assessed, yielding a minimum result of
0.06s, which means running once needs at
least 0.06s, so frame length is taken as � =
0.1�,� = 40 and 푙 = 5. Set 40 fault time
point within the 0~4s timeframe, spaced at
intervals of 0.1 s.

Firstly, gather 20 sets of slider’s position
data under no-fault mode, with each set
comprising 200 data. Segment each set of
position data into 40 frames, resulting in 800
(20×40) no fault position-samples.
Subsequently, gather 20 sets of position data
when an actuator fault happens at a specified
fault time point, and take the position data of
the frame at that time point. Within a
sampling period, comprising 40 fault time
points, 800 (40×20) fault position-samples
are acquired for a type of actuator fault. As a
result of four different actuator faults, 3200
(4×40×20) fault position-samples were
obtained. In a total, 4000 position-samples
were obtained. (no fault position-samples
and fault position-samples).

The time domain features can well reflect
the distribution characteristics of the
position data over some time. Consequently,
the feature of each position-sample is
comprised of the Average Value, Variance,
Root Mean Square, Absolute Average, Peak-
Peak of this position-sample and the ending
time �(�) of the frame corresponding to this
position-sample:

퐸� =
[푀���(�),���(�),���(�),��(�),푃�(�), �(�)]�

（11）

Where，

푀���(�) =
푙1
�=1

� ⋅�(�)

푙1
（12）

���(�) = 1
푙1−1

⋅ 푙1
� = 1

� (�(�)−�)2

（13）

���(�) = 1
푙1
⋅ 푙1

� = 1
� (�(�))2（14）

��(�) = |푀���(�)| （15）

푃�(�) =푀��(�(�))−푀��(�(�))
（16）

�(�) = 0.1∗ � （17）

Where � represents the value of the position
data, � ∈ 1~40.

A total of 4000 sets of feature-samples were
obtained.

4.2. Sample division and normalization

The sample input of the BP neural network
consists of 4000 sets of feature samples. The
fault labels corresponding to each type of
fault are outlined in Table 1, and the sample
output of the BP neural network is formed
by these labels. There are 20 samples for
each type of fault at every fault time point,
which are divided into training samples and
testing samples at a ratio of 9:1. This results
in a total of 3600 (18×5×40) training
samples and 400 testing samples (2×5×40).

The sample input is normalized by using the
Mapminmax function[25], and obtain the
processed sample input �:

� =
(����−����)(퐸−퐸���)

퐸���−퐸���
+ ����（18）

where퐸 is the sample input.퐸���、퐸���
represent the maximum and minimum
values of퐸, respectively. � is the



normalized sample input.
����、����represent the maximum and
minimum values of the sample input after
normalization, which are 1 and -1,
respectively.

The fault labels are normalized and
converted into coding format as shown in
Table 2.

After the training of the neural network is
completed, the output fault labels need to be
anti-normalized.

Table 1. The fault labels

Fault

Type
No

fault Stuck
20%

efficiency-loss

40%

efficiency-
loss

1mm/s

constant-deviation

Label 1 2 3 4 5

Table 2. The normalized fault labels

Fault

Type
No fault Stuck

20%

efficiency-
loss

40%

efficiency-
loss

1mm/s

constant-
deviation

Label [1,0,0,0,0] [0,1,0,0,0] [0,0,1,0,0] [0,0,0,1,0] [0,0,0,0,1]

4.3. Parameter setting of DBO-BP

Parameter Initialization of the DBO. The
number of beetles in the DBO is ��� = 30.
The number of iterations is ���� = 50.
The searching range of the initial thresholds
and the weights is [− 3,3].

 Parameter Initialization of the BP neural
network. The sample input is the 6-
dimensional data and the corresponding
sample output is the 5-dimensional data, so
the number of the input layer nodes is� =
6, the number of the output layer nodes is
� = 5. The learning rate 푐 is set at 0.01.
The training accuracy is set at 10−6.

According to the formula 2, The range for
the number of hidden layer nodes is 6~21.

The BP neural network is trained using these
16 values as the number of hidden layer
nodes, The training epoch is set at 100. Fig.
8 displays the test results. From Fig.8, it can
be seen that the training error MSE is
minimized when the number of nodes is 16,
which means the convergence effect is best.
Consequently, the number of hidden layer
nodes is set to 16.



Figure 8. Training error of different hidden
layer nodes

4.4 Algorithm comparison and result
analysis

In this comparison experiment, MSE is
taken as the loss function, and the same
samples are used to train and test the BP,
PSO-BP (the BP Neural Network Optimized
by Particle Swarm Optimization Algorithm)
and DBO-BP models separately. The
training and testing results are shown in
Fig.9 and the comparative results are
depicted in Fig.10 and Table 3.

From Fig.9 (a), it's evident that as the
training progresses, the MSE of all
algorithms continuously decreases and
converges. Figure 8 and Table 3 provide a
comparative analysis of the performance
among the three algorithms, the BP, PSO-
BP, and DBO-BP have been trained for 146
epochs, 85 epochs and 66 epochs,
respectively, the DBO-BP has the best MSE
which means it has better convergence and
convergence rate, and the Corresponding
classification accuracy is 90%, 94.75%,
97.75%, respectively, the DBO-BP has the
best-classifying quality. Therefore, the
DBO-BP model can effectively classify the
different actuator faults.

(a) (b)

(c) (d)



Figure 9. Training and testing results: (a) The training error of BP, PSO-BP and DBO-BP. (b)
The classification accuracy of BP (c) The classification accuracy of PSO-BP. (d) The
classification accuracy of DBO-BP.

Table 3. The comparison of BP, PSO-BP and DBO-BP based on same samples

Diagnosis Algorithm Iterations Training Error
(MSE) Accuracy

BP 146 0.03161 90%

PSO-BP 85 0.02064 94.75%

DBO-BP 66 0.01397 97.75%

Figure 10. The comparison of BP, PSO-BP
and DBO-BP

5. Real-time diagnostic testing of
actuator faults

5.1. Real-time diagnostic system

The real-time diagnosis system is designed
based on the upper computer software
LabView, which consists of the data
acquisition module and the fault diagnosis
module.

The data acquisition module must establish
communication between STM32 and
LabView. In order to reflect the data
characteristics of each time period, it is

necessary to collect enough data. Therefore,
the sampling interval is configured at 20ms,
and a sliding array is added to capture and
store the real-time position data of each
frame, then the display of real-time curve
display is performed on the collected
position data.

In the fault diagnosis module, the time-
domain features of the sliding window array
are calculated and the trained DBO-BP
model is integrated into the MATLAB script
function, the Boolean signal light is used to
display the fault status according to the
output result of the DBO-BP model. The
diagnosis frequency is 10 Hz.

5.2. The Real-time fault diagnosis
experiment of actuator

The proposed scheme is applied to the 3-
PR(P)S redundant parallel manipulator
(Seen in Fig.1) to demonstrate the
effectiveness of the strategy. Before the
experiment, the LABVIEW program should
be connected with the STM32 controller and
the parameters are set. The motor is
57BYG250B-8 stepper motor, the stepping
Angle is 1.8°, the number of phases is 2, and



the encoder resolution is 64. The driver
selected is the DM542 stepper motor driver.
The actuator fault diagnosis module of the
control system is designed to detect different
actuator faults at the time points.

The process of experiment is as follows:

1.Firstly, given the end trajectory, the
position equation for shaft is obtained by the
inverse kinematics equation of the actuator
faults.

2.The sampling period is set to� = 4�.
There selected fault time points are

randomly selected： �1 = 0.5� , �2 = 1.6� ,
�3 = 2.2� and �4 = 3.6�.

3.Then, the jam fault, the 20% failure state
of the actuator, the 40% failure state of the
actuator and 1mm/s constant deviation fault
at each selected fault time are experimented
and finished.

4.Finally, the actuators are injected with the
state of jamming, failure 20%, failure 40%
and constant deviation faults of 1 mm/s at
these time points to demonstrate the
effectiveness and accuracy of the fault
diagnosis system.

The test results are as follows:

Figure 11. Diagnostic result of stuck fault

Figure12. Diagnostic result of 20% efficiency-loss fault



Figure13. Diagnostic result of 40% efficiency-loss fault

Figure14.Diagnostic result of 1mm/s constant deviation fault

From Fig.11 to Fig14, it can be known that
the new fault diagnosis system constructed
in this paper have a good diagnosis effect on
the state of stuck fault. Simultaneously, for
the diagnosis of these four fault conditions,
it can be detected 0.1s after actuator failure.
From the above analysis, it can be seen that
the fault diagnosis system can achieve the
real-time diagnosis function of actuator
faults, so it has a certain reference
significance for the subsequent diagnosis
practice.

6. Conclusions

To achieve real-time diagnosis of
actuator faults, meet the requirements of
both eliminating the complexity of actuator
modelling and the difficulty of data
collection simultaneously, this paper
proposes a model and data-driven-based
method for fault diagnosis in the actuator of
the 3-PR (P) S parallel robot. The following
conclusions were obtained through the

theoretical analysis and the experimental
verification:

1) Only the input-output relationship of
the actuator is taken into account for
modelling actuator faults, it reduces the
modelling complexity. The actuator
faults are considered in the Simulink
model of the EMA and analyzed, and
the simulation results indicate that the
position change of the slider can reflect
different types of actuator faults.

2) Our study advances a more effective
approach to fault diagnosis for the
actuator. The data of slider position
under different actuator faults are
collected and the short-term analysis
method is used for feature extraction.
The DBO-BP model optimized the
weights and thresholds in BP neural
network, the experimental results
indicate that the DBO-BP model
outperforms BP and PSO-BP in terms
of classification quality and



convergence, proving particularly
effective in diagnosing actuator faults.

3) To detect the actuator faults in real-time,
the actuator fault-diagnosis system is
designed based on LabView. Through
the real-time fault diagnosis experiment
of actuator, the results are presented that
the designed system is capable of
effectively and precisely detecting
actuator faults within 0.1 seconds. This
proves that the developed system is
correct and effective. At the same time,
the system can be used in the fault
diagnosis of parallel robots with similar
actuators.
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