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Abstract: Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,
and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying the
actuator modeling and solving the difficulty of fault data collection. To solve the problem of real-time diagnosis of
actuator faults in the 3-PR(P)S parallel robot, the model of 3-PR(P)S parallel robot and data-driven-based method
for the fault diagnosis are presented. Firstly, only the input-output relationship of the actuator is considered for
modeling actuator faults, reducing the complexity of fault modeling and reducing the time consumption of
parameter identification, thereby meeting the requirements of real-time diagnosis. A Simulink model of the
electromechanical actuator (EMA) was constructed to analyze actuator faults. Then the short-term analysis
method was employed for collecting the sample data of the slider position on the test platform of the EMA system
and feature extraction. Training samples for neural networks are obtained. Furthermore, we optimized the Back
Propagation (BP) neural network using the Dung Beetle Optimization Algorithm (DBO), which effectively
resolved the weights and thresholds of the BP neural network. Compared to BP and Particle Swarm Optimization
(PSO)-BP, the DBO-BP has better convergence, convergence rate, and the best-classifying quality. So, the
classification for the different actuator faults is obviously improved. Finally, a fault diagnosis systemwas designed
for the actuator of the 3-PR(P)S parallel robot, and the experimental results demonstrate that this system can detect
actuator faults within 0.1 seconds. This work also provides the technical support for the fault-tolerant control of the
3-PR(P)S Parallel robot.

Keywords: actuator; Back Propagation neural network; Dung Beetle Algorithm; fault diagnosis; 3-PR(P)S parallel
robot

I. INTRODUCTION
Parallel robots have the advantages of high stiffness, strong
load-bearing capacity, and high motion accuracy [1,2]. It is
widely used in the fields of medical equipment [3] and
aerospace [4]. In harsh operating environments or amidst
significant disturbances, various faults can emerge within
the parallel robots. These faults can hinder the performance
of a parallel robot, possibly leading to system failure or even
casualties. The faults in parallel robots primarily arise from
both the mechanical body and the control system. As the
actuator is the weakest part of the control system, it’s
imperative to promptly diagnose its faults to enhance the
overall reliability of the parallel robots [5].

To improve the performance and the reliability of
parallel robots, and to satisfy safety and environmental
requirements, research and developments in the field of
actuator fault diagnosis have been continuously progressing
during the last decades. The fault diagnostic methods
mainly contained the model-based methods [6,7] and the
data-driven methods [8]. The most used model-based
method is focused on state estimation, which achieves fault
isolation by building the model of the controlled object,
constructing a state observer, and obtaining the residual by
comparing the actual output of the system with the output of
the observer. Rahme [9] proposed an adaptive sliding mode

observer for the actuator fault diagnosis in linear parameter-
changing systems. The main advantage is its ability to
handle the time-varying distribution matrices. Xu [10]
used an infinite dimensional observer, which was related
to the coupling parameter updating law to diagnose the
actuator faults with the dead zone nonlinearity. Zhu [11]
aimed at the discrete systems with the actuator faults. The
state equation affected by the external disturbances is built.
The design method of reduced-order observers and the
interval estimation method based on the theory of polytope
were studied. So, the actuator fault detection method
based on interval estimation was proposed. However,
while model-based methods apply to linear systems, it is
difficult to construct an accurate model of nonlinear
systems due to time-varying disturbances and complex
structures.

The data-driven methods have been widely used in
recent years owing to adaptively extracting fault features
and learning fault symptoms from large amounts of moni-
toring data without establishing an accurate mathematical
model for the system, and the errors caused by human
intervention are reduced. Chen [12] combined the fuzzy
theory with the Back Propagation (BP) neural network to
solve the limitations of the neural network in the fault
diagnosis and applied it to the actuator fault diagnosis.
Guo [13] proposed a new fault diagnosis method for the
dynamic flight state of the UAV actuators based on the
uncertainty-aware LSTM (UA LSTM), which has superi-
ority in detecting the actuator faults under dynamic flightCorresponding author: Junjie Huang (e-mail: anny@hpu.edu.cn).
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conditions. Li [14] tested the proposed actuator fault detec-
tion method based on the extreme learning machines, on the
self-made propeller system experimental platform. The
result showed that the method was sensitive and effective
in both large and small fault situations. Hou [15] improved
the deep forest diagnosis method for the electric actuator
fault, and the difficult parameter adjustment in existing
diagnosis methods was solved. Wang [16] proposed a
diagnosis algorithm based on evidence fusion, which can
effectively learn the fault data features of actuators in
closed-loop systems. This can improve the diagnostic
capabilities and overcome the single-method misjudgment.
However, the data-driven methods typically require a large
amount of data to train models, which may be difficult to
obtain in certain fields.

The actuator fault diagnosis methods discussed earlier
have shown some progress, but most struggle to meet the
requirement of concurrently simplifying actuator modeling
and addressing the difficulty of collecting fault data. There-
fore, a model and data-driven-based method for fault
diagnosis in the actuator of a 3-PR (P) S parallel robot is
put forward in this paper. Firstly, the single-fault mathe-
matical models of the actuator are developed by solely
considering the input-output relationship of the actuator
(motor) speed, and the actuator faults are considered in the
Simulink model of the electromechanical actuator (EMA)
for analysis. Then the test platform of the EMA is built, and
data on the slider position under various actuator faults are
collected. Subsequently, a short-term analysis method is
applied to extract fault features. The BP neural network
optimized by the Dung Beetle Algorithm (DBO-BP) is
employed for actuator fault classification. Ultimately, a
diagnostic system for actuator faults is established in
LABVIEW, which is then subjected to real-time diagnostic
testing. In this paper, a fault diagnosis method for the
actuator of the 3-PR(P)S parallel robot based on both model
and data-driven approaches is proposed. This method sim-
plifies the complexity of the model by considering the
input-output relationship separately and solves the diffi-
culty of obtaining fault data. The real-time fault diagnosis of
the actuator is realized.

II. FAULT ANALYSIS OF THE
ACTUATOR

A. 3-PR(P)S PARALLEL ROBOT

The physical platform and structural diagram of the
3-PR(P)S parallel robot [17] are shown in Fig. 1. The
ontology structure of the 3-PR(P)S parallel robot is com-
posed of the moving platform B1B2B3 and the three branch-
ing chains CiAiBi ði = 1,2,3Þ evenly distributed on the fixed
platform C1C2C3. The slider Aiði = 1,2,3Þ on each branch-
ing chain is linked with the column through the prismatic
pair, and it is connected with the length-variable connecting
rod AiBi ði = 1,2,3Þ by the revolute pair. The other end of
the connecting rod AiBi is linked with the moving platform
B1B2B3 by the spherical pair. The position and pose of the
moving platform are controlled by adjusting the position of
the three sliders.

As shown in Fig. 2, the EMA, which is composed of
the motor (referred to uniformly as the actuator later in the
paper), the ball screw, and the slider, is regarded as the
driving component of the 3-PRS parallel robot.

B. TYPES OF THE ACTUATOR FAULTS

In practical work, the failure of the internal transmission
system of the actuator (motor), damage to bearings, or
jamming may lead to an abnormal increase in the actuator
(motor) speed. If the internal coils and brushes of the
actuator (motor) are damaged or the load exceeds the design
capacity range of the actuator (motor), the actuator (motor)
may fail to attain the anticipated speed. As this article
mainly focuses on the study of actuator faults that affect
the movement of the slider and moving platform, the
emphasis is placed solely on the relationship between the
input and output speeds of the actuator for the fault model-
ing, without considering its internal operating principles.
The expression of the actuator faults is as follows:

URðtÞ = ð1 − ρÞ · uðtÞ + f ðtÞ (1)

Where URðtÞ represents the output speed of the actua-
tor; uðtÞ is the rated input speed of the actuator; ρ represents
the coefficient of lost efficiency, within the range ½0,1�; and
f ðtÞ is the deviation value.

The expression varies based on the different types of
actuator faults, as outlined below:

URðtÞ = uðtÞ when ρ = 0 and f ðtÞ = 0. The actuator is
not faulty;

URðtÞ = ð1 − ρÞuðtÞwhen 0 < ρ < 1 and f ðtÞ = 0. The
actuator partially loses efficiency, and the fault degree
increases with the increase of ρ. A linear relationship exists
between the output speed and the input speed.

URðtÞ = uðtÞ + C when ρ = 0 and f ðtÞ = C (Cis a
constant value). The constant-deviation fault arises in the
actuator, causing a constant deviation of value C between
the output and the input speed.

URðtÞ = 0 when ρ = 1 and f ðtÞ = 0. The stuck fault
occurs in the actuator, and the output speed is 0.

Fig. 1. 3-PR(P)S parallel robot. (a) The physical platform.
(b) The structure diagram.

Fig. 2. Diagram of the electromechanical actuator.
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C. SIMULATION OF ACTUATOR FAULTS

A simulation model for the EMA (Fig. 3) is established in
Simulink, assuming that faults solely originate from the
actuator. Variations in actuator speed due to different faults
will influence the position changes of the slider. Therefore,
the stuck fault, the 20% efficiency-loss fault, the 40%
efficiency-loss fault, and the 1 mm/s constant-deviation
fault are injected into the Simulink model of the EMA
and the position change of the slider is analyzed. The input
speed is set as V = 1.5π · cosð0.5π · tÞ and converted into
the pulse signal, which is inputted into the Simulink model.
The simulation time is set to 4s. The EMA experienced the
aforementioned actuator faults at t = 3s.

From Fig. 4, it’s evident that the position curves of the
slider coincide before the actuator malfunctions. When the
actuator becomes stuck, an abrupt shift in the output speed
to 0 occurs, leading to a cessation of slider position changes.
The partial loss of efficiency in the actuator causes a
reduction in its output speed, consequently leading to a
slowed-down rate of position change compared to the
scenario without faults. The occurrence of the constant-
deviation fault prompts a sudden rise in the actuator’s
output speed by a positive constant, leading to a faster
change in position compared to the situation without faults.
It is concluded if the position deviation of the slider solely
arises from distinct single faults of the actuator, the slider’s
position change can effectively reflect different types of
actuator faults. Therefore, the actuator fault diagnosis of the
3-PR(P)S parallel robot can be regarded as the analysis of
the slider position.

III. FAULT DIAGNOSIS ALGORITHM
FOR THE ACTUATOR

A. BACK PROPAGATION NEURAL
NETWORK

It is difficult to construct an accurate model of nonlinear
systems due to the time-varying disturbances and the
complex structure of nonlinear systems. Because the
3-PR(P)S parallel robot is a nonlinear system, the model-
based fault diagnosis method is not suitable for the
3-PR(P)S parallel robot. Therefore, a model and data-
driven-based method for fault diagnosis in the actuator
of a 3-PR(P)S parallel robot is put forward in this paper.

The BP neural network is a widely used artificial neural
network model for solving classification and regression
problems [18,19]. The application of BP neural networks
proves it to be a viable approach for detecting and diagnos-
ing actuator faults. Its basic structure is shown in Fig. 5.

The BP neural network is comprised of the input layer,
the hidden layer, and the output layer. A properly function-
ing BP neural network includes two primary processes [20]:
the forward propagation of signals and the backward prop-
agation of errors. The BP neural network relies on the
gradient descent algorithm to minimize the error between
the predicted output and the actual target. This is achieved
by continuously adjusting the network parameters through-
out the training process.

But, when the BP neural network is applied to fault
diagnosis, there are some defects, which mainly include
three aspects:

(1) Uncertainty of initial weights and thresholds.

(2) It is easy to fall into local optimal values.

(3) There is no effective hidden layer node selection
method.

B. DBO (THE DUNG BEETLE ALGORITHM) -
BP MODEL

The improper setting of the initial thresholds and weights of
the BP neural network can result in the network getting
stuck in local optima, reducing the convergence speed [21].
The DBO algorithm is a biological optimization algorithm
inspired by dung beetle behavior. To enhance classification
accuracy and expedite convergence, the research is focused

Fig. 3. Fault simulation model.

Fig. 4. Position curves of the slider. Fig. 5. The basic structure of Back Propagation neural network.
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on employing the Dung Beetle algorithm [22] to optimize
the initial weights and thresholds of the BP neural network.
The specific steps are as follows:

Step 1: Initialize the BP neural network. The initial
parameters of the network are determined. In the process of
determining the hidden layer nodes, the general empirical
formula is p =

ffiffiffiffiffiffiffiffiffiffiffiffi
m + n

p
+ q. m and n represent the number

of nodes in the input and output layers, respectively,
determined by the dimensionality of the sample input,
q ∈ ½1∼10�. In numerous experiments and practical appli-
cations, it has been observed that the optimal number of
hidden layer nodes typically falls within the following
range [23]:

a =
m + n

2
≤ p ≤ ðm + nÞ + 10 = b (2)

Where a is the minimum number of the hidden layer
nodes, and b is the maximum number of the hidden
layer nodes.

Step 2:Determine the fitness function of the DBO. The
MSE (mean-square error) function is composed of
the actual output Tsim and the predicted output Tpre of
the BP neural network is used as the fitness function. The
weights and thresholds of the network serve as the inde-
pendent variables of the fitness function.

Step 3: Initialize the parameters of the dung beetle
population. Multiple populations of dung beetles are ran-
domly created and segregated into distinct groups: ball-
rolling dung beetles, son dung beetles, foraging dung
beetles, and thief dung beetles, following a ratio of
6:6:7:11, Subsequently, their fitness is calculated.

Step 4: The iterative optimization process updates the
position of the ball-rolling dung beetle according to the
following method.

No-obstacle mode:

xt+1i = xti + a · k · xt−1i + b ·
���xti − xtworst

��� (3)

Where t represents the number of iterations. k ∈
ð0,0.2Þ is a constant value that represents the deflection
coefficient. b ∈ ð0,1Þ. a is assigned either the value of 1 or
–1., 1 represents the original direction, and –1 represents
diverging from the original direction. xtworst is the global
worst position, jxti − xtworstj is utilized to simulate changes in
light intensity.

For the value of a, setting the probability value λ:

if η > λ
�
0 < η < 1

�
a = 1
else
a = 1

(4)

Obstacle mode:

xt+1i = xti + tanðθÞ ·
���xti − xt−1i

��� (5)

Step 5: During the iterative optimization process, the
update process for the birth position of the son dung beetle
is as follows.

Bt+1
i = xtgbest + b1 · ðBt

i − Lb�Þ + b2 · ðBt
i − Ub�Þ (6)

Where b1, b2 are the two different independent random
vectors with the size of 1 × D, andD is the dimension of the
optimization variables.

The son dung beetles need to obey the following
boundary rule during the process of being given birth.8<

:
Lb� = max

n
xtgbest · ð1 − RÞ, Lb

o
Ub� = min

n
xtgbest · ð1 + RÞ,Ub

o (7)

Where R = 1 − t
Tmax

, Ub and Lb are the upper and lower
bounds of the optimization problem, respectively.

Step 6: During the iterative optimization process, the
method for updating the position of the foraging dung beetle
is as follows.

xt+1i = xti + C1 · jxti − Lblj + C2 · jxti − Ublj (8)

Where C1 represents a randomly generated number
following the normal distribution. C2 is a random vector
belonging to the range of (0, 1), with the dimensions
of 1 × D.

Similarly, the foraging dung beetles also need to obey
the following boundary rule:(

Lbl = max
n
xtgbest · ð1 − RÞ,Lb

o
Ubl = min

n
xtgbest · ð1 + RÞ,Ub

o (9)

Step 7: During the iterative optimization process, the
method for updating the position of the thief dung beetle is
as follows.

xt+1i = xtlbest + S · g
����xti − xtgbest

��� + ���xti − xtlbest

���� (10)

Where S is a constant value. g is a random vector with
the dimensions of 1 × D, which obeys the normal
distribution.

Step 8: Start the iterative optimization and update the
location of dung beetles. Find the position of the dung
beetle corresponding to the optimal fitness value, which is
the optimized initial weights and the thresholds.

Step 9: Reinitialize the initial weights and thresholds
of the network.

Step 10: Train the BP neural network to obtain the
training results, and the network is tested. The overall
flowchart is shown in Fig. 6

IV. EXPERIMENTS AND
SIMULATIONS

A. DATA ACQUISITION AND FEATURE
EXTRACTION

According to the test requirements, this paper builds a
test platform for the EMA system and the specific structure
is shown in Fig. 7. The speed command V = 1.5π ·
cosð0.5π · tÞ is inputted to the EMA. The linear encoder
is employed to separately collect the position data of the
slider when the actuator is in the no-fault, the stuck fault, the
20% efficiency-loss fault, the 40% efficiency-loss fault, and
the 1 mm/s constant-deviation fault modes. The sampling
period is T = 4s and the sampling frequency is 50 HZ. The
sensor used is a DC11 linear grating ruler with a measuring
range of 150 mm, an accuracy of 1um, and a resolution of
0.1 um.

Due to the evolving feedback position data over time,
notable discrepancies exist in the position data captured at
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different points in time, so the method of short-term analy-
sis [24] is introduced. The sampling period T = 4s is
segmented into K frames with equal lengths t, each frame
contains l position data. Given the necessity for subsequent
real-time fault diagnosis experiments on the upper com-
puter, the speed of running the neural network model in
LABVIEW was assessed, yielding a minimum result of
0.06s, which means running once needs at least 0.06s, so
frame length is taken as t = 0.1s, K = 40 and l = 5. Set 40
fault time point within the 0∼4s timeframe, spaced at
intervals of 0.1s.

Firstly, gather 20 sets of slider’s position data under no-
fault mode, with each set comprising 200 data. Segment
each set of position data into 40 frames, resulting in 800
(20×40) no-fault position samples. Subsequently, gather 20
sets of position data when an actuator fault happens at a
specified fault time point, and take the position data of the
frame at that time point. Within a sampling period, com-
prising 40 fault time points, 800 (40×20) fault position

samples are acquired for a type of actuator fault. As a result
of four different actuator faults, 3200 (4×40×20) fault
position-samples were obtained. In a total, 4000 position
samples were obtained. (no fault position-samples and fault
position-samples).

The time domain features can well reflect the distribu-
tion characteristics of the position data over some time.
Consequently, the feature of each position sample is com-
prised of the Average Value, Variance, Root Mean Square,
Absolute Average, Peak-Peak of this position sample, and
the ending time tðiÞ of the frame corresponding to this
position-sample:

Ei = ½MeanðiÞ, VarðiÞ, RmsðiÞ, AvðiÞ, PkðiÞ, tðiÞ�T (11)

Where,

MeanðiÞ =
P l1

p = 1
· SðpÞ

l1
(12)

VarðiÞ = 1
l1 − 1

·
X l1

p = 1
ðSðpÞ − �SÞ2 (13)

RmsðiÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l1
·
X l1

p = 1
ðSðpÞÞ2

s
(14)

AvðiÞ = jMeanðiÞj (15)

PkðiÞ = MaxðSðpÞÞ −MinðSðpÞÞ (16)

tðiÞ = 0.1 � i (17)
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Where s represents the value of the position
data, i ∈ 1∼40.

A total of 4000 sets of feature samples were obtained.

B. SAMPLE DIVISION AND NORMALIZATION

The sample input of the BP neural network consists of 4000
sets of feature samples. The fault labels corresponding to
each type of fault are outlined in Table I, and the sample
output of the BP neural network is formed by these labels.
There are 20 samples for each type of fault at every fault
time point, which are divided into training samples and
testing samples at a ratio of 9:1. This results in a total of
3600 (18×5×40) training samples and 400 testing sam-
ples (2×5×40).

The sample input is normalized by using the Mapmin-
max function [25], and the processed sample input e is
obtained:

e =
ðemax − eminÞðE − EminÞ

Emax − Emin
+ emin (18)

where E is the sample input. Emax, Emin represent the
maximum and minimum values of E, respectively. e is
the normalized sample input. emax, emin represent the maxi-
mum and minimum values of the sample input after nor-
malization, which are 1 and –1, respectively.

The fault labels are normalized and converted into
coding format as shown in Table II.

After the training of the neural network is completed,
the output fault labels need to be anti-normalized.

C. PARAMETER SETTING OF DBO-BP

• Parameter Initialization of the DBO. The number of
beetles in the DBO is pop = 30. The number of itera-
tions is Tmax = 50. The searching range of the initial
thresholds and the weights is ½−3,3�.

• Parameter Initialization of the BP neural network. The
sample input is the 6-dimensional data and the corre-
sponding sample output is the 5-dimensional data, so
the number of the input layer nodes is m = 6, and the
number of the output layer nodes is n = 5. The learning
rate c is set at 0.01. The training accuracy is set at 10−6.

According to the formula 2, The range for the number of
hidden layer nodes is 6∼21. The BP neural network is
trained using these 16 values as the number of hidden layer
nodes. The training epoch is set at 100. Figure 8 displays the
test results. From Fig. 8, it can be seen that the training error
MSE is minimized when the number of nodes is 16, which
means the convergence effect is best. Consequently, the
number of hidden layer nodes is set to 16.

D. ALGORITHM COMPARISON AND RESULT
ANALYSIS

In this comparison experiment, MSE is taken as the loss
function, and the same samples are used to train and test the
BP, PSO-BP (the BPNeural Network Optimized by Particle
Swarm Optimization Algorithm) and DBO-BP models
separately. The training and testing results are shown in
Fig. 9 and the comparative results are depicted in Fig. 10
and Table III.

From Fig. 9(a), it’s evident that as the training pro-
gresses, the MSE of all algorithms continuously decreases
and converges. Figure 8 and Table III provide a compara-
tive analysis of the performance among the three algo-
rithms. The BP, PSO-BP, and DBO-BP have been trained
for 146 epochs, 85 epochs, and 66 epochs, respectively. The
DBO-BP has the best MSE, which means it has better
convergence and convergence rate. The corresponding
classification accuracies are 90%, 94.75%, and 97.75%,
respectively. The DBO-BP has the best-classifying quality.
Therefore, the DBO-BP model can effectively classify the
different actuator faults.

V. REAL-TIME DIAGNOSTIC TESTING
OF ACTUATOR FAULTS

A. REAL-TIME DIAGNOSTIC SYSTEM

The real-time diagnosis system is designed based on the
upper computer software LabView, which consists of the
data acquisition module and the fault diagnosis module.

Table I. The fault labels

Fault type No fault Stuck 20% efficiency-loss 40% efficiency-loss 1 mm/s constant-deviation

Label 1 2 3 4 5

Table II. The normalized fault labels

Fault type No fault Stuck 20% efficiency-loss 40% efficiency-loss 1 mm/s constant-deviation

Label [1,0,0,0,0] [0,1,0,0,0] [0,0,1,0,0] [0,0,0,1,0] [0,0,0,0,1]

Fig. 8. Training error of different hidden layer nodes.
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The data acquisition module must establish communi-
cation between STM32 and LabView. In order to reflect the
data characteristics of each time period, it is necessary to
collect enough data. Therefore, the sampling interval is
configured at 20 ms, and a sliding array is added to capture

and store the real-time position data of each frame, then the
display of real-time curve display is performed on the
collected position data.

In the fault diagnosis module, the time-domain features
of the sliding window array are calculated and the trained
DBO-BP model is integrated into the MATLAB script
function. The Boolean signal light is used to display the
fault status according to the output result of the DBO-BP
model. The diagnosis frequency is 10 Hz.

B. THE REAL-TIME FAULT DIAGNOSIS
EXPERIMENT OF ACTUATOR

The proposed scheme is applied to the 3-PR(P)S redundant
parallel manipulator (Seen in Fig. 1) to demonstrate the
effectiveness of the strategy. Before the experiment, the
LABVIEW program should be connected with the STM32
controller, and the parameters are set. The motor is
57BYG250B-8 stepper motor, the stepping Angle is
1.8°, the number of phases is 2, and the encoder resolution
is 64. The driver selected is the DM542 stepper motor
driver. The actuator fault diagnosis module of the control
system is designed to detect different actuator faults at the
time points.

The process of experiment is as follows:

Fig. 9. Training and testing results: (a) The training error of Back Propagation (BP), Particle Swarm Optimization (PSO)-BP, and Dung
Beetle Optimization-Back Propagation (DBO-BP). (b) The classification accuracy of BP (c) The classification accuracy of PSO-BP. (d)
The classification accuracy of DBO-BP.

Fig. 10. The comparison of Back Propagation (BP), Particle
SwarmOptimization (PSO)-BP, andDungBeetleOptimization-BP.
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1. Firstly, given the end trajectory, the position equation
for shaft is obtained by the inverse kinematics equation
of the actuator faults.

2. The sampling period is set to T = 4s. The selected fault
time points are randomly selected: t1 = 0.5s, t2 = 1.6s,
t3 = 2.2s and t4 = 3.6s.

3. Then, the jam fault, the 20% failure state of the
actuator, the 40% failure state of the actuator, and
1 mm/s constant deviation fault at each selected fault
time are experimented with and finished.

4. Finally, the actuators are injected with the state of
jamming, failure 20%, failure 40%, and constant devi-
ation faults of 1 mm/s at these time points to demon-
strate the effectiveness and accuracy of the fault
diagnosis system.

The test results are as follows:
From Figs. 11–14, it can be known that the new fault

diagnosis system constructed in this paper has a good
diagnosis effect on the state of stuck fault. Simultaneously,
for the diagnosis of these four fault conditions, it can be
detected 0.1s after actuator failure. From the above analysis,
it can be seen that the fault diagnosis system can achieve the
real-time diagnosis function of actuator faults, so it has a

Table III. The comparison of BP, PSO-BP, and DBO-
BP based on same samples

Diagnosis
algorithm

Iterations
(MSE)

Training
error Accuracy

BP 146 0.03161 90%

PSO-BP 85 0.02064 94.75%

DBO-BP 66 0.01397 97.75%

Fig. 11. Diagnostic result of stuck fault.

Fig. 13. Diagnostic result of 40% efficiency-loss fault.

Fig. 12. Diagnostic result of 20% efficiency-loss fault.
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certain reference significance for the subsequent diagnosis
practice.

VI. CONCLUSIONS
To achieve real-time diagnosis of actuator faults, and meet
the requirements of both eliminating the complexity of
actuator modeling and the difficulty of data collection
simultaneously, this paper proposes a model and data-
driven-based method for fault diagnosis in the actuator
of the 3-PR(P)S parallel robot. The following conclusions
were obtained through the theoretical analysis and the
experimental verification:

1) Only the input-output relationship of the actuator is
taken into account for modeling actuator faults, it
reduces the modeling complexity. The actuator faults
are considered in the Simulink model of the EMA and
analyzed, and the simulation results indicate that the
position change of the slider can reflect different types
of actuator faults.

2) Our study advances a more effective approach to fault
diagnosis for the actuator. The data of slider position
under different actuator faults are collected and the
short-term analysis method is used for feature extrac-
tion. The DBO-BP model optimized the weights and
thresholds in BP neural network. The experimental
results indicate that the DBO-BP model outperforms
BP and PSO-BP in terms of classification quality and
convergence, proving particularly effective in diag-
nosing actuator faults.

3) To detect the actuator faults in real-time, the actuator
fault diagnosis system is designed based on LabView.
Through the real-time fault diagnosis experiment of
actuator, the results are presented that the designed
system is capable of effectively and precisely detect-
ing actuator faults within 0.1 seconds. This proves
that the developed system is correct and effective. At
the same time, the system can be used in the fault
diagnosis of parallel robots with similar actuators.
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