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Abstract:Modulation of the gear mesh vibration is a major field of research for the condition monitoring of planetary gearboxes.
The modulation creates sidebands around the gearmesh frequency in the vibration spectrum, and the distribution of these
sidebands has been researched in numerous papers. All publications on the subject assume that the effect of the time varying
signal propagation delay between the main vibration source – the gear mesh point(s) – and the (usually fixed) transducer can be
neglected. This paper investigates the validity of this assumption. To do so, a planetary gearbox with a transducer mounted on the
(fixed) ring gear is studied, and the effect of the propagation delay is modelled as a phase modulation of the gear mesh vibration.
General expressions are then derived for the distribution and strength of the modulation sidebands, and these expressions are
applied to quantify the effect of the propagation delay on five industrial gearboxes. The results show that the amplitude of the
sidebands is negligible and would not interfere with condition assessment based on analysis of the modulation of the gear mesh
frequency, and thus the propagation delay can be neglected for practical purposes.
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I. INTRODUCTION
Planetary gearboxes are widely used in a number of applications,
such as wind turbine and helicopter transmissions, but their
complexity poses a challenge for the condition monitoring com-
munity. One aspect of this complexity involves the movement of all
the mesh points, which gives rise to modulation of the gear mesh
signal from the varying transmission path to the (usually fixed)
measurement point. This modulation creates sidebands around the
gearmesh frequency in the vibration spectrum, and the distribution
of these sidebands has been widely studied [1–5]. At the same time,
it is well established that non-uniform gear faults create a modula-
tion of the vibration signal around the gearmesh frequency [6,7], so
a thorough understanding of sideband distribution is very important
for gear diagnostics.

This paper investigates the effect of one source of modulation in
planetary gearboxes: the phasemodulation of the measured vibration
signal arising from the time-varying propagation delay between the
vibration source and the measurement point, assumed to be fixed on
the ring gear. Existing studies have assumed thismodulation effect to
be negligibly small, and the present paper intends to test that
hypothesis. This is done by quantifying the contribution of the
propagation delay to the sideband structure in the amplitude spec-
trum and establishing the boundary conditions under which the
contribution needs to be considered. It is hoped this will lead to an
improved understanding of forced vibrations in planetary gearboxes
and increase the confidence with which existing diagnostic

techniques can be applied. Following is a short review of papers
considered to be the most relevant to the present study.

McFadden and Smith [1] proposed a model that explained the
asymmetric sidebands around the tooth mesh frequency in epicy-
clic gears. The model assumes a fixed transducer on the ring gear
and a uniform gear mesh vibration for an observer rotating with the
planet carrier. The use of a response function between gearmesh
and transducer results in an amplitude modulation of the gearmesh
vibration measured from each planet by the fixed transducer. The
observed overall vibration is the sum of the amplitude modulated
gearmesh vibrations of each planet taking into account their
angular position and mesh phasing [8]. According to their expla-
nation, the symmetric sidebands produced by each single planet
result in asymmetric sidebands in instances where the planets have
out-of-phase meshing [3,8]. This can be understood with respect to
a stationary transducer perceiving one dominant planet gear after
another, each with a phase-offset gearmesh component relative to
the previous planet, such that the measured response includes N
distinct phase transitions of the gearmesh component each planet
carrier cycle (N= number of planets) [9]. Mesh phasing has been
exploited recently as a diagnostic tool to enable improved detection
and location of faulty planet gears [10,11].

Perhaps the most detailed study of the sidebands of planetary
gears was done by Inalpolat and Kahraman [3]. They used a model
to investigate the dependencies of frequency and amplitude of
the sidebands around the gear mesh frequency. Key parameters
such as number of planets, planet position angles, planet phasing
and number of teeth were used to categorise planetary gearboxes
into five groups, with each group representing a different sideband
structure in the amplitude spectrum. In their vibration model,
Inalpolat and Kahraman used amplitude modulation to describe
the influence on the measured vibration signal of the varying
transmission path from the planet-ring tooth mesh to the
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measurement point fixed on the ring gear. They described this
modulation using a Hanning window of length equal to the planet
pass period. Hence the modulation function of each individual
planet depends on the number of planets and actually falls to zero at
the mid-point between planets (despite this having little physical
justification, since the modulation function should be independent
of the number of planets). An experimental gear setup was used to
validate the model, and it showed that the experimental results
matched the sideband predictions of each group.

Molina Vicuña [12] contributed with analysis of vibration and
acoustic emission signals of epicyclic gears. In the vibration
analysis a model was introduced that explains the spectral structure
of vibrations generated by non-faulty planetary gearboxes, and the
focus was on the condition monitoring of the gears by assuming a
fixed accelerometer on the ring gear. As in [3], Molina Vicuña
sought to link the vibration characteristics to the gearbox parame-
ters with a focus on the amplitude modulation of the gear mesh
vibration depending on number of planets, planet positions, planet
phasing and number of teeth. Using these parameters, Molina
Vicuña divided the gearbox into four groups and argued that the
group definition of [3] can be generalised by stating “the phase
angle of the gear meshes is evenly distributed in the range [0, 2π)”.
For each group Molina Vicuña described the spectral structure and
gave examples using the mentioned gearbox parameters. It was
explained that the spectral structure is characterised by the phase
difference between the gear meshing of each planet, the amplitude
modulation due to the transmission path variation and the phase
difference of the transmission paths of each gear meshing. Molina
Vicuña also described the transmission of vibrations by four
transfer paths: two of which related to the vibration generated in
the planet-ring gear meshing: (i) through the ring gear to the
transducer (with the modulation function spanning the carrier
rotational period, a more physically justifiable proposal than the
planet pass period used in [3]), and (ii) through the sun gear and via
the sun gear shaft bearing to the transducer on the ring gear. The
latter transmission path produces another potential carrier-speed
modulation effect as the frequency response function would change
with the direction of force applied to the sun gear shaft, this being
an altogether separate phenomenon from any ring gear modulation
effect, where both direction and position of applied force change at
carrier speed. However, empirical results suggest that modulation
due to changing angle of applied force on the sun is small, and it is
usually assumed that the ring gear effect dominates the resultant
modulation pattern. Molina Vicuña [12] confirmed this by explain-
ing that only the magnitude of the gear mesh frequency and its
harmonics, but not the magnitude of the sidebands, is influenced by
the sun gear transmission path effect, and his model showed good
agreement with measurements on industrial and test bench plane-
tary gearboxes.

Liu et al. [13] used the lumped parameter model developed in
[14] to investigate planetary gearbox transmission paths. They
considered two main transfer paths: inside the gearbox and along
the casing, and found that “vibration amplitude is a function of the
relative length of the transmission path”. Further examples of
similar studies into planetary transmission path effects are given
in [15,16].

While the above-mentioned papers point out the necessity of
understanding transfer path effects on planetary gearboxes, to the
authors’ knowledge no publications have analysed or quantified the
periodic signal propagation delay of the vibration signal caused by
the time varying transmission path between vibration source and
sink. Molina Vicuña [12] pointed out that for his model the time

delays of the vibrations generated in the planet-ring gear meshes
and of the vibrations generated in the sun-planet gear meshes were
assumed negligible, but no proof was given. McFadden and Smith
[1] assumed that the time delay caused by the propagation of the
vibration around the annulus is small. Meanwhile, Inalpolat and
Kahraman stated that a more detailed investigation is needed to
model the “transfer path between a given gear mesh and the point of
measurement accurately” [3]. Liu et al. stated that “phase differ-
ences induced by the different lengths of transmission paths are not
considered because of the short length difference between trans-
mission paths and the high transmission velocity of vibration
signals” [13].

With respect to parallel gears, McFadden described in [17] that
the gearmesh vibration needs to pass through the gears, shafts,
bearings, and case before reaching the transducer, and so the mea-
sured signal will inevitably be shaped by this transfer function. The
influence of the transfer path on the vibration signal and especially
the resulting phasemodulationwas researched by Stander andHeyns
[18,19] for variable speed applications. The quantification of phase
distortion, as well as amplitude distortion, and its influence on order
tracking and subsequent analysis was pointed out by Borghesani
et al. [20]. Randall et al. used cepstral liftering to remove the
amplitude distortion from transfer function effects for gear diag-
nostics under variable speed, but the method is unable to cope with
phase changes from the transfer function [21,22].

The authors propose here that for planetary gearboxes, the
signal propagation delay can be modelled as a periodic phase
modulation of the gearmesh vibration signal. Yet this phase
modulation needs to be distinguished from the phase shift
described in [18–22], which is caused by the structural response
of the system. The phase shift under investigation is caused purely
by the signal propagation delay, and the propagation velocity is
assumed to be constant over the whole frequency range of the
signal. This paper will therefore complement the findings of
Borghesani et al. [20] by delivering further insights about the
transfer path between vibration source and sink.

In Section II, an experiment for determining the signal
propagation delay is described, and the results used in
Section III to develop a linear vibration model of the propagation
delay. The effect of the delay on the vibration analysis of
industrial gearboxes is then discussed in Section IV, and con-
clusions given in Section V.

II. MEASUREMENTS OF SIGNAL
PROPAGATION DELAY ON A RING GEAR
Signal propagation delay is described as the period of time a signal
needs to travel a defined distance. The main vibration signal source
in gearboxes is the so-called meshing (or transmission) error, which
arises from deviations from the ideal involute tooth profile [23].
These deviations have a number of potential causes, the most
pronounced of which is usually the variation in meshing stiffness
caused both by variations in the number of tooth pairs in mesh at
any given time, and by movement of the contact point along the
gear flanks. Hence, through this varying stiffness a parametric
excitation is created, introducing periodic vibration at the gearmesh
frequency.

In a planetary gearbox, gear mesh vibration is caused by the
planet-ring gear meshing and the sun-planet meshing. The vibra-
tion is then propagated through the different components of the
gearbox. The path between the source and the sink is the transfer
path. The sink is the vibration transducer and is considered here to
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be mounted on the ring gear perimeter. To allow a more straight-
forward investigation of the phase shift effect, this paper limits the
investigation to the planet-ring gear meshing and the propagation
of the signal through the ring gear to the transducer.

To estimate the delay of the vibration that propagates through
the ring gear, impact testing was conducted on a free-floating ring
gear with a diameter of approximately 2040 mm, and vibration
response signals were recorded. The test was conducted using an
impact hammer, which applied a force on the tooth at the pitch
circle and in the direction normal to the tooth surface (∼20° from
the tangential). The ring gear was set up with radially mounted
accelerometers spaced at 45° intervals around half the perimeter, as
shown in Fig. 1. Therefore, the distance along the perimeter
between the transducer at 0° and 180° was 3204 mm. All transdu-
cers were sampled at 51.2 kHz and synchronised. An impact
hammer was used to excite the ring gear tooth closest to the
transducer mounted at 0°, as shown in Fig. 1.

Figure 2 shows this phase difference in the responses from the
0°, 90° and 180° points to one excitation. The propagation delay is
measured using a threshold of 0.01 g of the absolute value of the
measured acceleration, whereupon the signal is assumed to have
reached the measurement point at the instant the threshold is
exceeded. The propagation delay for each response point is then
calculated as the difference between this instant and that determined
for the 0° position. For the example given in Fig. 2, the delays
extracted areΔT0°−90° = 0.32 ms andΔT0°−180° = 0.68 ms, and the
distances on the perimeter are l0°−90° = 1602 mm and
l0°−180° = 3204 mm. Two other sensor positions at 45° and 135°
were included and the experiment was repeated ten times.

The measurements are summarised in Fig. 3 showing the mean
delay and the standard deviation (assuming normally distributed
results) for each sensor position. Thereby the maximum propaga-
tion delay ΔTmax, defined as the time the signal needs to cover half
the perimeter, has a mean of 0.67 ms and a standard deviation of
0.02 ms. It was found that the phase difference of the vibration
signal propagating along the perimeter between each transducer

was constant, meaning a constant velocity of the signal. Thus,
using the mean value obtained for ΔTmax, the mean propagation
velocity is v = 4782 m=s. This velocity lies between that of
longitudinal (v = 5850 m=s) and shear waves (v = 3230 m=s) in
steel [24]. It can thus be assumed that the measured wave is a
mixture between these two waveforms and therefore represents a
reasonable estimate.

To estimate the exact waveform, further investigation needs to
be done, which is beyond the scope of this work. Further informa-
tion on waveforms and the dependency of the propagation on the
Lamé parameters can be found in [24,25]. It needs to be pointed out
that the propagation velocity can vary (e.g., through the above-
mentioned parameters). Once the propagation velocity v for a
particular application is known, the propagation delay ΔT can
be calculated for a given distance l by dividing l by v.

III. PHASE SHIFT MODELLING
This section provides a physical model-based approach to quantify
the influence of the signal propagation delay on the super-posi-
tioned vibration signal at the transducer on the ring gear. Only the
vibration of the ring-planet meshing and the signal propagation
through the ring gear is taken into account, since the authors are
interested in the time varying transfer path. Other modulation
effects are not considered. Note that in addition to the N ring-
planet meshes, a further N sun-planet meshes occur, and in theFig. 1. Planetary gear overview and signal propagation delay experiment.

Fig. 2. Acceleration vs time of the 0°, 90° and 180° sensor position after
excitation at 0°.

Fig. 3. Measured mean and standard deviation of the signal propagation
delay vs length of propagation (sensor position).
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general case the latter are not in phase with the former [8], although
this is often not taken into consideration. Such complexities are not
considered in the current study, and are unlikely to change the results
because, as noted by Parker and Lin [8], the relative phase between
ring-planet and sun-planet meshes is identical for all planets, regard-
less of the mesh phasing relationships between the different planets.
That is, this phenomenon does not create any additional modulation
effect. Note, too, that in the context of propagation delay, signals
generated at the sun-planet mesh point and transmitted to the
transducer through the planet and ring gears would experience
the same propagation delay as that experienced by the ring-planet
signal but with an additional DC offset corresponding to the delay
time through the planet. The effective phase modulation function of
the ring- and sun-planet meshes is therefore identical, and it is thus
reasonable to focus only on the ring-planet meshing case. Mean-
while, the alternative transmission path through the sun gear shaft
and support bearings may produce a larger propagation delay, but
one that is virtually constant, with no reason for large variations and
hence no resulting phase modulation.

The vibration system is assumed to be linear, and so the effects
of amplitude, frequency and phase modulation can be considered to
be additive. This enables the investigation of the phasemodulation as
a separate effect on the vibration signal. The gear meshing of each
planet is assumed to be in phase (although, as will be explained later,
the results are applicable to other mesh phasing arrangements) and
the planets are equally spaced around the ring gear. The notation is
adopted from [12]. The gearmesh vibration at the source, the point on
the ring gear where the meshing of planet i occurs at time t, is
formulated as a co-sinusoidal signal, shown in eq. (1).

ximðtÞ = Ai
rcosðωmtÞ (1)

The degree of phase modulation in the signal is indicated by the
modulation index β, defined as the peak phase deviation around the
unmodulated gearmesh vibration ximðtÞ of planet i. The modulation
index can be expressed in terms of the maximum propagation delay
ΔTmax relative to the time of one gearmesh period Tm, in radians:

β =
2πΔTmax

Tm
=
πrωm

v
(2)

By knowing the modulation index, the time-varying behaviour
of the gearmesh phase can be expressed as a function of ωc, the
rotational angular speed of the planet carrier, and φi, the angular
position of planet i around the ring gear, as shown in eq. (3). Since
the propagation speed is assumed constant, the propagation delay
will be at its maximum when the planet is directly opposite the
transducer and will decrease linearly with carrier rotation angle
until it reaches its minimum when the planet is directly under the
transducer. This is repeated for every revolution of the planet
carrier. For simplicity this linear increase and decrease of phase is
approximated here using a sinusoid:

ϕi
rðtÞ =

β

2
ð1 + sinðωct + φiÞÞ (3)

It should be noted that the true modulation index for the phase
modulation in this instance is β=2 , since the phase is varying by up
to β=2 around the mean phase, which itself is shifted by β=2 from
the signal generated at the gearmesh point. That is, the modulation
index is defined here as the maximum phase deviation of the
measured signal around the unmodulated but phase-shifted gear-
mesh vibration ximðt − ΔTmax

2 Þ of planet i, and is equal to β=2. The
relationship between time waveform and unwrapped phase of an
unmodulated ximðtÞ and a (sinusoidal phase modulated) signal xirðtÞ
is shown in Fig. 4.

Note that the approximation of the triangular phase modula-
tion curve with a sinusoid of the same magnitude slightly overstates
the degree of modulation, since the first Fourier series coefficient of
a triangle wave is 8=π2ð≈0.81Þ times the amplitude of the latter.
This approximation is made here because the true modulation curve
would likely be something between a triangular wave and a
sinusoid, and it is preferable to overstate an effect when testing
its negligibility.

The vibration signal xirðtÞ of planet i at the transducer on the
ring gear, including the phase modulation effect, can be described
with eq. (4).

xirðtÞ = Ai
rcos

�
ωmt −

β

2
ð1 + sinðωct + φiÞÞ

�
(4)

Summation of the phase modulated gearmesh vibration of all
planets gives the complete measured signal, as shown in eq. (5).

xrðtÞ =
XN

i=1

xirðtÞ =
XN

i=1

�
Ai
r cos

�
ωmt −

β

2
ð1 + sinðωct + φiÞÞ

��

(5)

where N is the number of planets. The vibration signal xrðtÞ can be
transformed into eq. (6) with the use of Bessel functions of the first
kind [6], denoted as J, with k being the order of sideband. It is also
assumed that the amplitude of the vibration signal of each planet i is
equal (Ar = A1

r = A2
r = : : : ) and does not change over the record

length.

xrðtÞ=NAr

�
Jð0Þ

�
β

2

�
cos

�
ωmt−

β

2

��

+NAr

"X∞

k=1

JðNkÞ

�
β

2

��
2cos

�
ωmt−

β

2

�
cosðNkωctÞ

��
(6)

To enable the analysis of the phase modulation effect in the
amplitude spectrum, eq. (6) is rewritten in the frequency domain
(only giving the positive frequency components):

Fig. 4. Schematic relationship between time waveform and unwrapped
phase of an unmodulated signal ximðtÞ and a signal xirðtÞ, subject to
sinusoidal phase modulation.
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XrðωÞ =
NAr

2

�
Jð0Þ

�
β

2

�
eiðωmt−

β
2Þ
�
+
NAr

2

"X∞
k=1

JðNkÞ

�
β

2

�

×
�
eiððωm−NkωcÞt−β

2Þ + eiððωm+NkωcÞt−β
2Þ
��

ð7Þ

Equation (7) notes that only sidebands spaced at the planet
pass frequency, or N times ωc, the rotational speed of the carrier
(and integer multiples of it), appear in the spectrum, as shown in
Fig. 5. The amplitudes of the sidebands are defined by Bessel
functions of the first kind. The order of the Bessel function is
dependent only on the number of planets N and the order of the
sideband k [26].

A central finding of this work is that for in-phase meshing,
the ratio of the amplitude of the first order sideband due to
propagation delay to the amplitude of the gearmesh component
is given by JNðβ2Þ=J0ðβ2Þ. By defining this Bessel function relation-
ship and by knowing that planetary gears are designed with N ≥ 3
planets, it follows that the amplitude of the sidebands due to
propagation delay will always be small compared with the gear-
mesh frequency component and will decrease with increasing
numbers of planets and the order of sidebands (for β

2 < 1). This
is illustrated in Fig. 6, which shows the Bessel function of the first
kind and order 0 (corresponding to the gearmesh component), and

for orders N = 3,4,5 planets (for the first order sidebands k = 1 and
for modulation index β

2 < 1). (Note that phase modulation, unlike
amplitude modulation, causes an infinite number of sidebands even
when the modulation function is a sinusoid.) While the derivation
of an equivalent ratio for the common sequential phasing arrange-
ment is not given here, it will be appreciated that the effect of
propagation delay is similarly small in such cases. Inalpolat and
Kahraman [3] show a number of in-phase and sequential meshing
cases, and they demonstrate that in the sequential case the ampli-
tude of near-gearmesh planet-pass harmonics is lower than the
gearmesh component of the in-phase case, but by no more than
2 dB in their examples (cf. Figs. 3 and 4 in [3]). The derivations
above will be applied to a number of industrial examples in the
following sections.

IV. EFFECT OF PROPAGATION DELAY ON
VIBRATION ANALYSIS

A. EFFECT ON A HELICOPTER MAIN ROTOR
TRANSMISSION

This section uses an example to analyse the effect of the phase
modulation on the evaluation of the gearbox condition based on
vibration signals. The example is a gearbox from the OH-58A
Kiowa helicopter main rotor transmission, with three planets
(N = 3), a ring gear with Zr = 99 teeth and a diameter of
d = 305 mm. Assuming a propagation velocity of v = 4782 m=s
(cf. Section II), the maximum propagation delay is given by
ΔTmax = 0.10 m=s. If the planet carrier of the gearbox is rotating
at nrated = 451 rpm, eq. (2) can be used to calculate the modula-
tion index β

2 = 0.23 for one planet-ring gearmesh vibration. The
time-varying phase of each planet can then be calculated and used
to obtain the vibration from each planet-ring gearmesh transmitted
to the transducer xir . The three planet vibration signals x1r , x2r and x3r
are then added to obtain the complete vibration signal xr, which
represents the signal measured by the transducer on the ring gear.
These signals –ϕi

r, xim, xir and xr – are shown in Fig. 7 for one carrier
revolution.

In practice, to analyse the condition of a gearbox, the vibration
signal is often transformed into the frequency domain, and the
amplitude spectrum used to assess the gearbox condition [7]. One
feature of interest in the spectrum is the presence (and distribution)
of sidebands around the gearmesh frequency, which are caused by
amplitude and/or phase modulation and can give an indication of
the condition of the gearbox. The two questions investigated here
are: (a) “with the given gearbox parameters, what are the ampli-
tudes and frequencies of the sidebands caused by phase modulation
from propagation delay?”, and (b) “can this modulation interfere
with condition assessment based on the analysis of sidebands
around the gear mesh frequency?”. To answer question (a) the
overall vibration signal (eq. (5)) is transformed into the frequency
domain (eq. (7)), and the amplitude spectrum shown in Fig. 8 is
obtained. It can be seen that the component at gear mesh frequency
ωm is clearly dominant in the spectrum. This is due to the gearbox
having the planet-ring gear meshing in phase, equally spaced
planets [1] and a sufficiently small modulation index ðβ2 < 1Þ:
As with Fig. 5, it can also be seen that sidebands at a distance
of �Nkωc (and harmonics k = 1,2,3 : : : ) around the gearmesh
frequency occur.

Utilising Carson’s bandwidth rule [27] for phase modulation,
it is clear that for practical considerations only the first order

Fig. 5. Schematic single sided amplitude spectrum of a phase modulated
vibration signal using eq. (7).

Fig. 6. Bessel function of the first kind for orders 0 and N = 3, 4 and 5
planets (indicates relative amplitude of gear mesh and first order sideband
components, respectively) for modulation index β

2.
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sidebands need to be considered to include most of the sideband
energy. Thus, to evaluate the effect of the phase modulation in the
in-phase meshing case, the ratio in dB of the amplitude of the first

order sideband to that of the gearmesh frequency is used, as
defined in eq. (8). The ratio is referred to as the spectral modula-
tion ratio.

Fig. 7. Phase modulated vibration signals of a planetary gearbox (transducer mounted at the top of the ring gear) with β
2 = 0.23, Zr = 99 and N = 3 for

one revolution of the planet carrier. The movement of planet i = 1 (black planet) is marked in the top diagram.

Fig. 8. Amplitude spectrum of phase modulated vibration signals of a planetary gearbox (transducer mounted at the top of the ring gear) with β
2 = 0.23,

Zr = 99 and N = 3.
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ratior = 20log10
jXrðωm � NωcÞj

jXrðωmÞj

= 20log10
JðNÞ

�
β
2

	
Jð0Þ

�
β
2

	 (8)

For the given example, ratior=−71 dB.
To answer question (b) on the potential impact of this effect on

condition assessment, note that the sidebands occur at multiples of
the planet pass frequency, �Nωc, around the gearmesh frequency,
and hence would coincide with other sidebands from this common
modulation frequency. McFadden and Smith [1] point out that
amplitude modulation at this frequency is to be expected regardless
of gearbox condition, but a ring gear fault would also produce
(amplitude and/or phase/frequency) modulation at this frequency.
Yet, while the modulation frequency from propagation delay
coincides with these other phenomena, the amplitude of the side-
bands is very small with ratior=−71 dB, or about the resolution
offered by a 12-bit analogue-to-digital converter and certainly
many times smaller than the sidebands expected from typical
amplitude modulation in planetary gearboxes [1,3]. It therefore
seems quite likely, based on this example, that for practical
purposes the time propagation delay can indeed be neglected.
Further examples are investigated below.

B. EFFECT ON INDUSTRIAL GEARBOXES

This section extends the previous results to a wider range of
gearboxes, to investigate whether the phase modulation effect
has a significant influence on the vibration analysis of typical
planetary gearboxes. Table I shows the parameters and analysis
results for a number of industrial gearboxes.

The top half of Table I shows the parameters of the considered
planetary gearboxes. The list includes: wind turbine gearboxes
(numbers 1 and 2); a helicopter main rotor gearbox (OH-58 A
Kiowa, no. 3); a turboprop reduction gearbox (T56/501, no. 4); and
a gearbox for general industrial applications (Vogel P04, no. 5). All
gearboxes are noted to have in-phase planet-ring gear meshing and
equally spaced planets. The gearboxes have been used in numerous
publications for vibration analysis purposes. The lower half of the
table displays the parameters of the gearboxes for estimating the

phase modulation effect, calculated using the equations from
Section III. It is assumed that Ar = 1 in all cases. It can be seen
that all researched gearboxes exhibit phase modulation that can be
considered narrowband since the modulation index is sufficiently
small, i.e., β

2 < 1.
The results of ratior (bottom row) show that there is no

significant impact of the phase modulation on the amplitude spec-
trum. All ratios are lower than −70 dB and therefore multiple times
lower than the sidebands considered in the publications of McFad-
den and Smith [1], Inalpolat and Kahraman [3], Molina Vicuña [12]
and others. While these examples all have in-phase meshing, as
noted in Section III the net effect on sequentially phased gearboxes
would be very similar – likely within 2 dB of the results presented
here due to the comparable amplitudes of the most dominant spectral
components in the in-phase and sequential meshing cases.

C. SENSITIVITY ANALYSIS

1) MODULATION INDEX. Figure 9 shows the spectral modula-
tion ratio versus modulation index for N = 3, 4 and 5 planets. It can
be seen here that even for the worst-case scenario of N = 3 and a
(very high) modulation index of β

2 = 1, the amplitude of the side-
bands is negligible, with a ratior around −30 dB.

2) ROTATIONAL ANGULAR SPEED OF THE PLANET CAR-
RIER. Figure 10 shows the effect of planet carrier speed on
ratior, and it can be seen that even when the speed of the carrier
is two times higher than the rated speed of the gearbox, the ratio
remains below −50 dB and can thus be considered negligible for
spectral analysis in practical applications.

3) SIGNAL PROPAGATION VELOCITY. As outlined in
Section III, the propagation velocity v of the vibration signal
through the tested ring gear was determined by experiment to
be v = 4782 m=s. The parameter will differ between gearbox
models since it is dependent on the variables mentioned in
Section II. Therefore, the sensitivity of ratior to the propagation
velocity is investigated in this section. Figure 10 shows ratior for
signal propagation velocities of �50% of the measured value
(�0.5v). It can be seen that even with very low propagation
velocity, the spectral modulation ratio is still not significant,
remaining below −50 dB for all gearboxes analysed. The resulting

Table I. Results on planetary gearboxes of wind turbines
(gearbox no. 1 and 2), helicopter transmission (no. 3), turboprop
reduction gearbox (no. 4) and industrial gearbox (no. 5).

Symbol Unit

Planetary gearbox model

no. 1
no. 2
[28]

no. 3
[29,30]

no. 4
[31]

no. 5
[12]

N ½−� 3 3 3 5 3

Zr ½−� 138 99 99 100 72

d ½mm� 1118 1016 305 212 105

l ½mm� 1756 1596 479 333 165

nrated ½rpm� 75 22.2 451 1021 1500

ωc ½rads � 7.85 2.32 47.2 106.9 157.1

ωm ½rads � 1084 230 4676 10,692 11,310

ΔTmax ½ms� 0.37 0.33 0.10 0.07 0.06
β
2 ½rad� 0.20 0.04 0.23 0.37 0.20

ratior ½dB� −75.6 −118.6 −71.4 −114.4 −76.2 Fig. 9. Spectral modulation ratio vs modulation index β
2 forN = 3, 4 and 5

planets.
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sidebands would thus have virtually no impact on the evaluation of
the amplitude spectrum.

4) BOUNDARYREGIONSOF CARRIER SPEED ANDRINGGEAR
SIZE FOR NEGLIGIBLE PROPAGATION DELAY. To indicate
more clearly the conditions under which the propagation delay
can be neglected, analysis was undertaken of a hypothetical gear-
box with conservative parameter settings N = 3, v = 3230 m/s
(pure shear wave velocity in steel [24]) and Zr = 150. These
parameters were chosen to represent the most problematic values
(i.e., giving the largest propagation delay effect) likely to be en-
countered. Values for ratior of −20 dB and 0 dB were selected to
represent conditions for which the delay phenomenon might and
very likely would affect the diagnostic analysis, respectively. The
combinations of carrier speed and ring gear diameter giving these
ratior values were then calculated, with the results plotted in
Fig. 12. For context, also plotted in Fig. 12 are the carrier speed

and ring diameter values corresponding to the gearboxes in Table I,
but note that the other parameters are in general different to those
gearboxes, the aim being to produce results on the more conserva-
tive side. For cases that fall below the dashed line, the propagation
delay can be confidently neglected, so for example a gearbox with
three planets and a 1-metre diameter ring would have to operate
with a carrier speed greater than 40 rad/s before the delay might
affect the analysis, and at 60 rad/s before the delay is very likely to
affect the analysis (within the limitations of the chosen parameter
values).

It can be seen that the delay is clearly negligible for all the
examples from Table I, supporting the analysis of earlier sections.

V. CONCLUSION
This paper sought to investigate the common assumption that the
signal propagation delay can be neglected when analysing vibra-
tion signals from planetary gearboxes. A model of the gearmesh
vibration was constructed to illustrate the effect of the propagation
delay, and an experimentally obtained value of the speed of
propagation through the ring gear was used to quantify the effect
for a number of commercial gearboxes. It was shown that the delay
causes a periodic phase modulation of the gearmesh signal as
measured by a sensor fixed on the ring gear, and that the resulting
sidebands around the gearmesh frequency in the amplitude spec-
trum occur at multiples of the planet pass frequency. This corre-
sponds to one of the main amplitude modulation frequencies in
planetary gearboxes, regardless of condition, but also to the
frequency of modulation arising from a fault on the ring gear, and
so could conceivably interfere with diagnostic analysis.

To quantify the effect of the delay, the resulting sideband
structure was analysed, and a spectral modulation ratio was defined
for in-phase meshing gearboxes as the ratio of the amplitude of one
of the first-order sidebands to that of the gearmesh component.
By making several conservative assumptions, it was shown that the
ratio can be simplified to a ratio of Bessel functions of the first kind,

Fig. 10. Spectral modulation ratio for planet carrier speeds up to two
times the rated value for the gearboxes in Table I. The markers show the
rated speed of that specific gearbox.

Fig. 11. Spectral modulation ratio for different propagation velocities for
the gearboxes in Table I. The markers show the measured propagation
velocity from Section II.

Fig. 12. Boundary regions for carrier speed and ring gear size: lines
indicate boundary above which diagnostic analysis might (ratior = −20
dB) and very likely would (ratior = 0 dB)) be affected. Parameters used:
N = 3, v = 3230 m/s and Zr = 150. Industrial examples represent rated
carrier speed and ring gear size from Table I, but other parameter settings
(N, v and Zr) do not in general correspond to those examples.
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with the order determined by the number of planets. The ratio is
thus entirely defined by the number of planets and the modulation
index, the latter of which is proportional to the gearmesh frequency
and diameter of the ring gear, and inversely proportional to the
propagation velocity. By knowing that planetary gearboxes are
designed withN ≥ 3 planets, it was shown that for realistic gearbox
parameters the amplitude of the sidebands due to propagation delay
will always be small compared with the gearmesh frequency
component and will decrease with increasing numbers of planets
and the order of sidebands (for modulation index β

2 < 1). While not
investigated explicitly in this paper, it was explained that very
similar results would be obtained for the common sequential
meshing case, but with respect to the strongest planet-pass har-
monic rather than gearmesh component, and so the conclusions
also apply to such gearboxes.

For all five commercial gearboxes studied, the ratio was found
to be below−70 dB, and it was shown that it will remain below−30
dB as long as the modulation index is less than 1, which would
seem the case in virtually all applications. It is thus concluded that
for practical purposes the common assumption is correct, and the
signal propagation delay can indeed be neglected.
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