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Difficulty in extracting nonlinear sparse impulse features due to variable speed
conditions and redundant noise interference leads to challenges in diagnosing variable
speed faults. Therefore, an improved spectral amplitude modulation based on sparse
feature adaptive convolution (ISAM-SFAC) is proposed to enhance the fault features
under variable speed condition. First, an optimal bi-damped wavelet construction
method is proposed to learn signal impulse features, which selects the optimal bi-
damped wavelet parameters with correlation criterion and particle swarm
optimization (PSO). Second, a convolutional basis pursuit denoising model based on
optimal bi-damped wavelet is proposed for resolving sparse impulses. A model
regularization parameter selection method based on weighted fault characteristic
amplitude ratio (WFCAR) assistance is proposed. Then, an improved spectral
amplitude modulation method based on kurtosis threshold is proposed to further
enhance the fault information of sparse signal. Finally, the type of variable speed
faults is determined by order spectrum analysis. Various experimental results, such as
spectral amplitude modulation and Morlet wavelet matching, verify the effectiveness
and advantages of the ISAM-SFAC method.
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1 Introduction
Rolling bearing is the crucial component

to support the rotating machinery, which is
essential for the reliable operation and
efficient working of the equipment [1],[2].
Equipment is usually operated under harsh
and complex working conditions in
industrial scenarios [3]. Time domain fault
information is difficult to recognize due to
the interference of background noise
components, which brings major challenges
to equipment condition monitoring and fault
diagnosis [4]. Therefore, it is crucial for
equipment fault diagnosis to mine fault
information from complex variable speed
signals [5],[6].

Scholars have proposed many signal
processing methods to analyze the fault
information of variable speed signals. Zhao
et al [7] used generalized modulation to
extract particular harmonics of the bearing
rotational frequency and achieved order
tracking without tachometer information.
Wang et al [8] combined the principles of
generalized demodulation and resonant
demodulation to solve the problem of
transient component extraction under
variable speed conditions. Moshrefzadeh et
al [9] proposed the spectral amplitude
modulation (SAM) method for adaptive
filtering to separate the fault features of
bearing variable speed signals. Zhang et al
[10] and Wu et al [11] combined the
improved symplectic geometry mode
decomposition method and nonlinear chirp
modal decomposition method with order
analysis to extract the fault features of
variable speed signals, respectively.
However, the above methods rely on prior
knowledge for parameter settings or are less
robust when interfered with by strong
background noise to perform optimally.

The robust signal feature mining
capability of sparse representation has led to
a wide application in fault diagnosis
[12],[13]. Qiu et al [14] sparse optimized
singular value vectors of noise time-
frequency maps to efficiently extract fault
features. Cao et al [15] improved the
categorical probabilistic model and sparse
Bayesian learning framework to extract
sparse impulse signals with high accuracy
and robustness. Liu et al [16] integrated a
strengthen-operate-subtract boosting
strategy and dictionary learning into a
multiscale transform to adaptively and
efficiently extract fault impulses. Ma et al
[17] developed a physically-inspired sparse
model combined with a generalized sparse
cyclic spectrum to sense compound faults in
ultra-low-speed operating turbines
efficiently. Li et al [18] proposed the period-
assisted correlation kurtosis of the envelope
spectrum as a wavelet sparse weighting
strategy, which enhances the capture of
information on bearing fault features. Yao et
al [19] proposed a multiband weighted
generalized minimax-concave induced
sparse representation to diagnose the initial
faults of bearings effectively.

However, the above methods are
primarily applied in stationary fault
diagnosis. Under variable speed conditions,
the fault information modes within the
collected signals are mixed, and the periodic
transient pulse forms are more complex
[20],[21]. Some scholars have attempted to
use sparse representation methods for
variable speed fault diagnosis. Shi et al [22]
constructed a Laplace wavelet complete
dictionary and reconstructed the variable
speed signal using stage-wise orthogonal
matching pursuit. Hou et al [23] used sparse
time-frequency representations to reveal
potential fault feature frequencies and
effectively improved the signal time-
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frequency resolution. All these methods
have achieved some effect. However, there
are limitations in matching fault pulses using
mathematical models with single-sided
attenuation or bilateral symmetric
attenuation wavelets [24],[25]. The
parameters of the sparse coding often need
to be selected using posterior knowledge.
All these issues create additional difficulties
when applying sparse representation to
variable speed fault diagnosis.

Fig. 1. Schematic diagram of ISAM-SFAC.

Therefore, an improved spectral
amplitude modulation (ISAM) based on
sparse feature adaptive convolution (SFAC)
is proposed for fault diagnosis of bearings
with variable speed. First, an adaptive bi-
damped wavelet matching algorithm is
proposed. The particle swarm optimization
(PSO) algorithm and correlation analysis are
combined to adaptively select the optimal
bi-damped wavelet in the parameter space.

Second, a convolutional sparse coding
model based on optimal bi-damped wavelet
is used to reconstruct sparse impulse
information in the time domain. The
regularization parameter of the model is
adaptively chosen by the weighted fault
characteristic amplitude ratio (WFCAR)
index. Finally, an improved SAM based on
kurtosis thresholding is used to analyze the
sparse reconstructed signal in terms of fault
order. The main fault information in the
signal is identified. The schematic diagram
of the method is shown in Fig. 1. The main
contributions are as follows:

1) An efficient convolutional sparse model
is proposed. A signal-matched optimal bi-
damped wavelet is used for convolutional
basis pursuit denoising to extract fault
impulse features.

2) A parameter selection method for SFAC
is proposed. PSO constructs the optimal
bi-damped wavelet, and the WFCAR
index is constructed to select the
regularization parameter adaptively.

3) An improved method for SAM is
proposed. The kurtosis threshold
adaptively preserves the magnitude order
of SAM to construct an order envelope
spectrum with fault impulse features.

The remaining chapters of this paper are
arranged as follows. Section 2 introduces the
theories of sparse representation and SAM.
Section 3 introduces the steps for
implementing the proposed method in this
paper. Section 4 and Section 5 demonstrate
the effectiveness of the proposed method on
the variable speed simulation signal, inner
race, and outer race experimental signals,
respectively, and verify the robustness and
applicability of the method through several
comparison tests. The study is summarized
in Section 6.
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2 Basic theory

2.1 Sparse representation
Signal sparse representation is a linear

combination of as few atoms as possible in
the constructed dictionary. This method can
reduce the redundant noise component
interference and obtain the main features to
approximate the original signal. The
constrained problem of signal sparse
reconstruction is transformed into an
unconstrained optimization problem as in
Equation (1) based on the Lagrange
multiplier method.

2

2
arg min ( )x D R


      (1)

where x denotes the original signal, D
denotes the dictionary matrix, α denotes the
sparse coefficients, λ denotes the
regularization parameter and R(·) denotes
the sparsity-inducing function, e.g., L0 norm
or L1 norm. The efficiency of sparsity is
usually expressed in terms of the sparsity of
the coefficients α.

The sparse representation model
described above yields sparse results for the
primary components of the signal by
employing a sparse dictionary. The
constraint of convolutional sparse coding is
like those of the L1 sparse model, which
represents the signal as a set of
convolutional sparse mappings to extract the
principal features within the signal and
suppress noise components. How to design a
set of efficient dictionary filters is the key to
improve the performance of the
convolutional sparse coding algorithm.

2.2 Spectral amplitude modulation
Filtering can increase the signal to noise

ratio of the signal. The complex cepstrum
can assist the filtering to process the signal

and its mathematical model is shown in
Equation (2).

( ) { (log ( )) ( )}cx n IFT A f j f  (2)

where IFT {·} denotes a Fourier inverse
transform, A(f) denotes the signal amplitude,
Փ(f) denotes the signal phase. Its phase can
completely or partially reconstruct a signal
to preserve important features [26]. The
cepstrum pre-whitening method zeroes out
the real cepstrum of the signal. The phase
information of the original signal with fault-
related features is preserved in the pure
phase reconstruction shown in Equation (3)
[27].

0 ( )( ) { ( ) }j f
cpwx n IFT A f e  (3)

However, when the real part of the
complex inverted spectrum is completely
preserved or eliminated, it is difficult to
represent the complete characterization of
the signal in the frequency domain. Thus,
the spectral amplitude modulation (SAM)
method shown in Equation (4) results from a
further refinement of the cepstrum pre-
whitening, where MO denotes the magnitude
orders of the modified components. SAM
constructs multiple signal components to
represent the spectrum's overall behavior.
The fault features of the signal can be
identified by observing the maximum square
envelope spectrum.

( )( , ) { ( ) }MO j f
SAMx n MO IFT A f e  (4)

As a nonlinear filtering method, SAM
enables simple, fast, and adaptive extraction
of fault features without priori knowledge of
the signal.
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3 Improved spectral amplitude
modulation with convolutional
sparsity

A variable speed fault diagnosis method is
proposed. This method can extract variable
speed fault features by sparse feature
adaptive convolution (SFAC) and improved
spectral amplitude modulation (ISAM).
SFAC effectively enhances the signal's time
domain fault impulse and reduces the noise
component's interference, and ISAM further
separates the fault features.

3.1 Sparse feature adaptive
convolution

The shift-invariant convolutional basis
pursuit denoising is chosen as the model for
sparse coding. As shown in Equation (5), the
model replaces the multiplication operation
of the dictionary and sparse coefficients in
the sparse representation model with
convolution operation. The impulse filter
convolves the signal to extract the fault
features [28],[29]. The bi-damped wavelet
constructed as a convolutional filter
dictionary reduces the computational effort
of the solution and effectively captures the
global faulty pulse features of the signal.

2

1
2

1arg min *
2

. . 0
m m
D x y

s t y


  



  

 

  (5)

where D denotes the dictionary, α denotes
the sparse coefficients, x denotes the original
signal, * denotes the convolution operation,
and y is the introduced auxiliary variable
Equation. The model often uses the
alternating direction multiplier method
(ADMM) as in Equation (6), Equation (7),
and Equation (8) to iteratively solve the
operator efficiently and obtain the sparse
signal containing the fault features.

22( 1) ( ) ( )
2 2

1arg min *
2 2

j j jD x y u


       

(6)

2( 1) ( 1) ( )
1 2

arg min
2

j j j

y
y y y u      (7)

( 1) ( ) ( 1) ( 1)j j j ju u y     (8)

The solution of subproblem Equation (6)
requires the introduction of the auxiliary
variable ( ) ( )j jz y u  and the conversion of
the optimization problem from the time
domain to the frequency domain,
transforming the convolution problem to a
multiplication problem, and solving the
resulting linear system Equation (9). D, α, x,
and z in the Fourier transform domain are
denoted as D

 , ̂ , x̂, and z .

    ( )
H H

D D I D x z      (9)

The subproblem Equation (7) is solved
using the soft thresholding method denoted
as

( 1) ( 1) ( )
/Soft ( )j j jy u  

   (10)

where Soft(·) is the soft threshold function,
expressed as Equation (11), Sgn (·) denotes
the sign function, ⊙ denotes element-wise
multiplication.

Soft ( ) ( ) max(0, )a Sgn a a   (11)

The model converges by setting an
iterative error threshold. The convolution
coefficients obtained from the final solution
are sparse, and the reconstructed signal has
more obvious impulse features than the
original signal.
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The setting of the regularization
parameter λ in the convolutional sparse
coding model affects the sparsity of the
processed signal in the time domain, and the
effect of fault features representation in the
order domain. Therefore, this paper proposes
a maximized weighted fault characteristic
amplitude ratio (WFCAR) index, which
combines the golden ratio trichotomy to
efficiently search for the optimal
regularization parameter to improve the
identifiability of the fault order of the
processed signal.

( )

1

1

s

c

c

OH floor
O

i i Oi
n

jj

A
WFCAR

A












(12)

where Os denotes the identifiable order
within the order spectrum, Oc denotes the
fault order, floor (·) denotes rounding down,
Ai×Oc denotes the amplitude of the i th-fold
fault order harmonic, Aj denotes the
amplitude of the j th data point, and H
denotes the largest identifiable order. The
weighting coefficients ωi shown in Equation
(13) are added to the indices for different
multiples of harmonics, respectively.

1
( 1) / 2i
H i

H H
  



(13)

The algorithm is considered to have
converged and regularization parameters
adaptively selected when the index
stabilized during iteration, i.e., when the
index error is less than 0.01 in two iterations.

The commonly used overcomplete
dictionaries have significant complexity in
solving coefficients due to their large
dimensions. Therefore, signal analysis
computational efficiency can be improved
by using convolutional sparse coding of the

reduced dimensional dictionary. The bi-
damped wavelet can tune its bilaterally
attenuated waveform. This property enables
the construction of rich wavelet set
structures, making them more adaptable and
capable of representing different types of
fault impulse signals. An adaptive bi-
damped wavelet parameters optimization
method is proposed to construct an efficient
dictionary with a strong correlation with
variable speed fault information. An optimal
bi-damped wavelet with the fault impulse
feature is constructed by optimally matching
the signal correlation.

The mathematical model of the bi-damped
wavelet is shown in Equation (14), where
ω=2πf and τ denote the angular frequency
and time shift, respectively, the two
damping ratios ζ1 and ζ2 adjust the
attenuation of the oscillations on the left and
the right side of the wavelet, respectively. Its
asymmetric bilateral exponential attenuation
waveform can better match the implied fault
impulse response inside the signal. The two
attenuation damping ratios and the natural
frequency in the parameters are crucial
parameters affecting the constructed wavelet
morphology.

2

2

( )
1 1

1
2( )

1 2
2

2 1

1

( ,0) cos( ( ))

( ,0) cos( ( ))

t

t

g Sgn t e t

g Sgn t e t
g g g

 


 


  

  











    

    
 

(14)

Unlike wavelet transform methods that
use fixed wavelet base, SFAC constructs
optimal wavelet base adapted to the features
of signal fault impulses through correlation
analysis. The method dynamically and
adaptively optimizes the time and frequency
domain features of the wavelet for different
signal types by introducing two independent



8

damping factors and intrinsic frequencies,
making it more flexible and efficient. A
parameter space containing two attenuation
damping ratios and the natural frequency is
constructed, in which different combinations
of parameters can be selected to construct
bi-damped wavelets with different
morphologies. The degree of similarity
between wavelet and signal internal
impulses can be evaluated quantitatively
using the correlation coefficients shown in
Equation (15), where w denotes the wavelet
vector, x denotes the one-dimensional signal
vector, and <·> denotes the inner product of
the vectors, ||·||2 denotes the L2 norm of the
vector.

2 2

( ), ( )
( ) ( )
w t x t

C
w t x t

 (15)

The schematic diagram of using
correlation analysis to assist the particle
swarm algorithm in selecting wavelet
parameters is shown in Fig. 2. The wavelet
parameter intervals are taken as follows: the
natural frequency fd is taken as [500:3000],
the attenuation damping coefficient ζ1 and
enhance damping coefficient ζ2 are taken as
[0:1]. The correlation coefficient, as the
fitness for PSO iterations, will converge
after the iterations to obtain the optimal
wavelet parameters. The optimal parameters
are used to construct a bi-damped wavelet,
which is used as a convolutional filter
dictionary to sparsely code the original
signal to enhance fault features.

Fig. 2. Schematic of particle swarm
construction of optimal bi-damped wavelet.

3.2 Improved spectral amplitude
modulation

The range of custom amplitude magnitude
order (MO) selection in spectral amplitude
modulation (SAM) significantly impulses
identifying the final maximum squared
envelope spectrum obtained. When MO > 1,
the effect of frequency components with
larger amplitude within the signal is
amplified, and the low-energy components
are hidden by the high-energy components,
which can distinguish the impulse resonance
frequency from the noise-related frequency.
When 0 ≤ MO ≤ 1, high-energy and low-
energy components are preserved, essential
in detecting defective signals when fault
components are hidden in the noise
background. When MO <0, the primary
frequency amplitude is filtered out, and
information related to the low-energy
defects hidden by the high energy of the
other defect components is extracted. The
MO selection range is usually set from -0.5
to 1.5 to make the processing as general as
possible.

A reasonable magnitude order interval
ensures that the subsequent plotting of the
maximum squared envelope spectrum
retains complete signal information.
However, the modified component
constructed in the low energy level interval
may contain many interfering noises and
abnormal amplitudes generated by
uncorrelated components. Fault components
in the high energy interval cannot be
effectively extracted when drowned by
strong noise. Therefore, there is an urgent
need for an adaptive magnitude order
selection approach to screen the magnitude
order of SAM further to enhance the fault
features of the signal.

Kurtosis is a statistic that describes the
sharpness of the distribution pattern of
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signal data and reflects the impulse features
of the signal [30],[31]. Therefore, the
kurtosis coefficient was chosen as a
reference indicator that the signal contains
impulse components.

A kurtosis-based magnitude order
selection method is proposed to make
modified components constructed from
selected magnitude orders have stronger
fault impulse features. The magnitude orders
of the enhanced impulse features are further
filtered by calculating the kurtosis
coefficients of all modified components in
the interval. The impulse-enhanced
magnitude order (IEMO) components with
higher kurtosis coefficients than the mean of
all kurtosis coefficients will be kept. The
other magnitude order components will be
removed. The magnitude order is chosen as
shown in Equation (16), in which μk denotes
the mean value of kurtosis, k denotes the
kurtosis coefficient.

1

{ |   ( ) }

( )

i i i k

num

k i
i

IEMO MO MO MO and k x

k x






  


(16)

The modified components of Equation (17)
are constructed separately for each selected
IEMO, and the analytic signal ( A ) of the
enhancement component, as shown in
Equation (18), is calculated using the Hilbert
transform. The squared envelope spectrums
of the enhancement component in Equation
(19) can be superimposed to obtain the
maximum squared envelope spectrum to get
the fault information.

( )( , ) ( ( ) )IEMO j f
ISAMx n IEMO IFT f e  A (17)

{ ( , )}
( , ) { ( , )}

ISAM

ISAM ISAM

x n IEMO
x n IEMO jH x n IEMO 

A
(18)

2

{ ( , )}

{ { ( , )} }
ISAM

ISAM

SES x n IEMO

FT x n IEMO A
(19)

The component selection and the
construction of the maximum order envelope
spectrum of ISAM are shown in Fig. 3.

Fig. 3. Schematic of components selection
and maximum order envelope spectrum for
ISAM.

The lower orders of the order envelope
spectrum and their corresponding
amplitudes are removed to minimize the
effect of the direct current component of the
signal on the order spectrum. The
appearance of abnormally large values of the
maximum square envelope spectrum at low
orders can be avoided.

4 Simulation verification

4.1 Simulation signal modeling
To verify the effectiveness of the ISAM-

SFAC method in diagnosing the variable
speed signal, a rolling bearing fault
simulation signal under variable speed is
constructed [32],[33]. The simulated signal
contains the angular domain periodic
impulse and noise components. The
mathematical expression is shown in
Equation (20).
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( )

0 0
1 1

( ) cos(2 ( )) ( )

i

j
j

d t TK i

i j
i j

x t Ae f t T n t

 

 


   

(20)

In this Equation, K denotes the number of
fault impulses, Ai denotes the impulse
amplitude, d denotes the attenuation
coefficient, Tj denotes the time interval
between the occurrence of the j th fault
impulse and the j-1 th fault impulse, f0
denotes the resonance frequency, n0 is the
noise component. The signal crucial
parameters are set as shown in Table II.

TABLE II. Simulation signal parameters

Parameters Numerical value
Attenuation coefficient d 500
Resonance frequency f0 2000

Amplitude Ai -0.005t+0.4
Sampling frequency fs 10000

Sampling points N 200000

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 4. Simulation signal. (a) Time domain
waveform; (b) Frequency spectrum; (c)
Speed curve; (d) Order envelope spectrum;
(e) Time domain waveform with noise; (f)
Order envelope spectrum with noise.

The type of fault in the variable speed
signal can be recognized by observing the
order spectrum. In this simulated signal, the
fault order of the signal is 4. The rotational
speed of the simulated reference axis is set
to ω(t)=12t+60, and the rotational speed
curve is shown in Fig. 4(c).

Fig. 4(a) plots the time domain impulse
components in the fault simulation signal for
variable speed. The signal amplitude
exhibits an increasing trend with increasing
speed. As shown in Fig. 4(b), a trend of
energy concentration can be observed in the
frequency spectrum of the impulse signal.
The angle domain of the simulated impulse
signal is resampled, and its order envelope
spectrum, shown in Fig. 4(d), is plotted. The
fault order 4 can be identified from the order
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envelope spectrum. Gaussian white noise
with a signal to noise ratio (SNR) of 5 dB is
added to the signal. Fig. 4(e) shows that the
strong noise drowns the time domain fault
impulses, the time domain noise amplitude
is about 3-4 times the amplitude of the fault
impulse. The fault order is unrecognizable
within the order envelope spectrum of Fig.
4(f).

4.2 Simulation signal analysis
The simulated signal is analyzed using the

ISAM-SFAC method. In Fig. 5(a), the
optimal bi-damped wavelet is obtained using
the adaptive bi-damped wavelet matching
algorithm, similar to the impulse pattern
constructed by the simulation. The optimal
regularization parameter is iteratively
derived based on the weighted fault
characteristic amplitude ratio (WFCAR)
index, with its trend shown in Fig. 5(b).
After 12 rounds of iterations, the difference
in the WFCAR index between two iterations
is less than the set threshold of 0.01,
indicating that the corresponding
regularization parameter λ converges to an
optimal value of 0.14. The sparse processed
time-domain signal in Fig. 5(c) shows
effectively weakened noise components. In
Fig. 5(d), the preset fault order 4 and its
harmonics are identifiable, verifying the
ISAM-SFAC method’s feature enhancement
and noise suppression capabilities.

(a)

(b)

(c)

(
d)

Fig. 5. Simulation signal after ISAM-SFAC.
(a) Optimal bi-damped wavelet waveform;
(b) Iterative trend of the regularization
parameter; (c) Time domain waveform; (d)
Order envelope spectrum.

TABLE III. Comparison methods

Serial
number Methods Type of

methods

(1) SAM Nonlinear
filtering

(2)
Morlet

Wavelet
Matching

Another
wavelet atom

(3) GME-TV
Sparse
assisted
filtering
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4.3 Comparison methods analysis
The comparison methods shown in Table

III process the simulation signal separately
to validate the advantages of the proposed
ISAM-SFAC method in feature
enhancement and robustness under
comparable conditions.

Part of the proposed method is the
improvement of Method (1). Spectral
amplitude modulation (SAM) is simple to
implement and effectively separates fault
components. The constructed noise-added
simulated signal is analyzed by SAM. Fig.
6(a) contains a large amount of redundant
noise components that have not been
effectively suppressed, significantly
affecting the analysis results. As shown in
Fig. 6(b), the maximum order envelope
spectrum after SAM processing cannot
recognize the fault order, indicating that
SAM has limited ability to resist noise
interference and is not effective under harsh
conditions.

In Method (2), the bi-damped wavelet
used in the proposed method is replaced
with the Morlet wavelet to validate further
the effect of the wavelet base mathematical
model choice on the experimental results.
The Morlet waveform obtained by matching
the simulated signal is shown in Fig. 7(a).
The optimal regularization parameter λ=0.77
is obtained after 12 iterations, as in Fig. 7(b).
The time domain and order envelope
spectrum of the signal processed using
Method (2) are shown in Figs. 7(c) and (d),
respectively, where the time domain noise
component is suppressed in Fig. 7(c), and
the fault order and harmonics can be
recognized in the order envelope spectrum
in Fig. 7(d). However, the recognition effect
is not as good as the ISAM-SFAC method.

Table IV shows the weighted fault
characteristic amplitude ratio indices
calculated for the proposed method and two
comparison methods. The ISAM-SFAC
method has the highest value of the index,
which proves that the ISAM-SFAC method
has a prominent feature extraction advantage.

(a)

(b)
Fig. 6. Simulation signal after SAM. (a) 3D
plot; (b) Order envelope spectrum.

TABLE IV. WFCAR values for different
methods processing simulation signal

Methods WFCAR
Original signal 1.13

Method (1) 1.52
Method (2) 4.11
ISAM-SFAC 6.58

(a)
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(b)

(c)

(d)
Fig. 7. Simulation signal with noise after
Morlet wavelet matching. (a) Optimal
Morlet wavelet waveform; (b) Iterative trend
of the regularization parameter; (c) Time
domain waveform; (d) Order envelope
spectrum.

4.4 Anti-noise analysis
To verify the anti-noise performance of

the ISAM-SFAC method, the simulated
signals under different noise levels are
processed with SAM and the ISAM-SFAC
method, respectively. Gaussian white noises
with SNRs of 10dB, 5dB, and 2dB are set to
join the simulated fault impulses, and three
sets of comparison experiments are carried
out, respectively.

The results of processing the signal with a
10 dB SNR using the two methods are
shown in Figs. 8(a). The fault orders and
harmonics in the order envelope spectrum of
the SAM are interfered with by much noise,

whereas the results of processing using the
ISAM-SFAC method still clearly identify all
the fault harmonics in the order interval. The
advantages of the ISAM-SFAC method can
be observed from the comparison of the
indices in Table V.

The signal with a SNR of 5 dB is
unrecognizable from the fault order after
processing with SAM. In contrast, the fault
order and harmonics remain stable and high
in amplitude in the experimental result of the
ISAM-SFAC method, as in Fig. 8(b).

The processing results at a SNR of 2 dB
are shown in Fig. 8(c). No fault-related
information can be observed in the order
envelope spectrum obtained by processing
the signal using SAM. However, the fault
order and its harmonic become recognizable
in the order spectrum after processing by the
ISAM-SFAC method.

The results of the three experiments
illustrate that the ISAM-SFAC method
always ensures better noise suppression and
fault feature enhancement with strong
robustness in the case of gradual noise
enhancement.

TABLE V. WFCAR values for different
noise levels

Methods 10dB 5dB 2dB
SAM 2.04 1.52

ISAM-SFAC 20.85 6.25

(a)
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(b)

(c)
Fig. 8. Simulation signals with different
SNR after SAM and ISAM-SFAC. (a)
SNR=10dB; (b) SNR=5dB; (c) SNR=2dB.

4.5 Regularization parameter
analysis

A weighted fault characteristic amplitude
ratio (WFCAR) index is used in
convolutional sparse coding to select the
best regularization parameter. Therefore,
regularization parameter experiments are
conducted to verify the validity of the
selected parameter index.

Fig. 9(a) shows the iterative graph of the
index obtained. It can be observed that the
index is taken to the lowest point at the 2nd
iteration, which corresponds to the
regularization parameter λ=0.62. At the 5th
iteration, the index value is taken to the mid-
point, corresponding to the regularization
parameter λ=0.09. The index converged at
λ=0.14 after the 12th iteration.

The result of using the lowest point of
WFCAR corresponding to λ=0.62 is shown
in Fig. 9(b). The redundant components
interfere with the order envelope spectrum,
which makes it impossible to recognize the
fault order and harmonics. In Fig. 9(c) of the
experimental results for the WFCAR
midpoint corresponding to λ=0.0902, the
feature fault order and harmonics can be
observed but are contaminated by many

noise components. The fault order and its
harmonics can be identified in the
experimental results corresponding to
selecting the optimal parameter λ=0.14 in
Fig. 9(d).

(a)

(b)

(c)

(d)
Fig. 9. Simulation signal after ISAM-SFAC
with different regularization parameters. (a)
Iterative trend of the regularization
parameter; (b) λ=0.62; (c) λ=0.09; (d) λ=0.14.
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4.6 Efficiency analysis

The ISAM-SFAC method consists of
three main time-consuming phases, and the
running efficiency of the method is mainly
affected by the signal length. Five
experiments were conducted to record the
average running time of the proposed
method as shown in Table VI.

All simulations and experiments were
conducted on Windows 10 22H2 and
MATLAB R2023b, using a personal
computer with an Intel Core i7 6-CPU (2.20
GHz) and 8 GB RAM.

In addition to evaluating the efficiency of
the proposed method, the PSO algorithm is
compared with the grid search method for
optimal wavelet parameters selection. Both
methods varied the attenuation damping
coefficient ζ1 and enhancement damping
coefficient ζ2 within the range [0:1]. For the
grid search method, the intrinsic frequency fd
is fixed at 1500 Hz to simplify the
optimization process.

Table VI. WFCAR values for different
methods processing inner race signal

Step
number Steps

Time
consumption

(s)

1
PSO adaptive

matching of the
optimal wavelet

125.35

2
The WFCAR

index selects the
optimal λ

30.26

3
ISAM based on
sparse feature
convolution

2.19

Total time consumption 157.80

Under the above conditions, the grid
search method takes 223.57 s to select the
optimal wavelet parameters for the
simulation signal. The PSO algorithm
exhibited higher efficiency compared to the
grid search method, while also optimizing
more parameters. Therefore, the PSO
algorithm is considered more suitable for the
optimization of bi-damped wavelet
parameters in this study.

5 Mechanical fault verification

5.1 Test bench introduction

The validation dataset for the model in
this paper is publicly available data on
bearing vibration under variable operating
conditions from the University of Ottawa,
Canada [34]. This dataset was collected
from the SpectraQuest Mechanical Failure
Simulation test bench shown in Fig. 10. This
bearing signal is sampled at fs=200000Hz
with a sampling time of 10 seconds. The
bearing fault can be judged by identifying
the fault order, which is defined by the
structural parameters of the bearing. The
theoretical fault order of the inner race is
5.43, and the theoretical fault order of the
outer race is 3.57.

Fig. 10. Fault test bench of rolling bearing.

5.2 Inner race signal experiment

The time-domain waveform of the inner
race increasing-speed signal collected by the
test bench is shown in Fig. 11(a), exhibiting
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noticeable impulse features characteristic of
a fault. Significant fault orders and their
harmonics are clearly identifiable in the
envelope order spectrum presented in Fig.
11(b). To evaluate the feature enhancement
capability of the model in the presence of
noise, Gaussian white noise with an 8 dB
SNR is added to this experimental signal.
After adding the noise, the signal’s fault
impulse components become unrecognizable,
as shown in Fig. 11(c), while the fault order
information in the order spectrum of Fig.
11(d) is overwhelmed by the noise and
cannot be discerned.

(a)

(
b)

(c
)

(d
)

Fig. 11. Measured signal of inner race
contains fault under variable speed. (a) Time
domain waveform; (b) Order envelope

spectrum; (e) Time domain waveform with
noise; (f) Order envelope spectrum with
noise.

(a)

(b)

(c)

(d)

Fig. 12. Inner race signal after ISAM-SFAC.
(a) Optimal bi-damped wavelet waveform;
(b) Iterative trend of the regularization
parameter; (c) Time domain waveform; (d)
Order envelope spectrum.

Table VII. WFCAR values for different
methods processing inner race signal

Methods WFCAR
Original signal 1.22
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Method (1) 1.61
Method (2) 1.34
ISAM-SFAC 3.30

The noise-added signal is then processed
using the ISAM-SFAC method. The wavelet
waveform obtained through correlation
matching is depicted in Fig. 12(a), where the
bilaterally attenuated asymmetrical
waveform demonstrates its ability to
effectively match the fault-induced pulses of
the signal. The regularization parameter is
optimized to λ = 0.56, as shown in Fig. 12(b),
resulting in a noticeable reduction of noise
components in the time-domain waveform,
as seen in Fig. 12(c). Furthermore, the
envelope order spectrum in Fig. 12(d)
successfully reveals the fault order and its
harmonics, confirming the model’s
robustness and effectiveness in extracting
fault features from noisy environments.

Fig. 13(a) and (b) show the order
envelope spectrum obtained by processing
using the comparison methods (1) and (2),
respectively. Both spectra are difficult to
recognize the fault order. According to
Table VII, both comparison methods are
lower than the ISAM-SFAC method in
terms of the weighted fault characteristic
amplitude ratio (WFCAR) index, which
verifies the advantages of the ISAM-SFAC
method.

(a)

(b)
Fig. 13. Inner race signal after comparison
methods. (a) Method (1) order envelope
spectrum; (b) Method (2) order envelope
spectrum.

(a)

(b)

(c)

(d)

Fig. 14. Measured signal of outer race
contains fault under variable speed. (a) Time
domain waveform; (b) Order envelope
spectrum; (c) Time domain waveform with
noise; (d) Order envelope spectrum with
noise.

5.3 Outer race signal experiment

The outer race signal with a trend of
increasing then decreasing speed is
processed using the ISAM-SFAC method.
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As shown in Fig. 14(a), pulse features and
the amplitude trend are evident in the time
domain of the original signal. The fault
order is identifiable in the order envelope
spectrum in Fig. 14(b). A 30 dB SNR noise
is added to simulate ambient contamination
of the signal. In Fig. 14(c), the pulse is
swamped, making fault impulses and
amplitude trends difficult to observe. The
fault order in the envelope spectrum of Fig.
14(d) cannot be recognized.

The ISAM-SFAC method processes the
noise-added signal, and the noise component
that drowns the signal impulse in the time
domain signal of Fig. 15(a) is effectively
weakened. The fault order and its harmonics
can be identified by observing the order
envelope spectrum of Fig. 15(b).

The results of the comparison Methods (1)
and (2) are shown in Figs. 16(a) and (b).
Method (1) recognizes only double
harmonics of the fault order, while Method
(2) can only recognize fault order and not
the harmonics. Table VIII shows that both
comparison methods are less effective than
the ISAM-SFAC fault feature enhancement
method. Fig. 17 demonstrates the WFCAR
index values obtained by processing
different signals using comparison methods.
It can be observed that ISAM-SFAC has a
significant advantage over other methods for
different signal types.

(a)

(b)
Fig. 15. Outer race signal after ISAM-SFAC.
(a) Time domain waveform; (b) Order
envelope spectrum.

(a)

(
b)

Fig. 16. Outer race signal after comparison
methods. (a) Method (1); (b) Method (2).

TABLE VIII. WFCAR values for different
methods processing outer race signal

Methods WFCAR
Original signal 1.20

Method (1) 1.35
Method (2) 2.12
ISAM-SFAC 3.04
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Fig. 17. WFCAR indices processed by
different signal comparison methods.

6 Conclusion
In this paper, an improved spectral

amplitude modulation based on sparse
feature adaptive convolution (ISAM-SFAC)
is proposed for variable speed fault
diagnosis of bearing. The main conclusions
are as follows:

(1) An optimal bi-damped wavelet
construction method based on correlation
criterion and particle swarm optimization
(PSO) is proposed, which is used to
analyze the signal impulse information
and sparsely learn the fault features.

(2) A convolutional basis pursuit denoising
model based on optimal bi-damped
wavelet is proposed for sparse
reconstruction of signal impulse
information. Meanwhile, the model
parameter is adaptively selected based on
the weighted fault characteristic
amplitude ratio (WFCAR).

(3) An improved spectral amplitude
modulation method based on kurtosis
threshold is proposed to further enhance
the fault sparse information. The
advantages of the algorithm are verified
by simulation signal, fault signal
experimental results and comparative
analysis.

(4) Research on fault diagnosis for unknown
working conditions and full life cycle of
speed will be carried out, and the
efficiency of fault feature extraction will
be further improved in future work.
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