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Abstract:Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant
noise interference leads to challenges in diagnosing variable speed faults. Therefore, an improved spectral
amplitude modulation (ISAM) based on sparse feature adaptive convolution (SFAC) is proposed to enhance the
fault features under variable speed conditions. First, an optimal bi-damped wavelet construction method is
proposed to learn signal impulse features, which selects the optimal bi-damped wavelet parameters with
correlation criterion and particle swarm optimization. Second, a convolutional basis pursuit denoising model
based on an optimal bi-damped wavelet is proposed for resolving sparse impulses. A model regularization
parameter selection method based on weighted fault characteristic amplitude ratio assistance is proposed. Then, an
ISAM method based on kurtosis threshold is proposed to further enhance the fault information of sparse signal.
Finally, the type of variable speed faults is determined by order spectrum analysis. Various experimental results,
such as spectral amplitude modulation and Morlet wavelet matching, verify the effectiveness and advantages of
the ISAM-SFAC method.

Keywords: bearing fault diagnosis; feature enhancement; sparse representation; spectral amplitude modulation;
variable speed

I. INTRODUCTION
The rolling bearing is the crucial component to support the
rotating machinery, which is essential for the reliable
operation and efficient working of the equipment [1,2].
Equipment is usually operated under harsh and complex
working conditions in industrial scenarios [3]. Time domain
fault information is difficult to recognize due to the inter-
ference of background noise components, which brings
major challenges to equipment condition monitoring and
fault diagnosis [4]. Therefore, it is crucial for equipment
fault diagnosis to extract fault information from complex
variable speed signals [5,6].

Scholars have proposed many signal processing meth-
ods to analyze the fault information of variable speed
signals. Zhao et al. [7] used generalized modulation to
extract particular harmonics of the bearing rotational fre-
quency and achieved order tracking without tachometer
information. Wang et al. [8] combined the principles of
generalized demodulation and resonant demodulation to
solve the problem of transient component extraction under
variable speed conditions. Moshrefzadeh et al. [9] proposed
the spectral amplitude modulation (SAM) method for adap-
tive filtering to separate the fault features of bearing variable
speed signals. Zhang et al. [10] andWu et al. [11] combined

the improved symplectic geometry mode decomposition
method and nonlinear chirp modal decomposition method
with order analysis to extract the fault features of variable
speed signals, respectively. However, the above methods
rely on prior knowledge for parameter settings or are less
robust when interfered with by strong background noise to
perform optimally.

The robust signal feature mining capability of sparse
representation has led to a wide application in fault diag-
nosis [12,13]. Qiu et al. [14] sparse optimized singular
value vectors of noise time-frequency maps to efficiently
extract fault features. Cao et al. [15] improved the categori-
cal probabilistic model and sparse Bayesian learning frame-
work to extract sparse impulse signals with high accuracy
and robustness. Liu et al. [16] integrated a strengthen-
operate-subtract boosting strategy and dictionary learning
into a multiscale transform to adaptively and efficiently
extract fault impulses. Ma et al. [17] developed a physically
inspired sparse model combined with a generalized sparse
cyclic spectrum to sense compound faults in ultra-low-
speed operating turbines efficiently. Li et al. [18] proposed
the period-assisted correlation kurtosis of the envelope
spectrum as a wavelet sparse weighting strategy, which
enhances the capture of information on bearing fault fea-
tures. Yao et al. [19] proposed a multiband weighted
generalized minimax-concave induced sparse representa-
tion to diagnose the initial faults of bearings effectively.

However, the above methods are primarily applied in
stationary fault diagnosis. Under variable speed conditions,
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the fault information modes within the collected signals are
mixed, and the periodic transient pulse forms are more
complex [20,21]. Some scholars have attempted to use
sparse representation methods for variable speed fault
diagnosis. Shi et al. [22] constructed a Laplace wavelet
complete dictionary and reconstructed the variable speed
signal using stage-wise orthogonal matching pursuit. Hou
et al. [23] used sparse time-frequency representations to
reveal potential fault feature frequencies and effectively
improved the signal time-frequency resolution. All these
methods have achieved some effect. However, there are
limitations in matching fault pulses using mathematical
models with single-sided attenuation or bilateral symmetric
attenuation wavelets [24,25]. The parameters of the sparse
coding often need to be selected using posterior knowledge.
All these issues create additional difficulties when applying
sparse representation to variable speed fault diagnosis.

Therefore, an improved spectral amplitude modulation
(ISAM) based on sparse feature adaptive convolution
(SFAC) is proposed for fault diagnosis of bearings with
variable speed. First, an adaptive bi-damped wavelet match-
ing algorithm is proposed. The particle swarm optimization
(PSO) algorithm and correlation analysis are combined to
adaptively select the optimal bi-damped wavelet in the
parameter space. Second, a convolutional sparse coding
model based on an optimal bi-damped wavelet is used to

reconstruct sparse impulse information in the time domain.
The regularization parameter of the model is adaptively
chosen by the weighted fault characteristic amplitude ratio
(WFCAR) index. Finally, an improved SAM based on
kurtosis thresholding is used to analyze the sparse recon-
structed signal in terms of fault order. The main fault
information in the signal is identified. The schematic dia-
gram of the method is shown in Fig. 1. The main contribu-
tions are as follows:

1) An efficient convolutional sparse model is proposed.
A signal-matched optimal bi-damped wavelet is used
for convolutional basis pursuit denoising to extract
fault impulse features.

2) A parameter selection method for SFAC is proposed.
PSO constructs the optimal bi-damped wavelet, and
the WFCAR index is constructed to select the regu-
larization parameter adaptively.

3) An improved method for SAM is proposed. The
kurtosis threshold adaptively preserves the magnitude
order of SAM to construct an order envelope spec-
trum with fault impulse features.

The remaining chapters of this paper are arranged as
follows. Section II introduces the theories of sparse repre-
sentation and SAM. Section III introduces the steps for
implementing the proposed method in this paper.

Fig. 1. Schematic diagram of ISAM-SFAC.
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Section IV and Section V demonstrate the effectiveness of
the proposed method on the variable speed simulation
signal, inner race, and outer race experimental signals,
respectively, and verify the robustness and applicability
of the method through several comparison tests. The study
is summarized in Section VI.

II. BASIC THEORY
A. SPARSE REPRESENTATION

Signal sparse representation is a linear combination of as
few atoms as possible in the constructed dictionary. This
method can reduce the redundant noise component inter-
ference and obtain the main features to approximate the
original signal. The constrained problem of signal sparse
reconstruction is transformed into an unconstrained opti-
mization problem as in (1) based on the Lagrange multiplier
method:

α = arg min
α
kx − Dαk22 + λRðαÞ (1)

where x denotes the original signal,D denotes the dictionary
matrix, α denotes the sparse coefficients, λ denotes the
regularization parameter, and R(·) denotes the sparsity-
inducing function, for example, L0 norm or L1 norm.
The efficiency of sparsity is usually expressed in terms
of the sparsity of the coefficients α.

The sparse representation model described above
yields sparse results for the primary components of the
signal by employing a sparse dictionary. The constraint of
convolutional sparse coding is like those of the L1 sparse
model, which represents the signal as a set of convolutional
sparse mappings to extract the principal features within the
signal and suppress noise components. How to design a set
of efficient dictionary filters is the key to improve the
performance of the convolutional sparse coding algorithm.

B. SPECTRAL AMPLITUDE MODULATION

Filtering can increase the signal-to-noise ratio (SNR) of the
signal. The complex cepstrum can assist thefiltering to process
the signal, and its mathematical model is shown in (2):

xcðnÞ = IFTfðlogAðf ÞÞ + jϕðf Þg (2)

where IFT {·} denotes a Fourier inverse transform, A(f)
denotes the signal amplitude, and Φ(f) denotes the signal
phase. Its phase can completely or partially reconstruct a signal
to preserve important features [26]. The cepstrum pre-whiten-
ing method zeroes out the real cepstrum of the signal. The
phase information of the original signal with fault-related
features is preserved in the pure phase reconstruction shown
in (3) [27].

xcpwðnÞ = IFTfAðf Þ0ejϕðf Þg (3)

However, when the real part of the complex inverted
spectrum is completely preserved or eliminated, it is diffi-
cult to represent the complete characterization of the signal
in the frequency domain. Thus, the SAM method shown in
(4) results from a further refinement of the cepstrum pre-
whitening, where MO denotes the magnitude orders of the
modified components. SAM constructs multiple signal
components to represent the spectrum’s overall behavior.
The fault features of the signal can be identified by observ-
ing the maximum square envelope spectrum.

xSAMðn,MOÞ = IFTfAðf ÞMOejϕðf Þg (4)

As a nonlinear filtering method, SAM enables simple,
fast, and adaptive extraction of fault features without prior
knowledge of the signal.

III. IMPROVED SPECTRAL
AMPLITUDE MODULATION WITH
CONVOLUTIONAL SPARSITY

A variable speed fault diagnosis method is proposed. This
method can extract variable speed fault features by SFAC
and ISAM. SFAC effectively enhances the signal’s time
domain fault impulse and reduces the noise component’s
interference, and ISAM further separates the fault features.

A. SPARSE FEATURE ADAPTIVE
CONVOLUTION

The shift-invariant convolutional basis pursuit denoising is
chosen as the model for sparse coding. As shown in (5), the
model replaces the multiplication operation of the dictio-
nary and sparse coefficients in the sparse representation
model with convolution operation. The impulse filter con-
volves the signal to extract the fault features [28,29]. The
bi-damped wavelet constructed as a convolutional filter
dictionary reduces the computational effort of the solution
and effectively captures the global faulty pulse features of
the signal.

α = arg min
α

1
2

����X
m

D � α − x

����2
2

+ λ
X
m

kyk1
s:t: α − y = 0

(5)

where D denotes the dictionary, α denotes the sparse
coefficients, x denotes the original signal, * denotes the
convolution operation, and y is the introduced auxiliary
variable equation. The model often uses the alternating
direction multiplier method as in (6)–(8) to iteratively solve
the operator efficiently and obtain the sparse signal contain-
ing the fault features.

αðj+1Þ = argmin
α

1
2
kD � α − xk22

+
ρ

2

���α − yðjÞ + uðjÞ
���2
2

(6)

yðj+1Þ = argmin
y
λkyk1 +

ρ

2

���αðj+1Þ − y + uðjÞ
���2
2

(7)

uðj+1Þ = uðjÞ + αðj+1Þ − yðj+1Þ (8)

The solution of subproblem (6) requires the introduc-
tion of the auxiliary variable z = yðjÞ − uðjÞ and the conver-
sion of the optimization problem from the time domain to
the frequency domain, transforming the convolution prob-
lem to a multiplication problem and solving the resulting
linear system (9). D, α, x, and z in the Fourier transform
domain are denoted as bD, bα, bx, and bz.

ðbDH bD + ρIÞbα = bDHbx + ρbz (9)

The subproblem (7) is solved using the soft threshold-
ing method denoted as

Sparse Feature Adaptive Convolution for Bearing Fault Diagnosis 33

JDMD Vol. 4, No. 1, 2025



yðj+1Þ = Softλ=ρðαðj+1Þ + uðjÞÞ (10)

where Soft(·) is the soft threshold function, expressed as
(11), Sgn (·) denotes the sign function, and ⊙ denotes
element-wise multiplication.

SoftγðaÞ = SgnðaÞ⊙maxð0,jaj − γÞ (11)

The model converges by setting an iterative error
threshold. The convolution coefficients obtained from the
final solution are sparse, and the reconstructed signal has
more obvious impulse features than the original signal.

The setting of the regularization parameter λ in the
convolutional sparse coding model affects the sparsity of
the processed time domain signal, and the effect of the order
domain fault features representation. Therefore, this paper
proposes a maximizedWFCAR index as shown in Eq. (12),
which combines the golden ratio trichotomy to efficiently
search for the optimal regularization parameter to improve
the identifiability of the fault order of the processed signal.

WFCAR =

XH=f loorðOsOcÞ

i=1

ωi × Ai×OcXn
j=1

Aj

(12)

where Os denotes the identifiable order within the order
spectrum, Oc denotes the fault order, floor (·) denotes
rounding down, Ai×Oc denotes the amplitude of the i th-
fold fault order harmonic, Aj denotes the amplitude of the
j th data point, and H denotes the largest identifiable order.
The weighting coefficientsωi shown in (13) are added to the
indices for different multiples of harmonics, respectively.

ωi =
H − i + 1

HðH + 1Þ=2 (13)

The algorithm is considered to have converged, and
regularization parameters are adaptively selected when the
index stabilized during iteration, that is, when the index
error is less than 0.01 in two iterations.

The commonly used overcomplete dictionaries have
significant complexity in solving coefficients due to their
large dimensions. Therefore, signal analysis computational
efficiency can be improved by using convolutional sparse
coding of the reduced dimensional dictionary. The bi-
damped wavelet can tune its bilaterally attenuated wave-
form. This property enables the construction of rich wavelet
set structures, making them more adaptable and capable of
representing different types of fault impulse signals. An
adaptive bi-damped wavelet parameters optimization
method is proposed to construct an efficient dictionary
with a strong correlation with variable speed fault informa-
tion. An optimal bi-damped wavelet with the fault impulse
feature is constructed by optimally matching the signal
correlation.

The mathematical model of the bi-damped wavelet is
shown in (14), where ω = 2πf and τ denote the angular
frequency and time shift, respectively, and the two damping
ratios ζ1 and ζ2 adjust the attenuation of the oscillations on
the left and the right side of the wavelet, respectively. Its
asymmetric bilateral exponential attenuation waveform can
better match the implied fault impulse response inside the
signal. The two attenuation damping ratios and the natural
frequency in the parameters are crucial parameters affecting
the constructed wavelet morphology.

g1 = Sgnðt − τ,0Þ × e
ωðt−τÞ −ζ1ffiffiffiffiffiffiffi

1−ξ12
p

× cosðωðt − τÞÞ
g2 = Sgnðτ − t,0Þ × e

ωðτ−tÞ −ζ2ffiffiffiffiffiffiffi
1−ζ22

p
× cosðωðt − τÞÞ

g = g2 − g1

(14)

Unlike wavelet transform methods that use fixed wave-
let base, SFAC constructs an optimal wavelet base adapted
to the features of signal fault impulses through correlation
analysis. The method dynamically and adaptively optimizes
the time and frequency domain features of the wavelet for
different signal types by introducing two independent
damping factors and intrinsic frequencies, making it
more flexible and efficient. A parameter space containing
two attenuation damping ratios and the natural frequency is
constructed, in which different combinations of parameters
can be selected to construct bi-damped wavelets with
different morphologies. The degree of similarity between
wavelet and signal internal impulses can be evaluated
quantitatively using the correlation coefficients shown in
(15), wherew denotes the wavelet vector, x denotes the one-
dimensional signal vector, <·> denotes the inner product of
the vectors, and ‖·‖2 denotes the L2 norm of the vector.

C =
jhwðtÞ,xðtÞij

kwðtÞk2kxðtÞk2
(15)

The schematic diagram of using correlation analysis to
assist the particle swarm algorithm in selecting wavelet
parameters is shown in Fig. 2. The wavelet parameter
intervals are taken as follows: the natural frequency fd is
taken as [500:3000], the attenuation damping coefficient ζ1
and enhance damping coefficient ζ2 are taken as [0:1]. The
correlation coefficient, as the fitness for PSO iterations, will
converge after the iterations to obtain the optimal wavelet
parameters. The optimal parameters are used to construct a
bi-damped wavelet, which is used as a convolutional filter
dictionary to sparsely code the original signal to enhance
fault features.

B. IMPROVED SPECTRAL AMPLITUDE
MODULATION

The range of custom amplitude magnitude order (MO)
selection in SAM significantly impulses identifying the final
maximum squared envelope spectrum obtained. When
MO> 1, the effect of frequency components with larger
amplitude within the signal is amplified, and the low-energy
components are hidden by the high-energy components,
which can distinguish the impulse resonance frequency
from the noise-related frequency. When 0≤MO≤ 1, high-
energy and low-energy components are preserved, essential
in detecting defective signals when fault components are

Fig. 2. Schematic of particle swarm construction of optimal bi-
damped wavelet.

34 Jiawei Lin et al.

JDMD Vol. 4, No. 1, 2025



hidden in the noise background. WhenMO< 0, the primary
frequency amplitude isfiltered out, and information related to
the low-energy defects hidden by the high energy of the other
defect components is extracted. The MO selection range is
usually set from –0.5 to 1.5 tomake the processing as general
as possible.

A reasonable magnitude order interval ensures that the
subsequent plotting of the maximum squared envelope
spectrum retains complete signal information. However,
the modified component constructed in the low-energy
level interval may contain many interfering noises and
abnormal amplitudes generated by uncorrelated compo-
nents. Fault components in the high-energy interval cannot
be effectively extracted when drowned by strong noise.
Therefore, there is an urgent need for an adaptive magnitude
order selection approach to screen the magnitude order of
SAM further to enhance the fault features of the signal.

Kurtosis is a statistic that describes the sharpness of the
distribution pattern of signal data and reflects the impulse
features of the signal [30,31]. Therefore, the kurtosis coef-
ficient was chosen as a reference indicator that the signal
contains impulse components.

A kurtosis-based magnitude order selection method is
proposed to make modified components constructed from
selected magnitude orders have stronger fault impulse
features. The magnitude orders of the enhanced impulse
features are further filtered by calculating the kurtosis
coefficients of all modified components in the interval.
The impulse-enhanced magnitude order components with
higher kurtosis coefficients than the mean of all kurtosis
coefficients will be kept. The other magnitude order com-
ponents will be removed. The magnitude order is chosen as
shown in (16), in which μk denotes the mean value of
kurtosis and k denotes the kurtosis coefficient.

IEMO = fMOijMOi ∈ MOand kðxiÞ > μkg
μk =

Xnum
i=1

kðxiÞ (16)

The modified components of (17) are constructed
separately for each selected IEMO, and the analytic signal
(A) of the enhancement component, as shown in (18), is
calculated using the Hilbert transform. The squared enve-
lope spectrums of the enhancement component in (19) can
be superimposed to obtain the maximum squared envelope
spectrum to get the fault information.

xISAMðn,IEMOÞ = IFTðAðf ÞIEMOejϕðf ÞÞ (17)

A
n
xISAMðn,IEMOÞ

o
= xISAMðn,IEMOÞ + jH

n
xISAMðn,IEMOÞ

o (18)

SES
n
xISAMðn,IEMOÞ

o
=
���FTn���AnxISAMðn,IEMOÞ

o���2o��� (19)

The component selection and the construction of the
maximum order envelope spectrum of ISAM are shown
in Fig. 3.

The lower orders of the order envelope spectrum and
their corresponding amplitudes are removed to minimize
the effect of the direct current component of the signal on
the order spectrum. The appearance of abnormally large

values of the maximum square envelope spectrum at low
orders can be avoided.

IV. SIMULATION VERIFICATION
A. SIMULATION SIGNAL MODELING

To verify the effectiveness of the ISAM-SFAC method in
diagnosing the variable speed signal, a rolling bearing fault
simulation signal under variable speed is constructed
[32,33]. The simulated signal contains the angular domain
periodic impulse and noise components. The mathematical
expression is shown in (20).

xðtÞ =
XK
i=1

Aie

−d

 
t−
Xi
j=1

Tj

!
cos

 
2πf 0

 
t −
Xi
j=1

Tj

!!
+ n0ðtÞ (20)

In this equation, K denotes the number of fault im-
pulses, Ai denotes the impulse amplitude, d denotes the
attenuation coefficient, Tj denotes the time interval between
the occurrence of the j th fault impulse and the j–1 th fault
impulse, f0 denotes the resonance frequency, and n0 is the
noise component. The signal’s crucial parameters are set as
shown in Table I.

The type of fault in the variable speed signal can be
recognized by observing the order spectrum. In this simu-
lated signal, the fault order of the signal is 4. The rotational
speed of the simulated reference axis is set to ω(t)= 12t +
60, and the rotational speed curve is shown in
Fig. 4(c).

Figure 4(a) plots the time domain impulse components
in the fault simulation signal for variable speed. The signal
amplitude exhibits an increasing trend with increasing
speed. As shown in Fig. 4(b), a trend of energy concentra-
tion can be observed in the frequency spectrum of the
impulse signal. The angle domain of the simulated impulse
signal is resampled, and its order envelope spectrum, shown

Fig. 3. Schematic of components selection and maximum order
envelope spectrum for ISAM.

Table I. Simulation signal parameters

Parameters Numerical value

Attenuation coefficient d 500

Resonance frequency f0 2000

Amplitude Ai –0.005t+0.4
Sampling frequency fs 10000

Sampling points N 200000
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in Fig. 4(d), is plotted. The fault order 4 can be identified
from the order envelope spectrum. Gaussian white noise
with an SNR of 5 dB is added to the signal. Figure 4(e)
shows that the strong noise drowns the time domain fault
impulses, with the time domain noise amplitude being
about 3–4 times the amplitude of the fault impulse. The
fault order is unrecognizable within the order envelope
spectrum of Fig. 4(f).

B. SIMULATION SIGNAL ANALYSIS

The simulated signal is analyzed using the ISAM-SFAC
method. In Fig. 5(a), the optimal bi-damped wavelet is
obtained using the adaptive bi-damped wavelet matching
algorithm, similar to the impulse pattern constructed by the
simulation. The optimal regularization parameter is itera-
tively derived based on the WFCAR index, with its trend
shown in Fig. 5(b). After 12 rounds of iterations, the
difference in the WFCAR index between two iterations
is less than the set threshold of 0.01, indicating that the
corresponding regularization parameter λ converges to an
optimal value of 0.14. The sparse processed time domain
signal in Fig. 5(c) shows effectively weakened noise com-
ponents. In Fig. 5(d), the preset fault order 4 and its
harmonics are identifiable, verifying the ISAM-SFAC
method’s feature enhancement and noise suppression
capabilities.

Fig. 4. Simulation signal. (a) Time domain waveform;
(b) frequency spectrum; (c) speed curve; (d) order envelope
spectrum; (e) time domain waveform with noise; (f) order
envelope spectrum with noise.

Fig. 5. Simulation signal after ISAM-SFAC. (a) Optimal bi-
damped wavelet waveform; (b) iterative trend of the
regularization parameter; (c) time domain waveform; (d) order
envelope spectrum.
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C. COMPARISON METHODS ANALYSIS

The comparison methods shown in Table II process the
simulation signal separately to validate the advantages of
the proposed ISAM-SFAC method in feature enhancement
and robustness under comparable conditions.

Part of the proposed method is the improvement of
Method (1). Spectral amplitude modulation (SAM) is sim-
ple to implement and effectively separates fault compo-
nents. The constructed noise-added simulated signal is
analyzed by SAM. Figure 6(a) contains a large number
of redundant noise components that have not been effec-
tively suppressed, significantly affecting the analysis re-
sults. As shown in Fig. 6(b), the maximum order envelope
spectrum after SAM processing cannot recognize the fault
order, indicating that SAM has limited ability to resist noise
interference and is not effective under harsh conditions.

In Method (2), the bi-damped wavelet used in the
proposed method is replaced with the Morlet wavelet to
validate further the effect of the wavelet base mathematical
model choice on the experimental results. The Morlet
waveform obtained by matching the simulated signal is
shown in Fig. 7(a). The optimal regularization parameter
λ= 0.77 is obtained after 12 iterations, as in Fig. 7(b). The
time domain and order envelope spectrum of the signal
processed using Method (2) are shown in Fig. 7(c) and (d),
respectively, where the time domain noise component is
suppressed in Fig. 7(c), and the fault order and harmonics
can be recognized in the order envelope spectrum in
Fig. 7(d). However, the recognition effect is not as good
as the ISAM-SFAC method.

Table III shows the WFCAR indices calculated for the
proposed method and two comparison methods. The

ISAM-SFAC method has the highest value of the index,
which proves that the ISAM-SFACmethod has a prominent
feature extraction advantage.

D. ANTI-NOISE ANALYSIS

To verify the anti-noise performance of the ISAM-SFAC
method, the simulated signals under different noise levels
are processed with SAM and the ISAM-SFAC method,
respectively. Gaussian white noises with SNRs of 10dB,

Table II. Comparison methods

Serial
number Methods Type of methods

(1) SAM Nonlinear filtering

(2) Morlet wavelet matching Another wavelet atom

(3) GME-TV Sparse assisted
filtering

Fig. 6. Simulation signal after SAM. (a) 3D plot; (b) order
envelope spectrum.

Fig. 7. Simulation signal with noise after Morlet wavelet
matching. (a) Optimal Morlet wavelet waveform; (b) iterative
trend of the regularization parameter; (c) time domain waveform;
(d) order envelope spectrum.

Table III. WFCAR values for different methods pro-
cessing simulation signal

Methods WFCAR

Original signal 1.13

Method (1) 1.52

Method (2) 4.11

ISAM-SFAC 6.58
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5dB, and 2dB are set to join the simulated fault impulses,
and three sets of comparison experiments are carried out,
respectively.

The results of processing the signal with a 10 dB SNR
using the two methods are shown in Fig. 8(a). The fault
orders and harmonics in the order envelope spectrum of
the SAM are interfered with by much noise, whereas
the results of processing using the ISAM-SFAC method
still clearly identify all the fault harmonics in the order
interval. The advantages of the ISAM-SFAC method can
be observed from the comparison of the indices in
Table IV.

The signal with an SNR of 5 dB is unrecognizable from
the fault order after processing with SAM. In contrast, the
fault order and harmonics remain stable and high in ampli-
tude in the experimental result of the ISAM-SFAC method,
as in Fig. 8(b).

The processing results at an SNR of 2 dB are shown in
Fig. 8(c). No fault-related information can be observed in
the order envelope spectrum obtained by processing the
signal using SAM. However, the fault order and its har-
monic become recognizable in the order spectrum after
processing by the ISAM-SFAC method.

The results of the three experiments illustrate that the
ISAM-SFAC method always ensures better noise suppres-
sion and fault feature enhancement with strong robustness
in the case of gradual noise enhancement.

E. REGULARIZATION PARAMETER
ANALYSIS

A WFCAR index is used in convolutional sparse coding to
select the best regularization parameter. Therefore,

regularization parameter experiments are conducted to
verify the validity of the selected parameter index.

Figure 9(a) shows the iterative graph of the index
obtained. It can be observed that the index is taken to
the lowest point at the 2nd iteration, which corresponds
to the regularization parameter λ= 0.62. At the 5th iteration,
the index value is taken to the midpoint, corresponding to
the regularization parameter λ= 0.09. The index converged
at λ= 0.14 after the 12th iteration.

The result of using the lowest point of WFCAR
corresponding to λ= 0.62 is shown in Fig. 9(b). The
redundant components interfere with the order envelope
spectrum, which makes it impossible to recognize the fault
order and harmonics. In Fig. 9(c) of the experimental results
for the WFCAR midpoint corresponding to λ= 0.0902, the
feature fault order and harmonics can be observed but are
contaminated by many noise components. The fault order
and its harmonics can be identified in the experimental
results corresponding to selecting the optimal parameter
λ= 0.14 in Fig. 9(d).

Fig. 8. Simulation signals with different SNR after SAM and
ISAM-SFAC. (a) SNR=10dB; (b) SNR= 5dB; (c) SNR= 2dB.

Table IV. WFCAR values for different noise levels

Methods 10dB 5dB 2dB

SAM 2.04 1.52

ISAM-SFAC 20.85 6.25

Fig. 9. Simulation signal after ISAM-SFAC with different
regularization parameters. (a) Iterative trend of the
regularization parameter; (b) λ= 0.62; (c) λ= 0.09; (d) λ= 0.14.
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F. EFFICIENCY ANALYSIS

The ISAM-SFAC method consists of three main time-
consuming phases, and the running efficiency of the method
is mainly affected by the signal length. Five experiments
were conducted to record the average running time of the
proposed method, as shown in Table V.

All simulations and experiments were conducted on
Windows 10 22H2 and MATLAB R2023b, using a per-
sonal computer with an Intel Core i7 6-CPU (2.20 GHz) and
8 GB RAM.

In addition to evaluating the efficiency of the proposed
method, the PSO algorithm is compared with the grid search
method for optimal wavelet parameter selection. Both
methods varied the attenuation damping coefficient ζ1
and enhancement damping coefficient ζ2 within the range
[0:1]. For the grid search method, the intrinsic frequency fd
is fixed at 1500 Hz to simplify the optimization process.

Under the above conditions, the grid search method
takes 223.57 s to select the optimal wavelet parameters for
the simulation signal. The PSO algorithm exhibited higher
efficiency compared to the grid search method while also
optimizing more parameters. Therefore, the PSO algorithm
is considered more suitable for the optimization of bi-
damped wavelet parameters in this study.

V. MECHANICAL FAULT
VERIFICATION

A. TEST BENCH INTRODUCTION

The validation dataset for the model in this paper is publicly
available data on bearing vibration under variable operating
conditions from the University of Ottawa, Canada [34].
This dataset was collected from the SpectraQuest Mechani-
cal Failure Simulation test bench shown in Fig. 10. This
bearing signal is sampled at fs= 200000 Hz with a sampling
time of 10 s. The bearing fault can be judged by identifying

the fault order, which is defined by the structural parameters
of the bearing. The theoretical fault order of the inner race is
5.43, and the theoretical fault order of the outer race
is 3.57.

B. INNER RACE SIGNAL EXPERIMENT

The time domain waveform of the inner race increasing-
speed signal collected by the test bench is shown in
Fig. 11(a), exhibiting noticeable impulse features charac-
teristic of a fault. Significant fault orders and their harmo-
nics are clearly identifiable in the envelope order spectrum
presented in Fig. 11(b). To evaluate the feature enhance-
ment capability of the model in the presence of noise,
Gaussian white noise with an 8 dB SNR is added to this
experimental signal. After adding the noise, the signal’s
fault impulse components become unrecognizable, as
shown in Fig. 11(c), while the fault order information in
the order spectrum of Fig. 11(d) is overwhelmed by the
noise and cannot be discerned.

The noise-added signal is then processed using the
ISAM-SFAC method. The wavelet waveform obtained
through correlation matching is depicted in Fig. 12(a),

Fig. 10. Fault test bench of rolling bearing.

Table V. WFCAR values for different methods pro-
cessing inner race signal

Step
number Steps

Time
consumption (s)

1 PSO adaptive matching of the
optimal wavelet

125.35

2 The WFCAR index selects
the optimal λ

30.26

3 ISAM based on sparse feature
convolution

2.19

Total time consumption 157.80

Fig. 11. Measured signal of inner race contains fault under
variable speed. (a) Time domain waveform; (b) order envelope
spectrum; (e) time domain waveform with noise; (f) order
envelope spectrum with noise.
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where the bilaterally attenuated asymmetrical waveform
demonstrates its ability to effectively match the fault-
induced pulses of the signal. The regularization parameter
is optimized to λ = 0.56, as shown in Fig. 12(b), resulting in
a noticeable reduction of noise components in the time
domain waveform, as seen in Fig. 12(c). Furthermore, the
envelope order spectrum in Fig. 12(d) successfully reveals
the fault order and its harmonics, confirming the model’s
robustness and effectiveness in extracting fault features
from noisy environments.

Figure 13(a) and (b) shows the order envelope spec-
trum obtained by processing using the comparison methods
(1) and (2), respectively. Both spectra are difficult to
recognize the fault order. According to Table VI, both
comparison methods are lower than the ISAM-SFAC
method in terms of the WFCAR index, which verifies
the advantages of the ISAM-SFAC method.

C. OUTER RACE SIGNAL EXPERIMENT

The outer race signal with a trend of increasing then
decreasing speed is processed using the ISAM-SFAC
method. As shown in Fig. 14(a), pulse features and the
amplitude trend are evident in the time domain of the
original signal. The fault order is identifiable in the order
envelope spectrum in Fig. 14(b). A 30 dB SNR noise is
added to simulate ambient contamination of the signal. In
Fig. 14(c), the pulse is swamped, making fault impulses and
amplitude trends difficult to observe. The fault order in the
envelope spectrum of Fig. 14(d) cannot be recognized.

The ISAM-SFAC method processes the noise-added
signal, and the noise component that drowns the signal
impulse in the time domain signal of Fig. 15(a) is effectively
weakened. The fault order and its harmonics can be
identified by observing the order envelope spectrum of
Fig. 15(b).

The results of the comparison Methods (1) and (2) are
shown in Fig. 16(a) and (b). Method (1) recognizes only
double harmonics of the fault order, while Method (2) can
only recognize fault order and not the harmonics. Table VII
shows that both comparison methods are less effective than
the ISAM-SFAC fault feature enhancement method.
Figure 17 demonstrates the WFCAR index values obtained
by processing different signals using comparison methods.
It can be observed that ISAM-SFAC has a significant
advantage over other methods for different signal types.

Fig. 12. Inner race signal after ISAM-SFAC. (a) Optimal bi-
damped wavelet waveform; (b) iterative trend of the regularization
parameter; (c) time domain waveform; (d) order envelope
spectrum.

Fig. 13. Inner race signal after comparison methods. (a) Method
(1) order envelope spectrum; (b) Method (2) order envelope
spectrum.

Table VI. WFCAR values for different methods pro-
cessing inner race signal

Methods WFCAR

Original signal 1.22

Method (1) 1.61

Method (2) 1.34

ISAM-SFAC 3.30
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VI. CONCLUSION
In this paper, an ISAM based on SFAC is proposed for
variable speed fault diagnosis of a bearing. The main
conclusions are as follows:

(1) An optimal bi-damped wavelet construction method
based on correlation criterion and PSO is proposed,
which is used to analyze the signal impulse informa-
tion and sparsely learn the fault features.

(2) A convolutional basis pursuit denoising model based
on an optimal bi-damped wavelet is proposed for
sparse reconstruction of signal impulse information.
Meanwhile, the model parameter is adaptively
selected based on the WFCAR.

Fig. 14. Measured signal of the outer race contains a fault under
variable speed. (a) Time domain waveform; (b) order envelope
spectrum; (c) time domain waveform with noise; (d) order
envelope spectrum with noise.

Fig. 15. Outer race signal after ISAM-SFAC. (a) Time domain
waveform; (b) order envelope spectrum.

Fig. 16. Outer race signal after comparison methods. (a) Method
(1); (b) Method (2).

Table VII. WFCAR values for different methods pro-
cessing outer race signal

Methods WFCAR

Original signal 1.20

Method (1) 1.35

Method (2) 2.12

ISAM-SFAC 3.04

Fig. 17. WFCAR indices processed by different signal
comparison methods.
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(3) An ISAM method based on kurtosis threshold is
proposed to further enhance the fault sparse informa-
tion. The advantages of the algorithm are verified by
simulation signal, fault signal experimental results,
and comparative analysis.

(4) Research on fault diagnosis for unknown working
conditions and full life cycle of speed will be carried
out, and the efficiency of fault feature extraction will
be further improved in future work.
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