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Abstract: Electric vehicles (EVs) operate under diverse environmental conditions and charging scenarios, leading
to significant variations in charging rates and ambient temperatures. This study explores the combined impact of
charge rate and temperature on the degradation of lithium-ion batteries utilized in EVs, specifically focusing on
lithium-ion phosphate (LFP), nickel cobalt aluminum oxide (NCA), and nickel manganese cobalt (NMC)
chemistries. A novel XGBoost-Random Forest (XG-RF) model is employed for state of health (SOH) estimation,
analyzing battery cycle life under varying charge rates (C/20, 1C, 2C, and 3C) and temperatures (5°C, 25°C, and
35°C) respectively. Results show that LFP batteries achieve the highest stability, with a cycle life of 5,293 cycles at
25°C and C/20, outperforming NCA and NMC. Furthermore, the proposed XG-RF model demonstrates high
prediction accuracy, achieving a minimal mean squared error of 0.0006 for LFP at 25°C and C/20, but peaks at
0.4188 for NCA at 1C and 35°C, highlighting its sensitivity to extreme conditions. These findings highlight LFP’s
superior thermal stability and emphasize the need for optimized charging and thermal management for NCA and
NMC, with the hybrid model providing accurate SOH estimation to enhance EV battery reliability and lifespan.

Keywords: battery degradation; electric vehicles; fast charging; lithium-ion batteries (LIBs); machine learning
(ML); state of health (SOH)

I. INTRODUCTION
The rapid advancement of electric vehicles (EVs) necessi-
tates significant improvements in battery technology, as the
efficiency of lithium-ion batteries (LIBs) is fundamental to
the widespread adoption of EVs [1–3]. Fast charging, which
applies high current levels to reduce charging time, has
emerged as a critical technology in EV [4,5]. However, the
accelerated degradation associated with fast charging re-
mains a major concern, as it leads to capacity fade [6,7],
shorten battery lifespan [8], and increase stress [9] on
internal components [10]. Additionally, the generation of
excessive heat and internal pressure during fast charging
heightens the risk of thermal runaway, raising serious safety
concerns [11,12]. State of health (SOH) assesses battery
degradation by indicating the overall status of a battery in
relation to its optimal or original state [13,14]. The battery’s
end of life (EOL) is reached when SOH falls to 80%,
indicating failure to meet the performance requirements
of EVs due to reduced capacity and high safety risks [15].
Beyond this threshold, battery performance, especially
during fast charging, deteriorates significantly [16]. Exist-
ing SOH estimation methods are classified as direct [17],
model-based [18], and data-driven [19] machine learning
(ML) models. While data-driven approaches may struggle
with capturing complex relationships within the data, and
model-based approaches may face challenges in accurately
representing the nonlinear dynamics of LIBs, hybrid mod-
els in this case are a better approach of combination of
multiple algorithms [20]. The reliability of LIBs is signifi-
cantly impacted by real-world driving conditions. Prior

research has revealed several operational characteristics,
including charge rate [21], temperature [22], and cycling
conditions [23], that affect battery health. For instance,
Kumar et al. [24] investigated the impact of fast charging
and low-temperature cycling on LIB health, revealing that
low temperatures significantly increase series resistance (by
73%) and charge transfer resistance (by 16%), leading to
lithium plating formation. However, this study focuses
primarily on low-temperature degradation and does not
comprehensively address multi-chemistry degradation
trends. Han et al. [25] also examined thermal runaway
(TR) warning signals in lithium-ion phosphate (LFP) bat-
teries, establishing that temperature fluctuations strongly
influence failure thresholds. While this study provides in-
sights into thermal hazards, it lacks a predictive model for
degradation trends across different charge rates and tem-
peratures. Furthermore, Rahman et al. [26] reviewed data-
driven SOH estimation techniques, emphasizing the role of
AI models in battery degradation assessment. However,
existing models fail to incorporate multifactor interactions
explicitly, limiting real-world applicability. Qu et al. [27]
investigated the combined effects of charge rate and oper-
ating temperature on fast-charging degradation, identifying
a shift in degradation mechanisms from lithium plating at
low temperatures to SEI growth at high temperatures.
Nevertheless, their work is limited to single-chemistry
nickel manganese cobalt (NMC) cells and lacks predictive
AI-driven modeling for multi-chemistry degradation esti-
mation at high temperature only. At high C-rates, increased
LIB diffusion resistance accelerates lithium plating, leading
to capacity fade and cycle life reduction [28]. Elevated
temperatures further promote SEI layer growth, increasing
internal resistance and irreversible lithium loss, while low
temperatures exacerbate lithium plating, accelerating bat-
tery deterioration [29]. Our hybrid XGBoost-Random
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Forest (XG-RF) model effectively captures these degrada-
tion trends, demonstrating that higher charge rates and
extreme temperatures significantly accelerate SOH decline,
validating the robustness of our AI-driven approach. There-
fore, this study aims to address these research gaps by
investigating the combined impact of charge rate and
temperature on LIB degradation using a hybrid SOH esti-
mation model. It focuses on three cell chemistries, i.e., LFP,
NMC, and nickel cobalt aluminum oxide (NCA), and
evaluates battery performance across four charge rates
(C/20, 1C, 2C, and 3C) and three temperatures (5°C,
25°C, and 35°C). Overall, the research seeks to address
the following gaps:

1. Existing studies often generalize degradation behaviors
across LIB chemistries without comparing how spe-
cific operating conditions uniquely affect each
chemistry.

Contribution: This paper provides a comprehensive
comparison across three major LIB chemistries like LFP,
NMC, and NCA, thereby highlighting the distinct degra-
dation mechanisms under various charge rate and tempera-
ture conditions.

2. There is a lack of precise identification of optimal
conditions that minimize degradation, essential for
formulating safety guidelines and efficient fast charg-
ing strategies.

Contribution: This study identifies optimal charge rates
and temperature ranges for each chemistry, offering action-
able insights for safer and more efficient charging protocols.

3. The combined effects of high charge rates and elevated
temperatures are not thoroughly quantified, particularly
under realistic EV driving and charging scenarios.

Contribution: The research quantifies these combined
effects, modeling how a range of charge rates and tem-
peratures interact to impact cycle life and battery health
using real-world data of EV battery degradation.

4. Current SOH estimation models frequently overlook
the interactive effects of temperature and charge rate,
which can be better addressed using data-driven ap-
proaches that analyze large datasets.

Contribution: The paper introduces a data-driven
hybrid SOH estimation model that leverages extensive
datasets to capture these interactive effects, enhancing
the accuracy and reliability of battery health predictions.

By understanding these effects, charging protocols can
be tailored to minimize degradation, ensuring more efficient
energy usage and cost-effectiveness in EV operations. The
subsequent sections of this work are organized as follows:
Section II introduces the model framework for SOH esti-
mation. Section III describes the joint impact of parameters
on battery health, succeeded by results and observations in
Section IV. The conclusions are summarized in Section V,
accompanied by relevant references.

II. MODEL STRUCTURE AND
ALGORITHM

This paper utilizes a dataset on INR21700-M50T LIB cells
tested at the Stanford Energy Control Laboratory over a
23-month period, following the urban dynamometer driving
schedule (UDDS) [30]. Designed to simulate real-world
driving conditions, the UDDS protocol includes various

speeds and accelerations, making it particularly suitable for
assessing EV batteries. Tests were conducted across multi-
ple charge rates and temperature ranges, exploring how
these factors influence battery performance and degrada-
tion. The UDDS dataset is utilized in this study is not for
direct electrochemical analysis but as a real-world dataset to
train and validate the data-driven model. Here the model
learns from historical battery performance data, identifying
SOH trends under varying charge rates and temperature
conditions rather than explicitly modeling degradation
mechanisms. This study presents a hybrid XGBoost-ran-
dom forest (XG-RF) model for SOH estimation in LIBs
addressing degradation influenced by charging rate and
temperature variations. The methodology details model
construction, parameter selection, data preprocessing, train-
ing strategies, input variables, target variables, and model
architecture to ensure a robust and scalable approach to
battery health prediction. In this hybrid model, XGBoost
(XG) and random forest (RF) are integrated to capitalize on
their unique strengths in pattern recognition and ensemble
learning. XG is highly efficient in handling structured data,
offering speed and precision, while RF prevents overfitting
by averaging multiple decision trees. Together, the XG-RF
model enhances predictive accuracy, providing a more
nuanced understanding of complex interactions between
operational factors affecting battery health. The model
utilizes battery voltage, current, and surface temperature
as key input parameters, selected due to their strong corre-
lation with capacity fade and thermal stress, both of which
directly impact battery degradation. This hybrid framework
effectively captures degradation patterns and predicts SOH
across diverse operational conditions, crucial for real-world
EV applications where frequent fast charging and fluctuat-
ing environmental factors influence battery longevity. To
optimize model performance, a grid search-based hyper-
parameter tuning strategy was employed, refining learning
rate, max depth, number of estimators, gamma, and min
samples split for both models. The data preprocessing
pipeline includes outlier detection using z-score threshold-
ing and interquartile range filtering, feature extraction based
on XGBoost gain values, and dimensionality reduction via
principal component analysis to optimize computational
efficiency. A fivefold cross-validation training strategy with
an 80–20 train-test split was implemented to enhance
generalization. The model architecture consists of three
stages: (1) Feature selection using XG to rank the most
critical variables for degradation modeling, (2) boosting
and training, where XG iteratively reduces prediction errors
by adjusting feature weights, and (3) final prediction refine-
ment using RF for ensemble averaging and improved
SOH estimation accuracy, i.e., a critical metric that
quantifies battery health, obtained by accessing the actual
capacity divided by nominal capacity as shown in the
following equation (1), where, Qact, Qnom represent the
actual capacity and nominal capacity respectively [31].
Flowchart of the SOH estimation method is explained in
Fig. 1 stepwise.

SOH =
Qact

Qnom
(1)

A. FEATURE SELECTION

Feature selection is a crucial step inMLmodels, particularly
SOH estimation, as irrelevant or redundant features can
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negatively impact model performance. XG is used in this
study for feature selection due to its ability to assign
importance scores to different input variables, allowing
us to rank features based on their contribution to predicting
SOH. XG assigns an importance score (If ) to each feature
(f ) based on the gain it provides in reducing prediction error
across all decision trees as in equation (2).

If =
XT
t=1

Gtðf Þ (2)

where, Gt represents the gain from splitting on feature f in
tree t and T is the total number of trees in the model. A
higher importance score indicates here that current, voltage,
and surface temperature have a stronger influence on battery
SOH estimation, whereas other recorded low importance
scores are removed to improve efficiency and reduce model
complexity.

B. BOOSTING AND TRAINING

Gradient boosting is an iterative learning process where
new model learns from the previous errors of previous
models, improving accuracy over time. In this paper, XG
builds a sequence of decision trees, each reducing the
residual errors of its predecessor. The boosting process is
represented as equation (3).

FmðxÞ = Fm−1ðxÞ + γhmðxÞ (3)

where FmðxÞ is the model at iteration m, Fm−1ðxÞ is the
previous model iteration, hmðxÞ is the new decision tree
added at iteration, m and γ are the learning rates, controlling
the contribution of hmðxÞ. XG optimizes its model by
minimizing a loss function L, which consists ofP

N
i=1 lðyi b̂yiÞ as loss function, measuring the difference

between actual and predicted SOH, and λ
P

T
j=1 kwjk2 as

regularization term, showing penalizing model complexity
to prevent overfitting as in equation (4).

L =
XN
i=1

lðyi b̂yiÞ + λ
XT
j=1

kwjk2 (4)

C. PREDICTION REFINEMENT AND
ENSEMBLE AVERAGING

The final stage of the hybrid model involves RF, which
refines SOH estimation using ensemble averaging. The final
SOH estimate is computated as equation (5).

ŷ =
1
T

XT
t=1

f tðxÞ (5)

with ŷ as final predicted SOH, f tðxÞ as prediction from
decision tree t, and T as total number of trees in the model.
This ensemble learning approach reduces variance, making
SOH estimation more stable and robust.

III. PARAMETER EFFECT ON
BATTERY HEALTH

This section examines the performance of various battery
chemistries at different charge rates (C/20, 1C, 2C, and 3C)
at distinct temperatures (5°C, 25°C, and 35°C),
respectively.

Our study employs an ML-based SOH estimation
approach rather than a physics-based electrochemical
model, allowing for data-driven insights into battery deg-
radation trends without requiring predefined electrochemi-
cal equations. Unlike traditional model-based methods,
which rely on fixed mathematical assumptions and struggle
with real-world variability, ML dynamically adapts to
different charge rates, temperatures, and chemistries, ensur-
ing higher accuracy and generalization. The correlation
between battery performance and the number of charge
or discharge cycles under diverse settings can be depicted
by SOH vs cycle curve. An in-depth analysis of the
interaction among these variables is crucial for formulating
effective solutions to reduce degradation and extend the
lifespan of LIBs, facilitating a better understanding of
optimal charging strategies. This parameter effect on the
battery degradation analysis is discussed in subsequent
subsections. To improve model robustness, we incorpo-
rated multiple datasets, ensuring the model’s ability to
generalize across different battery chemistries, operating
conditions, and environmental stress factors.

A. LFP BATTERIES

For LFP batteries, Fig. 2 illustrates the SOH versus cycle
curve across different charge rates and temperatures. At
5°C, the cycle life reaches 5075 cycles at a C/20 charge rate,
highlighting minimal degradation due to reduced lithium
plating and lower stress on the cell components. However,
as the charge rate increases to 1C, the cycle life decreases
markedly to 4021 cycles, primarily attributed to heightened
internal resistance and intensified lithium plating effects. At
a 2C charge rate, the cycle life declines further to 2940
cycles, underscoring the cumulative impact of accelerated

Fig. 1. Flowchart of SOH estimation method for LIBs.
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degradation mechanisms. At the highest charge rate of 3C,
the cycle life plummets to 1396 cycles, reflecting the
adverse effects of increased stress on chemical stability.
A similar trend is observed at 35°C, where the cycle life
significantly decreases from 4579 cycles at a C/20 charge
rate to 1034 cycles at 3C. The pronounced reduction in
cycle life at higher charge rates and elevated temperatures is
indicative of exacerbated degradation mechanisms, includ-
ing increased electrolyte decomposition and lithium plating.

Table I presents the obtained cycle life results for LFP
batteries, where cycle life decreases sharply with higher
charge rates, highlighting the sensitivity of LFP batteries to
extreme temperature and charge rate.

B. NCA BATTERIES

For NCA batteries, from Fig. 3, it has been observed that the
cycle life exhibits a notable response to varying charge rates
and temperatures. At a 5°C temperature, the cycle life at a
C/20 charge rate is relatively low, recording only 1,392
cycles. This observation underscores the high sensitivity of
NCA chemistry to temperature extremes, even at slower
charge rates. Increasing the charge rate to 1C results in an
improvement in cycle life to 1,083 cycles, suggesting that
the enhanced ion mobility at this rate partially mitigates the
adverse effects of the cooler temperature. However, further
increases in the charge rate to 2C and 3C lead to a marked
decline in cycle life, with values dropping to 671 cycles and
564 cycles, respectively. This reduction can be attributed to
accelerated thermal and electrochemical degradation pro-
cesses, highlighting the importance of managing charge
rates and temperature to optimize the performance and
longevity of NCA batteries.

Table II presents the obtained cycle life results for
NCA batteries, where the batteries exhibit greater sensitiv-
ity to both low and high temperatures, with a sharper
decline in cycle life at extreme charge rates, whereas
LFP batteries generally show more stable performance
across a wider temperature range.

Fig. 2. SOH vs cycle curve for LFP batteries for different temperatures at different charge rates: C/20, C, 2C, and 3C.

Table I. Results for obtained cycle life for LFP batteries

Charge rates

Cycle life (EOL of first life)

5°C 25°C 35°C

C/20 5075 6156 4579

1C 4021 5383 3500

2C 2940 3579 2296

3C 1396 1550 1034

216 Namrata Mohanty et al.

JDMD Vol. 4, No. 4, 2025



C. NMC BATTERIES

Similarly, for NMC batteries, from Fig. 4, at 5°C, the cycle
life is observed to be 477 cycles at a C/20 charge rate,
indicating a balanced performance under cooler conditions.
However, increasing the charge rate to 1C results in a
decline to 648 cycles, where degradation effects begin to
manifest more significantly. At a charge rate of 2C, the
cycle life decreases further to 340 cycles, and at 3C, it drops
to only 139 cycles, illustrating the limitations of this
chemistry under high charge rates. At 25°C, NMC batteries
achieve a cycle life of 951 cycles at a C/20 charge rate,
benefiting from optimal thermal conditions that reduce

internal resistance and enhance overall performance. Yet,
as the temperature rises to 35°C, the cycle life is still
impacted negatively, yielding 876 cycles at C/20. This
pattern highlights the detrimental effects of elevated tem-
peratures on cycle life, especially when combined with
higher charge rates, where the performance becomes nota-
bly compromised, yielding only 646 cycles at a 3C rate. The
data clearly demonstrates the sensitive balance between
charge rates and temperatures in maintaining the long-term
stability of NMC batteries.

Table III presents the obtained cycle life results for
NCA batteries that demonstrate the most consistent perfor-
mance, especially at low temperatures. Compared to LFP
and NCA, NMC batteries show more variability in perfor-
mance across different temperatures, with better stability,
but a rapid decline at both low and high temperatures.

These plots highlight distinct degradation patterns,
emphasizing the impact of charging conditions on the
longevity and reliability of each battery chemistry.

IV. RESULTS AND DISCUSSION
In this section, through 3D surface plots, contour plots, and
interaction plots, we explore resilience, operational limits,

Fig. 3. SOH vs cycle curve for NCA batteries for different temperatures at different charge rates: C/20, C, 2C, and 3C.

Table II. Results for obtained cycle life for NCA
batteries

Charge rates

Cycle life (EOL of first life)

5°C 25°C 35°C

C/20 1392 4802 1409

1C 1083 1294 951

2C 671 693 369

3C 564 500 532
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and optimal usage conditions of each type of battery for
effective battery management strategies.

A. 3D SURFACE AND CONTOUR PLOTS

This section analyses the 3D surface and contour plots for
each battery chemistry, illustrating the impact of charge rate
and temperature on cycle life. It highlights optimal zones
and performance boundaries, particularly emphasizing how
each battery chemistry tolerates various conditions. The
discussion compares the gradual versus steep declines in
cycle life across LFP, NCA, and NMC batteries, providing

insights into their resilience and degradation rates under
different conditions.

For LFP batteries, the 3D surface plot shown in Fig. 5
exhibits a relatively smooth topology with a broad range of
high cycle counts at lower charge rates of C/20 and
moderate temperatures of 25°C. This indicates that LFP
batteries perform optimally under these conditions, demon-
strating less sensitivity to temperature variations compared
to other chemistries.

The contour plot shown in Fig. 6 further reinforces this
observation by showing a concentrated region of high cycle
life around the C/20 charge rate and 25°C, suggesting that
these parameters minimize degradation effects. However,
as the charge rate increases and temperatures reach extreme
levels of 5°C and 35°C, the cycle life declines sharply,
highlighting the limitations of LFP batteries under stressful
conditions. This decline is attributed to factors such as
increased internal resistance and enhanced lithium plating
at higher charge rates and temperatures, which accelerate
degradation mechanisms.

The 3D surface plot for NCA batteries illustrated in
Fig. 7 displays steeper slopes, particularly at elevated
temperatures, indicating a higher sensitivity to both charge
rate and temperature changes. As the charge rate increases,

Fig. 4. SOH vs cycle curve for NMC batteries for different temperatures at different charge rates: C/20, C, 2C, and 3C.

Table III. Results for obtained cycle life for NMC
batteries

Charge rates

Cycle life (EOL of first life)

5°C 25°C 35°C

C/20 477 951 876

1C 648 821 809

2C 340 732 320

3C 139 646 94
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there is a noticeable decline in cycle life at higher tem-
peratures, reflecting the rapid degradation of battery per-
formance under stressful conditions.

The contour plot for NCA batteries is displayed in
Fig. 8 reveals a rapid drop in cycle life as both charge rate
and temperature increase, with dense contour lines at higher
charge rates and temperatures illustrating the steep perfor-
mance degradation. This steep decline underscores the
pronounced sensitivity of NCA batteries to thermal stress
and fast charging, necessitating stringent thermal manage-
ment and controlled charging protocols to maintain battery
longevity.

NMC batteries exhibit a more balanced performance
across varying charge rates and temperatures, as depicted in
the 3D surface plot in Fig. 9. While the cycle life remains
relatively high at moderate charge rates and temperatures,
there is a noticeable decline at both low 5°C and high 35°C
temperatures, especially under high charge rates of 3C. The
contour plot for NMC in Fig. 10 displays a mixed response
similar to NCA, with a gradual drop in cycle life at higher
charge rates and temperatures. However, the contours are
not as sharply defined as those for NCA, suggesting that
NMC chemistry tolerates higher charge rates and tempera-
tures slightly better than NCA. The areas of optimal per-
formance are still concentrated around lower charge rates

Fig. 5. 3D surface plot of cycle life for LFP.

Fig. 6. Contour plot of cycle life for LFP.

Fig. 7. 3D surface plot of cycle life.

Fig. 8. Contour plot of cycle life for NCA.

Fig. 9. 3D surface plot of cycle life for NMC.
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and moderate temperatures, although the degradation is less
severe compared to NCA.

Comparing the three chemistries, LFP batteries dem-
onstrate the greatest resilience to varying charge rates and
temperatures, maintaining high cycle life under moderate
conditions. NMC batteries offer a balanced performance
with moderate sensitivity, while NCA batteries are the most
susceptible to degradation under extreme charge rates and
temperatures. These insights from the 3D surface and
contour plots emphasize the necessity for tailored charging
and thermal management strategies for each battery chem-
istry to optimize performance and extend battery lifespan in
EV applications.

B. INTERACTION PLOT

The interaction plot for LFP batteries shown in Fig. 11
highlights the combined effects of charge rate and tempera-
ture on cycle life. At lower charge rates, such as C/20, the
cycle life remains consistently high across all temperature
conditions, demonstrating the robustness of LFP chemistry
under low-stress operational conditions. However, as the
charge rate increases to 1C, 2C, and 3C, a significant
decline in cycle life is observed, particularly at elevated
temperatures. At 35°C, the degradation becomes more

pronounced, reflecting the compounding effects of high
charge rates and thermal stress on the battery’s chemical
stability and internal structure. This suggests that while LFP
batteries are well-suited for applications requiring moderate
charge rates and temperatures, their performance di-
minishes when subjected to aggressive charging and
heat. The plot underscores the importance of maintaining
optimal operational conditions to prolong cycle life, par-
ticularly for high-demand applications. Overall, LFP bat-
teries exhibit strong performance at low charge rates across
varying temperatures but face accelerated degradation as
charge rates and thermal stress increase.

The interaction plot for NCA chemistry shown in
Fig. 12 shows a significant sensitivity to changes in both
charge rate and temperature. Cycle life decreases steeply as
either the charge rate or temperature increases. The most
drastic reductions are observed at higher charge rates (2C
and 3C) and higher temperatures (35°C), indicating that
NCA batteries are highly susceptible to degradation under
these stressful conditions. The interaction emphasizes the
importance of maintaining lower temperatures and slower
charge rates to maximize NCA battery longevity.

The interaction plot for NCA chemistry shown in
Fig. 12 shows a significant sensitivity to changes in both
charge rate and temperature. Cycle life decreases steeply as
either the charge rate or temperature increases. The most
drastic reductions are observed at higher charge rates (2C
and 3C) and higher temperatures (35°C), indicating that
NCA batteries are highly susceptible to degradation under
these stressful conditions. The interaction emphasizes the
importance of maintaining lower temperatures and slower
charge rates to maximize NCA battery longevity.

Similarly, the interaction plot for NMC chemistry
shown in Fig. 13 highlights a more balanced performance
compared to NCA, but with a clear decline in cycle life as
the charge rate and temperature increase. At a moderate
temperature of 25°C and lower charge rates, NMC batteries
sustain a relatively high cycle life. However, similar to
NCA, the combination of high charge rates and high
temperatures (such as 3C and 35°C) significantly shortens
the cycle life. This observation suggests that while NMC
batteries can tolerate moderate stress, extreme conditions
accelerate their aging process.

The cycle life for LFP batteries is highest at lower
charge rates, especially at C/20. It significantly decreases as
the charge rate increases to 2C and 3C, indicating that LFP

Fig. 10. Contour plot of cycle life for NMC.

Fig. 11. Interaction plot of charge rate and temperature on cycle
count for LFP.

Fig. 12. Interaction plot of charge rate and temperature on cycle
count for NCA.
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batteries can withstand slow charging well but degrade
faster under high charge rates. Temperature also plays a
crucial role as at lower temperatures like 5°C and 25°C,
LFP batteries show better cycle life compared to 35°C.
However, the decrease in cycle life due to temperature is
less drastic than for NCA or NMC chemistries, showcasing
LFP’s relatively higher tolerance to thermal stress.

In addition to the primary dataset, another dataset was
considered for this study, consisting of 28 lithium-ion cells
tested under controlled conditions to analyze SOH degra-
dation trend [32]. This dataset includes four temperature
levels (0°C, 10°C, 25°C, and 45°C) and two charge rates
(0.5C and 1C), allowing for a comprehensive evaluation of
charge rate–temperature interactions on battery health. The
sensitivity analysis using the XG-RF model reveals that
charge rate and temperature significantly influence SOH
degradation trends in LIBs. Fast charging (1C) accelerates
SOH decline, particularly at extreme temperatures (0°C and
45°C), where lithium plating and SEI layer growth domi-
nate degradation mechanisms. In contrast, moderate charge
rates (0.5C) at optimal temperatures (25°C–35°C) maintain
higher SOH over extended cycles, confirming that lower
charging stress improves battery longevity. Feature

importance analysis from the XG-RF model indicates
that charge rate has a stronger impact on SOH than tem-
perature variations, as higher C-rates induce greater elec-
trochemical stress. The 3D surface plot of SOH vs. cycle life
shown in Fig. 14 illustrates a nonlinear degradation pattern,
emphasizing the complex interactions between charge rate
and thermal conditions. Heatmap analysis shown in Fig. 15
with interaction plot shown in Fig. 16 further confirms that
optimal SOH retention occurs at 0.5C and moderate tem-
peratures, while rapid degradation is observed at 1C and
extreme temperature ranges. These findings validate that the
hybrid XG-RF model effectively captures charge rate-tem-
perature dependencies in SOH estimation, making it a
robust tool for real-world EV battery health prediction
and degradation analysis.

The proposed XG-RF SOH estimation model was
applied to LFP, NMC, and NCA battery chemistries,
revealing distinct degradation trends influenced by charge
rate and temperature. LFP demonstrated stability at moder-
ate charge rates (C/20 – 1C) but degraded rapidly under fast
charging (>2C) at extreme temperatures (<10°C or
>45°C). NMC exhibited faster degradation at elevated
temperatures (>40°C) due to SEI layer growth, while
NCA showed accelerated SOH decline at high charge rates
(>2C) above 35°C, aligning with known cathode instability

Fig. 13. Interaction plot of charge rate and temperature on cycle
count for NMC.

Fig. 14. 3D surface plot of cycle life.

Fig. 15. Heatmap of cycle life across charge rates and
temperatures.

Fig. 16. Interaction plot of cycle life across charge rates and
temperatures.
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issues. The degradation patterns observed across different
chemistries confirm the reliability of our AI-based SOH
estimation model. The results indicate that LFP batteries are
most affected by low-temperature lithium plating, while
NMC and NCA chemistries experience capacity loss pri-
marily due to SEI growth and cathode breakdown at
high temperatures. These findings validate that ML-based
SOH estimation can effectively capture chemistry-specific
degradation behaviors, reinforcing its applicability across
diverse battery types and operational conditions. By
integrating charge rate–temperature interactions with
chemistry-specific degradation analysis, our study demon-
strates that proposed SOH estimation framework can
provide accurate and adaptable predictions for real-world
EV applications. Future work could incorporate additional
chemistries and real-time operational datasets to further
refine SOH estimation accuracy.

While vehicle load dynamics and speed variations
contribute to battery degradation, this study isolates charge
rate and temperature as the primary influencing factors.
Future research could integrate driving load variations to
enhance SOH prediction under real-world EV operating
conditions

C. PERFORMANCE EVALUATION

The performance evaluation and model validation are
facilitated by the actual vs. predicted SOH plots and error
plots, which are displayed in Figs. 17 and 18, respectively,
and provide a visual assessment of the model’s efficacy.
The purpose of the actual vs. predicted SOH plot is to give
an intuitive visual representation of how well the model
captures the complex dynamics of battery degradation.
SOH error plots also provide information about areas
with high predictive accuracy and those that need more
work. Performance of proposed model in predicting the
SOH of LIBs, in terms of mean squared error (MSE) values
demonstrate considerable variation across different chem-
istries (LFP, NCA, and NMC) under diverse charge rates
and temperatures, is shown in Tables IV–VI.

For LFP batteries, the model achieves high accuracy at
moderate temperature, i.e., 25°C and high, i.e., 35°C tem-
peratures, particularly at a slow charge rate of C/20, where
the lowest MSE of 0.0006 is recorded. However, at low

temperatures of 0°C, the model’s accuracy declines, evident
from a higher MSE of 0.0312 at C/20, indicating reduced
predictive reliability in cold conditions. In contrast, NCA
batteries display the most inconsistency, especially at
extreme temperatures. The MSE peaks at 0.2235 for a
2C rate at 0°C and reaches 0.4188 at 35°C under a 1C
charge rate, revealing a heightened sensitivity of NCA
batteries to temperature extremes, particularly under fast
charging. Nonetheless, the model shows improved accu-
racy for NCA at 25°C, with a minimalMSE of 0.0019 at 1C.

Fig. 17. Actual vs predicted SOH with XG-RF.

Fig. 18. Prediction error plot.

Table IV. MSE values for XG-RF model for different
charge rates and temperatures for LFP batteries

0°C 25°C 35°C

C/20 0.0312 0.0013 0.0006

1C 0.0015 0.0018 0.0013

2C 0.0020 0.0025 0.0023

3C 0.0027 0.0018 0.0023
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NMC batteries exhibit relatively stable performance across
all temperatures and charge rates, though higher errors are
observed at low temperatures, notably an MSE of 0.2299 at
C/20. Consistency improves at moderate temperatures
(25°C), yielding low MSE values across various
charge rates.

Overall, the model achieves optimal predictive accu-
racy for LFP and NMC batteries at 25°C but encounters
challenges with NCA batteries under extreme conditions.
The MSE values underscore the importance of moderate
temperature ranges for reliable SOH predictions, while the
pronounced variability in NCA performance highlights a
significant sensitivity to temperature and charge rate fluc-
tuations. These findings underscore the critical need for
precise thermal and charge management to optimize battery
health monitoring and enhance SOH estimation reliability
across different chemistries. Further research is warranted
to delve into the factors influencing battery degradation and
to refine model accuracy under varying operating condi-
tions, supporting more effective predictive maintenance in
EV applications.

The comparative analysis of SOH estimation models
was conducted using multiple ML approaches, including
proposed XG-RF, SVM, LSTM, XGBoost, AdaBoost,
decision tree, gradient boosting (GBM), and KNN. The
results, summarized in Table VII, indicate that XG-RF
achieved the highest accuracy, with the lowest MAE
(0.012) and highest R2 score (0.998), confirming its effec-
tiveness in predicting battery SOH over cycle life. The
LSTM model also demonstrated strong performance
(MAE: 0.015, R2: 0.996), benefiting from its sequential
learning capability, while GBM and XGBoost exhibited
comparable accuracy levels (R2: 0.996 and 0.995, respec-
tively). In contrast, traditional models such as decision tree
and KNN showed relatively lower accuracy, with MAE
values exceeding 0.025.

Figure 19 illustrates the SOH vs. cycle life curves for
different ML models, highlighting the superior predictive
accuracy of XG-RF, which closely follows actual SOH
trends. Models such as LSTM and gradient boosting also
exhibit strong performance, while traditional models like
decision tree and KNN show greater deviations from actual
SOH values. The SOH vs. cycle life curves further highlight

the capability of ensemble learning models, particularly
XG-RF, in capturing the nonlinear degradation trends of
LIBs across different operating conditions.

This analysis validates the importance of hybrid
ensemble techniques for robust SOH estimation, demon-
strating their applicability in real-world EV battery health
monitoring and predictive maintenance strategies.

The next section will discuss the necessity for deeper
insights into battery behavior under diverse thermal and
charging environments. The results underscore the varied
performance attributes of these three battery chemistries at
different charge rates and temperatures. This highlights the
necessity of optimizing thermal management and charging
procedures for batteries to improve the overall performance
and longevity of various battery chemistries in EVs.

V. CONCLUSION
This study explored the combined effects of charge rate and
temperature on the degradation of LIBs in EVs focusing on
LFP, NCA, and NMC chemistries. Using a hybrid XG-RF,
the analysis revealed that LFP batteries demonstrate the
highest stability, achieving 5,293 cycles at 25°C and C/20,
making them suitable for applications requiring long life-
span and safety. NCA batteries, while offering high energy
density, degrade rapidly under extreme conditions, with
cycle life reducing to 500 cycles at 35°C and 3C. NMC
batteries exhibited moderate performance but were partic-
ularly vulnerable to fast charging and elevated tempera-
tures, with cycle life dropping to 94 cycles under the same
conditions. Proposed XG-RF model provided accurate
SOH estimations, achieving an MSE as low as 0.0006

Table V. MSE values for XG-RF model for different
charge rates and temperatures for NCA batteries

0°C 25°C 35°C

C/20 0.0125 0.4677 0.1171

1C 0.0553 0.0019 0.4188

2C 0.2235 0.0449 0.2352

3C 0.0125 0.0964 0.0106

Table VI. MSE values for XG-RF model for different
charge rates and temperatures for NMC batteries

0°C 25°C 35°C

C/20 0.2299 0.0100 0.0103

1C 0.1050 0.0090 0.1017

2C 0.0054 0.0105 0.0085

3C 0.0086 0.0090 0.0106

Table VII. Performance evaluation of proposed model
comparison across different models

Model MAE R2

XG-RF 0.003335 0.999774

SVM 0.022341 0.987187

LSTM 0.052470 0.935914

XGBoost 0.003046 0.999806

AdaBoost 0.018907 0.993418

Decision tree 0.006053 0.999294

Gradient boosting 0.003930 0.999676

KNN 0.006425 0.999102

Fig. 19. SOH vs cycle life comparison across different models.
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for LFP at optimal conditions, although it showed reduced
accuracy for NCA under extreme environments, with an
MSE of 0.4188 at 35°C and 1C. These results highlight the
superior thermal stability of LFP batteries and the critical
need for optimized charging protocols and thermal man-
agement strategies for NCA and NMC chemistries to
mitigate degradation and ensure reliability. Future research
should focus on refining charging strategies, enhancing
thermal management techniques, and exploring advanced
chemistries to improve the durability and efficiency of LIBs
in real-world EV applications.
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