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Abstract: With the widespread adoption of electric vehicles and energy storage
systems, predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is
critical for enhancing system reliability and enabling predictive maintenance.
Traditional RUL prediction methods often exhibit reduced accuracy during the
nonlinear aging stages of batteries and struggle to accommodate complex degradation
processes. This paper introduces a novel adaptive long short-term memory (LSTM)
approach that dynamically adjusts observation and prediction horizons to optimize
predictive performance across various aging stages. The proposed method employs
principal component analysis (PCA) for dimensionality reduction on publicly
available NASA and Mendeley battery datasets to extract health indicators (HIs) and
applies K-means clustering to segment the battery lifecycle into three aging stages
(run-in, linear aging, and nonlinear aging), providing aging-stage-based input features
for the model. Experimental results show that, in the NASA dataset, the adaptive
LSTM reduces the MAE and RMSE by 0.042 and 0.043, respectively, compared to
the CNN, demonstrating its effectiveness in mitigating error accumulation during the
nonlinear aging stage. However, in the Mendeley dataset, the average prediction
accuracy of the adaptive LSTM is slightly lower than that of the CNN and
Transformer. These findings indicate that defining aging-stage-based adaptive
observation and prediction horizons for LSTM can effectively enhance its
performance in predicting battery RUL across the entire lifecycle.
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1. Introduction
With the rapid development of green

energy and low-carbon technologies, LIBs
have become core components of energy

storage systems (ESSs) [1-3]. However,
prolonged usage leads to the gradual aging
of LIBs due to external factors such as
temperature, discharge rate, electrochemical
reactions, and physical and chemical



changes in materials [4-6]. If not replaced in
time before failure, these aging processes
can result in abnormal device operation or
even severe safety incidents. Consequently,
accurately predicting the RUL of LIBs is
crucial for ensuring the stability of systems
and the reliability of devices.

RUL prediction methods for LIBs can
generally be divided into model-based and
data-driven approaches. Model-based
methods are developed based on empirical
and mathematical models that explain the
physical and chemical degradation processes
and the underlying mechanisms of LIBs.
Zhang et al. [7] proposed an RUL prediction
method that leverages an exponential model
and PF, addressing LIB capacity
degradation’s nonlinear and non-Gaussian
nature. The paper details the prediction error
across various prediction starting points.
When compared to other methods, including
the auto-regressive integrated moving
average (ARIMA) model, the fusion
nonlinear degradation auto regressive model,
and the regularized particle filter (RPF)
algorithm, the proposed method shows
superior prediction performance with lower,
root mean squared error (RMSE). To
overcome the limitations of PF, that is,
sample degeneracy and impoverishment, Li
et al. [8] explored particle distribution
optimization (PDO) and ensured particle
diversity. M. Ahwiadi and W. Wang [9]
have proposed an enhanced mutated particle
filter (EMPF) technique. The effectiveness
of the proposed EMPF technique is
demonstrated through simulation tests and
its application in predicting the RUL of LIB
using the battery data base at the NASA
PCoE. Due to the complex internal
mechanisms of lithium-ion batteries,
building precise degradation models is
highly challenging [6, 7].

Data-driven methods offer enhanced
flexibility and accuracy by extracting key

health indicators—such as voltage, current,
resistance and capacity—that reflect the
degradation trends of batteries during
operation. These indicators serve as inputs
for intelligent algorithms used in learning
and predictive analysis [6]. Selina et al. [10]
proposed a naive Bayes model for predicting
the RUL of Lithium-ion batteries under
constant operating conditions. The paper
demonstrates that under constant discharge
environments, the NB method can
accurately predict the RUL of LIB,
regardless of specific operating condition
values. Zhang et al. [11] presented an
LSTM-RNN model tailored to capture
capacity degradation patterns in lithium-ion
batteries. This model effectively captures
long-term dependencies in the degradation
process, enabling highly precise RUL
prediction. Lei et al. [12] proposed a deep
learning framework combining autoencoders
with DNNs to predict the RUL of LIBs. This
method employs autoencoders for
multidimensional feature extraction to
characterize battery degradation, followed
by DNN training for RUL prediction.
Validation on the NASA PCoE lithium-ion
battery dataset for battery B7 showed that
this approach improved prediction accuracy
by 4-5% compared to Bayesian regression,
linear regression and SVM. Wang et al. [13]
introduced an ensemble approach
incorporating local tangent space alignment
(LTSA) for feature extraction and adaptive
sliding window long short-term memory
(ASW LSTM) to enhance RUL estimation
accuracy. LTSA automatically extracts
health indicators with a high Spearman
correlation to unmeasured battery capacity,
while the ASW-LSTM model applies these
HIs in RUL estimation under standard
conditions. By dynamically adjusting inputs
with a variable-length sliding horizon, this
model captures both long-term dependencies
and local variations.



Although the aforementioned
techniques have provided valuable insights
and advances for LIBs RUL prediction,
many challenges still remain to be addressed.
Due to the nonlinear aging process and
variable operating conditions of LIBs, most
data-driven methods typically require
extensive charge–discharge cycling data
collected under multi-condition and long-
term scenarios. For instance, when the
prediction starting point exceeds half of the
cycle life, the methods described in [14-17]
can achieve relatively satisfactory prediction
results. However, during the early stages of
battery cycling, RUL predictions tend to
exhibit a wide prediction range, which
increases the negative impact of cumulative
errors; in the later stages, if the same
observation and prediction horizons used in
the early stages are applied, the rapid decay
characteristics of the RUL in the battery's
more pronounced nonlinear aging phase
cannot be effectively captured, leading to a
significant decline in prediction accuracy.
Therefore, achieving high-precision full life-
cycle RUL prediction under limited data
conditions has become a core issue in both
theoretical research and practical
engineering applications [18-24]. Moreover,
in response to these challenges, recent
studies have incorporated adaptive
mechanisms into LSTM, primarily focusing
on the dynamic optimization of parameters
such as the learning rate or weights [25,26].
For example, Chong et al. [25] accelerated
and stabilized network training by
adaptively adjusting the learning rate. Prajith
Pillai et al. [26] dynamically updated
weights based on real-time data variations to
enhance model performance across different
aging stages. However, these approaches
still encounter considerable challenges when
applied to longer lifetimes and more
complex usage scenarios.

To address these challenges, this paper
proposes an adaptive LSTM-based RUL

prediction method for LIBs. This method
integrates the aging mechanisms of LIBs
and dynamically adjusts both the
observation and prediction horizons,
providing a more flexible and accurate
solution for RUL prediction.

The primary contributions of this work
are summarized as follows:

 Dimensionality reduction of features
using PCA to construct battery HIs. Based
on HIs and K-means clustering, the
battery's lifecycle is divided into three
distinct aging stages.
 Different observation and prediction
horizons are defined for each aging stage,
thus creating an adaptive LSTM that
enhances the accuracy of RUL prediction.
 Validated on NASA and Mendeley
datasets and compared with general LSTM,
CNN, and Transformer that have fixed
observation and prediction horizons.

The structure of this paper is as follows:
Section 2 describes the design and training
of the adaptive LSTM. Section 3 introduces
the datasets and data processing. Section 4
presents the aging stage classification.
Section 5 provides experimental results and
analysis. Section 6 introduces the ablation
study. Finally, the paper concludes with the
main findings and discusses future research
directions.

2. Methodology

2.1. Theory introduction of LSTM
LSTM is a variant of recurrent neural

networks (RNNs) that is widely used for
time series forecasting. The memory cell is
the core component of LSTM architecture,
allowing the network to selectively store and
retrieve information across different time
steps. The structure of an LSTM cell is
shown in Figure 1.



Fig. 1. Structure of LSTM cell [27].

In LSTM networks, the forget gate,
input gate and output gate work together to
manage the storage, retrieval and forgetting
of information. The detailed calculation
process is as follows (1) - (6).

1( [ , ] )t f t t ff W h x b   （1）

1( [ , ] )t i t t ii W h x b   （2）

1tanh( [ , ] )t c t t cC W h x b  （3）

1* *t t t t tC f C i C   （4）

1( [ , ] )t o t t oo W h x b   （5）

* tanh( )t t th o C （6）

where tx is the input, th is the output, i , o
and f represent the input gate, output gate,
and forget gate. tC denotes the cell state. 
and tanh are activation functions, with W
indicating the weight matrix and b
representing the bias vector.

2.2. Definition of adaptive observation
and prediction horizons in LSTM

In traditional LSTM for RUL
prediction, a fixed-length observation
horizon for input and a fixed-length

prediction horizon for output is typically
employed [11, 13]. However, due to the
pronounced nonlinear characteristics of
battery degradation—especially as
degradation accelerates in later stages—a
fixed-horizon LSTM struggle to adapt to this
complexity, bringing reduced prediction
accuracy. To address this, this paper
proposes an adaptive LSTM that
incorporates two novel model parameters:
the adaptive observation horizon and the
adaptive prediction horizon. These
parameters can be adjusted independently,
allowing the model to generate input and
output of varying sizes based on specific
parameter configurations. The definition of
these two parameters and the
implementation of adaptive LSTM will be
explained in the following.

Adaptive observation horizon: This
parameter controls the input size of the
LSTM, with its length dynamically
adjustable according to the requirements of
different aging stages. Given the varying
degradation rates across stages, selecting an
appropriate observation horizon helps to
maximize prediction accuracy. In the run-in
and linear aging, where degradation is
gradual, a longer observation horizon
captures long-term trends. In contrast, in the
nonlinear aging, where degradation
accelerates, a shorter observation horizon
enables the model to respond quickly to
changes in battery health.

Adaptive prediction horizon: This
parameter controls the output size of the
LSTM. Given the varying dynamics of
different aging stages, this parameter should
correspond to the specific aging phase. For
instance, shorter prediction horizons are
more suitable for nonlinear aging, whereas
longer horizons are preferable during the
linear aging. The horizon length for the run-
in may be positioned between these two
extremes.



Figure 2 illustrates a schematic of the
adaptive LSTM technique with adaptive
observation and prediction horizons. After
processing, the dataset is scaled and divided
into three clusters using PCA and K-means,
where cluster 0 represents the run-in stage,
cluster 1 indicates the linear aging stage, and
cluster 2 is the nonlinear aging stage.
Observation Lo and prediction Lp horizons
are independently configured according to
the three aging stages, indexed as 0, 1 and 2.

Additionally, clustering the data provides
sufficient data points for each stage,
effectively capturing both localized and
overall fluctuations. The clustered samples
are used as input data for the LSTM to train
and validate the model. Compared to a
general LSTM with only two degrees of
freedom, this model offers six degrees of
freedom, providing greater flexibility and
superior predictive performance than the
traditional fixed-horizon LSTM.

Fig. 2. A schematic of the constructed LSTM structure.

3. Datasets and data preprocessing

3.1. Introduction to datasets
This study utilizes two publicly

available lithium-ion battery datasets: the
NASA PCoE dataset [28] and the Mendeley
dataset [29]. These datasets provide
comprehensive data to support battery health
assessment and RUL prediction. The NASA
PCoE dataset includes multicycle test data

for three representative batteries (Nos. 33,
34 and 36) tested at a controlled room
temperature of 24°C. These batteries were
tested under three distinct operational modes:
charging, discharging, and impedance
measurement. The batteries gradually aged
through repeated charge and discharge
cycles, and impedance measurements were
used to analyze internal parameters evolving
with aging. Testing was terminated upon the
battery capacity reaching 70% of its nominal
2 Ah.



The Mendeley dataset is derived from
nominally identical high-energy 18650
lithium-ion batteries, each with a rated
capacity of 2.4 Ah and a nominal voltage of
3.7 V. This experiment consists of two
stages. In the initial stage, 20 preliminary
cycles were used to simulate the primary
usage of the batteries and facilitate early
battery life prediction. These preliminary
cycles involved charging using a constant-
current-constant-voltage (CC-CV) method at
0.5C and discharging at a constant current of
2C. In the subsequent stage, the focus was
on studying degradation characteristics
under different operating conditions. The 77
batteries were divided into Group I and
Group II for further cyclic degradation tests.
Group I, consisting of 22 batteries,
underwent cyclic degradation under fixed
charge and discharge currents (1C, 2C or
3C). Group II, comprising 55 batteries, was
subjected to cyclic degradation under
varying operating conditions. In this group,
the charge current was randomly changed
every five cycles, selected uniformly among
1C, 2C and 3C, while the discharge current
was consistently set at 3C. All batteries
recorded 101 cycles in the second stage.

3.2. Data preprocessing
To meet the requirements of the LSTM

network for time series data, this study
standardized the NASA and Mendeley
battery datasets and converted them into a
cycle-based format to more accurately
characterize the degradation trend of the
batteries. Firstly, the StandardScaler method
was used to standardize the data by
removing the mean and scaling to a unit
standard deviation, so as to eliminate the
influence of different feature scales on
model training and improve the convergence
speed and prediction accuracy of the model.
At the same time, to reduce the
computational complexity, irrelevant
parameters such as test time, date time, and
entry points were removed, and only key

features such as charging and discharging
voltages, currents, and capacities were
retained to ensure the consistency and
usability of the data.

4. Aging phase identification

4.1. Health index construction based
on PCA

Since the RUL is only obtainable after
the battery has fully aged, it cannot be
directly used for classifying the aging stages
of the battery. To address this issue, this
study constructs HIs by applying PCA to the
raw feature parameters of the battery (such
as voltage, current, capacity, etc.), which can
effectively replace RUL for classifying the
battery’s aging stages.

Figure 3 illustrates the complete
process from data processing to the
classification of aging stages, including PCA
for dimensionality reduction, construction of
the HI, and the final classification of aging
stages through steps such as K-means
clustering and outlier removal. The goal of
PCA is to extract the most representative
principal components from the battery data
set to reduce the dimensionality of the data
features. Each principal component
extracted by PCA corresponds to a different
HI, reflecting distinct degradation
characteristics of the battery. Specifically,
PC1 corresponds to HI1, which is primarily
driven by the battery's capacity and voltage;
PC2 corresponds to HI2, which is closely
related to current and temperature; and PC3

corresponds to HI3, which reflects the
changes in temperature and energy.

To validate whether HIs can effectively
capture degradation characteristics related to
RUL, this study further conducted Pearson
correlation analysis. For battery B0036 in
the NASA dataset, the correlation analysis
results are as follows:



 HI1 and RUL: ρ=−0.9941 (p =
0.0000)

 HI2 and RUL: ρ=0.0032 (p = 0.9747)
 HI3 and RUL: ρ=0.0883 (p = 0.3797)

The results show a significant negative
correlation between HI1 and RUL, indicating
that HI1 effectively reflects the degradation
trend driven by battery capacity and voltage.
In contrast, HI2 and HI3 show weaker

correlations with RUL, with larger
corresponding p-values, suggesting that
changes in current, temperature, and energy
have a smaller direct impact on RUL
prediction. These results demonstrate that
classifying the battery’s health stages based
on HI1 and HI2 is reasonable, and that HIs
can effectively replace RUL for classifying
aging stages.

Fig. 3. Aging stage classification flowchart.

4.2. Aging phase division with K-
means

The aging process of LIBs involves
complex physicochemical changes, leading
to a gradual decline in state of health over
time. As shown in Figure 4, this process can
be categorized into three main stages: run-in,
linear aging, and nonlinear aging [34]. Each
stage represents different aging mechanisms
that the battery undergoes during its lifespan.

The K-means clustering algorithm was
employed to classify HIs extracted via PCA,
facilitating the identification of distinct
battery aging stages. As illustrated in Figure
5, the battery life cycle data were divided
into three clusters, each corresponding to a
specific aging stage.

 Run-in stage: Corresponding to the
run-in RUL changes within [1.0, 0.7),
where degradation is gradual, performance



remains stable, and changes in health
indicators are minimal.
 Linear aging stage: Corresponding to
the linear aging RUL changes within [0.7,
0.3), where the health status declines
rapidly, degradation accelerates, health
indicators fluctuate significantly, and
substantial changes occur within the
battery's internal structure.
 Nonlinear aging stage: Corresponding
to the nonlinear aging RUL changes within
[0.3, 0.0), where the battery's health is near
the failure point, degradation accelerates
further, and health indicators exhibit a
sharp decline.

Through K-means clustering, the
characteristic changes at each life stage of
the battery can be more precisely captured.
Based on the features of each stage, the

observation and prediction horizons of the
adaptive LSTM are dynamically adjusted,
thereby enhancing predictive accuracy in
nonlinear aging phases.

Fig. 4. Typical evolution of the state of
health and aging mechanisms during battery
lifetime [34].

（a） （b）

Fig. 5. K-means clustering after elliptical envelop method. ( )a Battery B0036 from NASA
dataset. ( )b Battery 35 from Mendeley dataset.

5. Experiments and results

5.1. Model training and evaluation
The adaptive LSTM was trained on

70% of the data, with 20% used for testing
and 10% for validation. Table 1 provides the
segmentation of different battery datasets
used for training, testing and validation.
Table 2 lists the hyperparameters assigned to

both the adaptive LSTM and other models,
including the general LSTM, CNN, and
Transformer. A model with three hidden
layers was constructed, with a learning rate
set to 0.001, 200 units in each hidden layer,
an Adam optimizer, mean squared error for
training loss evaluation, and a batch size of
16. The feature dimensions depend on the
battery data. For the adaptive LSTM, the



observation range can be selected from
[1,10]Lo and the prediction range from
[1,8]Lp (with  Lo and  Lp both being

integers). In contrast, other models use fixed
values for observation and prediction.
Additionally, an early stopping callback is
integrated, terminating training if validation
loss shows no improvement within 50
epochs.

The model evaluates the stability and
accuracy of battery RUL predictions using
two standard error metrics: mean absolute
error (MAE) and root mean squared error

(RMSE). Equation (7) presents the
calculation for MAE, Equation (8) presents
the calculation for RMSE.

1

1 ˆ| |
n

i i
i

MAE y y
n 

  （7）

2

1

1 ˆ( )
n

i i
i

RMSE y y
n 

  （8）

where iy represents the actual RUL value,
ˆiy denotes the predicted RUL value, and n is
the number of samples.

Table 1. NASA and Mendeley battery datasets.

Dataset Cluster Training cycles Testing cycles Validation cycles

NASA
Cluster 0 50 14 7
Cluster 1 72 22 11
Cluster 2 14 4 2

Mendeley
Cluster 0 24 7 4
Cluster 1 20 5 2
Cluster 2 20 6 3

Table 2. Hyperparameters for model training and testing.

Models Adaptive LSTM General LSTM CNN Transformer
Batch size 16 16 16 16

Learning rate 0.001 0.001 0.001 0.001
Hidden layers 3 3 3 2

Epochs 100 100 100 100
Feature dimension 4 4 4 4
Neuronal units 200 200 64 and 100 32 (head size)

Observation horizon 1-10 Single value Single value Single value
Prediction horizon 1-8 Single value Single value Single value

5.2. RUL prediction for battery using
adaptive LSTM

The input for the adaptive LSTM
includes the formulated HI and a newly
created RUL associated with each HI. The
created RUL values facilitate the
implementation of supervised learning.
Based on the values of the adaptive
observation and prediction horizons, the
model predicts new RUL values.
Specifically, assuming  Lo and  Lp are set

to 4 and 2, respectively, the model takes the
first four values of the processed data frame
in the HI series as the input array and
predicts the next two RUL values, which
correspond to the fifth and sixth values in
the RUL series. The RUL is defined as the
number of cycles remaining until the
battery's capacity decreases to 70%-80% of
its initial value, which is typically
considered the end of useful life for a battery.
For example, in the case of the B0036



battery from the NASA dataset, the maxCycle
is 194 cycles, while for batteries in the
Mendeley dataset, maxCycle is 101 cycles.
The RUL is calculated as shown in Equation
(9):

max
( ) 1 iCycle

RUL i
Cycle

  （9）

where iCycle represents the current cycle and
maxCycle denotes the maximum cycle life of

the battery.

The adaptive LSTM can leverage
adaptive observation and prediction horizons
to forecast aging patterns for each cluster.
This allows the model to test various sets of
horizon values for each cluster and validate
their accuracy. Consequently, the horizon
values that yield optimal prediction results
for a specific stage are adopted. By applying
this process across all clusters, predictions
with minimal average RUL prediction error
can be achieved. Different values for Lo
from  1, 10 and for Lp from  1, 8 were
selected and the battery was tested in
controlled experiments. For each
combination of Lo and Lp , the RUL
prediction that produced the best results was
chosen.

Figure 6 illustrates the RUL predictions
of batteries in various clusters from the
NASA and Mendeley datasets using the
adaptive LSTM method. It shows the
relationship between predicted and actual
RULs over cycle counts. The adaptive
LSTM demonstrates strong RUL prediction
performance across different batteries and
clusters. Notably, for Clusters 0 and 1 of

Battery 35, the predicted values closely
match the actual values, with a MAE below
0.03 and a RMSE below 0.05, indicating
high prediction accuracy. However, Figure
6(b) and Figure 6(f) reveal significant
prediction deviations. Figure 6(b) shows the
RUL predictions for Cluster 1 of B0036
battery from the NASA dataset. Predictions
are accurate before the 15th cycle, but
deviate notably after, especially for higher
cycle values (e.g., around cycle 100), likely
due to the model's sensitivity to nonlinear
degradation behaviors when a larger
prediction window is set. This cluster may
be in a nonlinear degradation phase,
warranting further study for better modeling.
Similarly, Figure 6(f) presents the RUL
predictions for Cluster 2 of Battery 35 from
the Mendeley dataset. After 14 cycles, the
predicted RUL diverges from the actual
values, suggesting a nonlinear degradation
stage for this cluster. Thus, additional model
or data adjustments may be needed to
improve predictions in nonlinear regions.

In summary, the adaptive LSTM shows
excellent RUL prediction performance in
most cases, especially for Cluster 0 and
Cluster 1 of Battery 35. However, in specific
cases like Cluster 1 of Battery B0036 and
Cluster 2 of Battery 35, there are deviations
in later cycles, indicating the need for
further model optimization or data
adjustments to enhance prediction accuracy.
These results highlight the adaptive LSTM's
ability to improve RUL prediction accuracy
by adjusting observation and prediction
horizons according to battery aging stages
and characteristics, which is a significant
advantage over other methods.



（a） （b）

（c） （d）

（e） （f）

Fig. 6. RUL prediction for adaptive LSTM. ( )a Cluster 0 for battery B0036 from MASA dataset.
( )b Cluster 1 for battery B0036 from MASA dataset. ( )c Cluster 2 for battery B0036 from
MASA dataset. ( )d Cluster 0 for battery 35 from Mendeley dataset. ( )e Cluster 1 for battery 35
from Mendeley dataset. ( )f Cluster 2 for battery 35 from Mendeley dataset.

5.3. Comparison and analysis between
adaptive LSTM and other models

This section provides an in-depth
analysis of the performance of adaptive
LSTM versus other methods in battery RUL
prediction tasks. By conducting experiments
on different aging stages using NASA and
Mendeley datasets, this subsection focuses
on examining the impact of the Lo and Lp
parameters on predictive accuracy.

Taking battery B0036 from the NASA
dataset as an example, Figure 7 shows how
prediction accuracy changes under different
Lo and Lp combinations in Cluster 0. When
Lo ranges from 2 to 6, the overall error
remains relatively high. However, once Lo
exceeds 6, both MAE and RMSE decrease
significantly. When Lo reaches between 8
and 10, the error values stabilize at a low
level, regardless of the Lp setting. This
phenomenon indicates that a smaller Lo is



insufficient for capturing the features of the
initial linear aging stage, while increasing
Lo allows the model to more

comprehensively learn the linear capacity
aging trend of the battery, thereby
substantially improving prediction accuracy.

（a） （b）

Fig. 7. Illustration of the effects of different Lo and Lp combinations on prediction accuracy
during the Cluster 0 stage. ( )a MAE trends for different Lo and Lp combinations in Cluster 0
of battery B0036 from the NASA dataset. ( )b RMSE trends for different Lo and Lp
combinations in Cluster 0 of battery B0036 from the NASA dataset.

（a） （b）

Fig. 8. Illustration of the effects of different ( )a combinations on prediction accuracy during the
Cluster 1 stage. ( )b MAE trends for different Lo and Lp combinations in Cluster 1 of battery
B0036 from the NASA dataset.

Figure 8 presents the experimental
results for the Cluster 1 stage. At this stage,
the battery’s aging trend exhibits nonlinear
inflection points, making the improvement

in accuracy from simply increasing Lo less
pronounced than in Cluster 0. An Lo in the
moderate range (approximately 5-7) can
significantly reduce MAE and RMSE but



extending Lo beyond this range does not
further decrease the errors. This is because
the data in Cluster 1 contain fluctuations and
nonlinear characteristics, and an overly long
observation window may average out these
variations, thereby reducing the model’s
sensitivity to recent changes and limiting its
potential performance improvements. Figure
9 illustrates the results for Cluster 2 stage.
At this stage, the battery aging rate and
characteristics become unstable, exhibiting

pronounced nonlinear behavior. Increasing
Lo at this stage offers limited reduction in
MAE and RMSE. An excessively large Lo
incorporates extensive historical data, which
does not significantly aid in capturing rapid
recent changes; instead, it may impede the
model’s ability to identify abrupt variations.
Experimental results indicate that Lo values
within the range of 5 to 7 achieve relatively
optimal prediction performance.

（a） （b）

Fig. 9. Illustration of the effects of different Lo and Lp combinations on prediction accuracy
during the Cluster 2 stage. ( )a MAE trends for different Lo and Lp combinations in Cluster 2
of battery B0036 from the NASA dataset. ( )b RMSE trends for different Lo and Lp
combinations in Cluster 2 of battery B0036 from the NASA dataset.

By comparing Figures 7, 8 and 9, it is
evident that Lp affects prediction errors
differently across various aging stages. In
Cluster 0, small to medium Lp values exert
minimal impact on prediction errors.
However, excessively large Lp values
slightly increase the error due to the
uncertainty introduced by longer prediction
horizons. In Cluster 1, smaller Lp values,
such as Lp= 2 or Lp= 3, are more conducive
to enhancing prediction accuracy. When Lp

increases to 6, 7 or 8, both MAE and RMSE
rise significantly, attributable to increased
nonlinearity, which renders long-term
predictions more uncertain. Smaller Lp
values enable the model to more effectively
track performance changes, thereby
mitigating long-term prediction bias. In
Cluster 2, the benefits of smaller Lp values
are even more pronounced. Larger Lp
values hinder the model’s ability to
accurately capture abrupt future changes,
resulting in significantly increased errors.



（a） （b）

（c）

Fig. 10. Optimal parameter combinations for each aging stage in the NASA dataset for battery
B0036. ( )a Cluster 0 stage. ( )b Cluster 1 stage. ( )c Cluster 2 stage.

Overall, while the impact of Lp on
performance is less substantial than that of
Lo smaller Lp values are more
advantageous for accurate predictions during
nonlinear aging stages. Conversely, in the
linear aging initial stage, medium Lp values
also achieve relatively good performance.
To further elucidate the optimal Lo and Lp
combinations for each aging stage, Figure 10
presents the best parameter combinations

based on MAE. The following optimal
combinations were identified. In Cluster 0,
the optimal combination is Lo= 9 and Lp= 4,
with an error of 0.003796. In Cluster 1, the
optimal combination is Lo = 7 and Lp = 6,
with an error of 0.005271. In Cluster 2, the
optimal combination is Lo = 7 and Lp = 2,
with an error of 0.010416. These findings
indicate that parameter requirements
significantly differ across aging stages.
Leveraging this characteristic, an adaptive



LSTM can be constructed to dynamically
adjust Lo and Lp based on the current aging
stage, thereby achieving superior prediction
performance.

To validate its effectiveness, this study
conducts a comparative analysis of the
adaptive LSTM and other models with fixed
parameters, including general LSTM, CNN,
and Transformer, using both the NASA and
Mendeley datasets. The results indicate
(table 3) that in the NASA dataset, the
adaptive LSTM outperforms all other
models across various aging stages,
particularly in the nonlinear degradation
phase, where it effectively mitigates error
accumulation caused by increasing
nonlinearity. However, in the Mendeley
dataset, the average prediction accuracy of
CNN and Transformer surpasses that of the

adaptive LSTM. Further analysis reveals
that while the adaptive LSTM achieves the
best performance in Cluster 0, its predictive
capability in Cluster 1 and Cluster 2 is
inferior to that of CNN and Transformer.
Possible reasons for this discrepancy include
the Mendeley dataset exhibiting stronger
local temporal patterns, where CNN benefits
from convolutional operations to capture
short-term features, and Transformer
leverages self-attention mechanisms to
extract global patterns within short time
windows, making them more effective for
this dataset. Additionally, the smaller scale
of the Mendeley dataset may limit the
adaptive LSTM’s ability to learn optimal Lo
and Lp adjustments, as its dynamic tuning
strategy typically requires a larger dataset
for effective generalization.

Table 3. Comparison of MAE and RMSE errors for adaptive LSTM and other models on NASA
and Mendeley datasets.

6. Ablation study
To investigate the impact of various

hyperparameters on model performance, an
ablation experiment was conducted,
systematically varying the number of LSTM

layers, hidden units, and activation functions.
Table 4 summarizes the experimental
configurations, including the baseline model
and several variations. Table 5 reports the
MAE and RMSE values for each
experimental configuration. Based on the
results, the baseline model configuration

Type NASA dataset Mendeley dataset
MAE RMSE MAE RMSE

Adaptive
LSTM

Cluster 0
|Lo Lp =9,4 |Lo Lp =9,4 |Lo Lp =8,3 |Lo Lp =8,3

0.003796 0.004688 0.004355 0.005055

Cluster 1
|Lo Lp =7,6 |Lo Lp =7,6 |Lo Lp =8,2 |Lo Lp =8,2

0.005271 0.005915 0.030128 0.030177

Cluster 2
|Lo Lp =7,2 |Lo Lp =7,2 |Lo Lp =10,2 |Lo Lp =10,2

0.010416 0.011352 0.029218 0.029332
Average error 0.019483 0.021955 0.063701 0.064564

General
LSTM Average error

|Lo Lp =10,4 |Lo Lp =10,4 |Lo Lp =10,3 |Lo Lp =10,3
0.072832 0.075085 0.08424 0.086133

CNN Average error
|Lo Lp =8,4 |Lo Lp =8,4 |Lo Lp =8,2 |Lo Lp =8,2

0.060709 0.064199 0.026112 0.032015

Transformer Average error
|Lo Lp =4,6 |Lo Lp =4,6 |Lo Lp =10,3 |Lo Lp =10,3

0.069821 0.076491 0.048651 0.059121



exhibits lower error values and superior
performance. Altering the number of LSTM
layers does not necessarily lead to
performance improvements. In ablation
experiments with hidden units ranging from
50 to 250, prediction errors were minimized
when the number of hidden units was
between 100 and 200. Notably, the
configuration employing the softmax
activation function yielded lower error
values compared to the baseline.

The ablation experiments indicate that
3 LSTM layers paired with 200 hidden units
and the use of a relu activation function can
achieve relatively high prediction accuracy.
However, replacing the activation function
with softmax can further enhance
performance, thereby providing valuable
insights for subsequent network architecture
design and hyperparameter selection.

Table 4. Ablation experiment configurations.

Experiment name LSTM
layers Hidden units Activation function

Baseline 3 200 relu
LSTM layers 2,4,5 200 relu
Hidden units 3 50,100,150,250 relu

Activation function 3 200 tanh, sigmoid, softmax
Table 5. Ablation experiment results.

Experiment MAE RMSE
Baseline 0.075213 0.075697

LSTM layers_2 0.084807 0.085356
LSTM layers_4 0.111596 0.111727
LSTM layers_5 0.129514 0.129577
Hidden units_50 0.097496 0.097647
Hidden units_100 0.073599 0.074583
Hidden units_150 0.075698 0.075909
Hidden units_250 0.078008 0.078221

Activation function _ tanh 0.063745 0.064195
Activation function _ sigmoid 0.148890 0.148929
Activation function _ softmax 0.031234 0.031503

7. Conclusions and outlook
To investigate the impact of aging

characteristics at different stages of LIB
aging on prediction accuracy, this study
proposes a RUL prediction method for LIBs
based on an adaptive LSTM. A HI is
constructed using PCA based on battery
state monitoring data. Considering the aging
characteristics of LIBs, an unsupervised
clustering method is used to classify the HI,
dividing the battery aging process into
distinct stages: the run-in, linear aging, and

nonlinear aging. Different observation and
prediction horizons are defined for each
stage, leading to the development of an
adaptive LSTM to better capture and
interpret the features of each aging stage and
their influence on prediction accuracy.

Experimental results show that, in the
NASA dataset, the adaptive LSTM reduces
the MAE and RMSE by 0.042 and 0.043,
respectively, compared to the CNN,
demonstrating its effectiveness in mitigating
error accumulation during the nonlinear
aging stage. However, in the Mendeley



dataset, the average prediction accuracy of
the adaptive LSTM is slightly lower than
that of the CNN and Transformer models.

The adaptive LSTM effectively
addresses the variations in LIB
characteristics across different aging stages.
At the same time, these findings provide
deeper insights into the advantages and
limitations of the adaptive LSTM. In future
work, we will explore partitioning the HI
into different aging stages for RUL
prediction and integrate physical
mechanisms with deep learning methods, as
outlined in our previous work [35], to
optimize the Lo and Lp parameters for
enhanced performance across varying aging
stages.
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