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Abstract:With the widespread adoption of electric vehicles and energy storage systems, predicting the remaining
useful life (RUL) of lithium-ion batteries (LIBs) is critical for enhancing system reliability and enabling predictive
maintenance. Traditional RUL prediction methods often exhibit reduced accuracy during the nonlinear aging
stages of batteries and struggle to accommodate complex degradation processes. This paper introduces a novel
adaptive long short-term memory (LSTM) approach that dynamically adjusts observation and prediction horizons
to optimize predictive performance across various aging stages. The proposed method employs principal
component analysis (PCA) for dimensionality reduction on publicly available NASA and Mendeley battery
datasets to extract health indicators (HIs) and applies K-means clustering to segment the battery lifecycle into three
aging stages (run-in, linear aging, and nonlinear aging), providing aging-stage-based input features for the model.
Experimental results show that, in the NASA dataset, the adaptive LSTM reduces the MAE and RMSE by 0.042
and 0.043, respectively, compared to the CNN, demonstrating its effectiveness in mitigating error accumulation
during the nonlinear aging stage. However, in the Mendeley dataset, the average prediction accuracy of the
adaptive LSTM is slightly lower than that of the CNN and Transformer. These findings indicate that defining
aging-stage-based adaptive observation and prediction horizons for LSTM can effectively enhance its perfor-
mance in predicting battery RUL across the entire lifecycle.
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I. INTRODUCTION
With the rapid development of green energy and low-
carbon technologies, LIBs have become core components
of energy storage systems (ESSs) [1–3]. However, pro-
longed usage leads to the gradual aging of LIBs due to
external factors such as temperature, discharge rate, elec-
trochemical reactions, and physical and chemical changes
in materials [4–6]. If not replaced in time before failure,
these aging processes can result in abnormal device opera-
tion or even severe safety incidents. Consequently, accu-
rately predicting the RUL of LIBs is crucial for ensuring the
stability of systems and the reliability of devices.

RUL prediction methods for LIBs can generally be
divided into model-based and data-driven approaches.
Model-based methods are developed based on empirical
and mathematical models that explain the physical and
chemical degradation processes and the underlying me-
chanisms of LIBs. Zhang et al. [7] proposed an RUL
prediction method that leverages an exponential model
and PF, addressing LIB capacity degradation’s nonlinear
and non-Gaussian nature. The paper details the prediction
error across various prediction starting points. When com-
pared to other methods, including the auto-regressive inte-
grated moving average (ARIMA) model, the fusion
nonlinear degradation auto regressive model, and the regu-
larized particle filter (RPF) algorithm, the proposed method
shows superior prediction performance with lower, root
mean squared error (RMSE). To overcome the limitations
of PF, that is, sample degeneracy and impoverishment, Li

et al. [8] explored particle distribution optimization (PDO)
and ensured particle diversity. M. Ahwiadi and W. Wang
[9] have proposed an enhanced mutated particle filter
(EMPF) technique. The effectiveness of the proposed
EMPF technique is demonstrated through simulation tests
and its application in predicting the RUL of LIB using the
battery data base at the NASA PCoE. Due to the complex
internal mechanisms of lithium-ion batteries, building pre-
cise degradation models is highly challenging [6,7].

Data-driven methods offer enhanced flexibility and
accuracy by extracting key health indicators—such as
voltage, current, resistance and capacity—that reflect the
degradation trends of batteries during operation. These
indicators serve as inputs for intelligent algorithms used
in learning and predictive analysis [6]. Selina et al. [10]
proposed a naive Bayes model for predicting the RUL of
Lithium-ion batteries under constant operating conditions.
The paper demonstrates that under constant discharge en-
vironments, the NB method can accurately predict the RUL
of LIB, regardless of specific operating condition values.
Zhang et al. [11] presented an LSTM-RNN model tailored
to capture capacity degradation patterns in lithium-ion
batteries. This model effectively captures long-term depen-
dencies in the degradation process, enabling highly precise
RUL prediction. Lei et al. [12] proposed a deep learning
framework combining autoencoders with DNNs to predict
the RUL of LIBs. This method employs autoencoders
for multidimensional feature extraction to characterize
battery degradation, followed by DNN training for RUL
prediction. Validation on the NASA PCoE lithium-ion
battery dataset for battery B7 showed that this approach
improved prediction accuracy by 4-5% compared to Bayes-
ian regression, linear regression and SVM. Wang et al. [13]Corresponding author: Diwang Ruan (e-mail: ruandiwang607@163.com).
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introduced an ensemble approach incorporating local tan-
gent space alignment (LTSA) for feature extraction and
adaptive sliding window long short-term memory (ASW
LSTM) to enhance RUL estimation accuracy. LTSA auto-
matically extracts health indicators with a high Spearman
correlation to unmeasured battery capacity, while the ASW-
LSTM model applies these HIs in RUL estimation under
standard conditions. By dynamically adjusting inputs with a
variable-length sliding horizon, this model captures both
long-term dependencies and local variations.

Although the aforementioned techniques have pro-
vided valuable insights and advances for LIBs RUL pre-
diction, many challenges still remain to be addressed. Due
to the nonlinear aging process and variable operating con-
ditions of LIBs, most data-driven methods typically require
extensive charge–discharge cycling data collected under
multi-condition and long-term scenarios. For instance,
when the prediction starting point exceeds half of the cycle
life, the methods described in [14–17] can achieve rela-
tively satisfactory prediction results. However, during the
early stages of battery cycling, RUL predictions tend to
exhibit a wide prediction range, which increases the nega-
tive impact of cumulative errors; in the later stages, if the
same observation and prediction horizons used in the early
stages are applied, the rapid decay characteristics of the
RUL in the battery’s more pronounced nonlinear aging
phase cannot be effectively captured, leading to a signifi-
cant decline in prediction accuracy. Therefore, achieving
high-precision full life-cycle RUL prediction under limited
data conditions has become a core issue in both theoretical
research and practical engineering applications [18–24].
Moreover, in response to these challenges, recent studies
have incorporated adaptive mechanisms into LSTM, pri-
marily focusing on the dynamic optimization of parameters
such as the learning rate or weights [25,26]. For example,
Chong et al. [25] accelerated and stabilized network train-
ing by adaptively adjusting the learning rate. Prajith Pillai
et al. [26] dynamically updated weights based on real-time
data variations to enhance model performance across dif-
ferent aging stages. However, these approaches still
encounter considerable challenges when applied to longer
lifetimes and more complex usage scenarios.

To address these challenges, this paper proposes an
adaptive LSTM-based RUL prediction method for LIBs.
This method integrates the aging mechanisms of LIBs and
dynamically adjusts both the observation and prediction
horizons, providing a more flexible and accurate solution
for RUL prediction.

The primary contributions of this work are summarized
as follows:

• Dimensionality reduction of features using PCA to
construct battery HIs. Based on HIs and K-means
clustering, the battery’s lifecycle is divided into three
distinct aging stages.

• Different observation and prediction horizons are
defined for each aging stage, thus creating an adaptive
LSTM that enhances the accuracy of RUL prediction.

• Validated on NASA and Mendeley datasets and com-
pared with general LSTM, CNN, and Transformer that
have fixed observation and prediction horizons.

The structure of this paper is as follows: Section II
describes the design and training of the adaptive LSTM.
Section III introduces the datasets and data processing.
Section IV presents the aging stage classification.

Section V provides experimental results and analysis.
Section VI introduces the ablation study. Finally, the paper
concludes with the main findings and discusses future
research directions.

II. METHODOLOGY
A. THEORY INTRODUCTION OF LSTM

LSTM is a variant of recurrent neural networks (RNNs) that
is widely used for time series forecasting. The memory cell
is the core component of LSTM architecture, allowing the
network to selectively store and retrieve information across
different time steps. The structure of an LSTM cell is shown
in Fig. 1.

In LSTM networks, the forget gate, input gate and
output gate work together to manage the storage, retrieval
and forgetting of information. The detailed calculation
process is as follows (1)–(6).

f t = σðWf ½ht−1, xt� + bf Þ (1)

it = σðWi½ht−1, xt� + biÞ (2)

~Ct = tanhðWc½ht−1, xt� + bcÞ (3)

Ct = f t � Ct−1 + it � ~Ct (4)

ot = σðWo½ht−1, xt� + boÞ (5)

ht = ot � tanhðCtÞ (6)

where xt is the input, ht is the output, i, o and f represent the
input gate, output gate, and forget gate. Ct denotes the cell
state. σ and tanh are activation functions, withW indicating
the weight matrix and b representing the bias vector.

B. DEFINITION OF ADAPTIVE
OBSERVATION AND PREDICTION
HORIZONS IN LSTM

In traditional LSTM for RUL prediction, a fixed-length
observation horizon for input and a fixed-length prediction

Fig. 1. Structure of LSTM cell [27].
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horizon for output is typically employed [11,13]. However,
due to the pronounced nonlinear characteristics of battery
degradation—especially as degradation accelerates in later
stages—a fixed-horizon LSTM struggle to adapt to this
complexity, bringing reduced prediction accuracy. To
address this, this paper proposes an adaptive LSTM that
incorporates two novel model parameters: the adaptive
observation horizon and the adaptive prediction horizon.
These parameters can be adjusted independently, allowing
the model to generate input and output of varying sizes
based on specific parameter configurations. The definition
of these two parameters and the implementation of adaptive
LSTM will be explained in the following.

Adaptive observation horizon: This parameter controls
the input size of the LSTM, with its length dynamically
adjustable according to the requirements of different aging
stages. Given the varying degradation rates across stages,
selecting an appropriate observation horizon helps to maxi-
mize prediction accuracy. In the run-in and linear aging,
where degradation is gradual, a longer observation horizon
captures long-term trends. In contrast, in the nonlinear
aging, where degradation accelerates, a shorter observation
horizon enables the model to respond quickly to changes in
battery health.

Adaptive prediction horizon: This parameter controls
the output size of the LSTM. Given the varying dynamics of
different aging stages, this parameter should correspond to
the specific aging phase. For instance, shorter prediction
horizons are more suitable for nonlinear aging, whereas
longer horizons are preferable during the linear aging. The
horizon length for the run-in may be positioned between
these two extremes.

Figure 2 illustrates a schematic of the adaptive LSTM
technique with adaptive observation and prediction hori-
zons. After processing, the dataset is scaled and divided into
three clusters using PCA and K-means, where Cluster 0
represents the run-in stage, Cluster 1 indicates the linear
aging stage, and Cluster 2 is the nonlinear aging stage.
Observation (Lo) and prediction (Lp) horizons are indepen-
dently configured according to the three aging stages,
indexed as 0, 1 and 2. Additionally, clustering the data
provides sufficient data points for each stage, effectively
capturing both localized and overall fluctuations. The clus-
tered samples are used as input data for the LSTM to train
and validate the model. Compared to a general LSTM with
only two degrees of freedom, this model offers six degrees
of freedom, providing greater flexibility and superior
predictive performance than the traditional fixed-
horizon LSTM.

III. DATASETS AND DATA
PREPROCESSING

A. INTRODUCTION TO DATASETS

This study utilizes two publicly available lithium-ion bat-
tery datasets: the NASA PCoE dataset [28] and the Men-
deley dataset [29]. These datasets provide comprehensive
data to support battery health assessment and RUL predic-
tion. The NASA PCoE dataset includes multicycle test data
for three representative batteries (Nos. 33, 34 and 36) tested
at a controlled room temperature of 24°C. These batteries
were tested under three distinct operational modes: charg-
ing, discharging, and impedance measurement. The

Fig. 2. A schematic of the constructed LSTM structure.
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batteries gradually aged through repeated charge and dis-
charge cycles, and impedance measurements were used to
analyze internal parameters evolving with aging. Testing
was terminated upon the battery capacity reaching 70% of
its nominal 2 Ah.

The Mendeley dataset is derived from nominally iden-
tical high-energy 18650 lithium-ion batteries, each with a
rated capacity of 2.4 Ah and a nominal voltage of 3.7 V.
This experiment consists of two stages. In the initial stage,
20 preliminary cycles were used to simulate the primary
usage of the batteries and facilitate early battery life pre-
diction. These preliminary cycles involved charging using a
constant-current-constant-voltage (CC-CV) method at 0.5C
and discharging at a constant current of 2C. In the subse-
quent stage, the focus was on studying degradation char-
acteristics under different operating conditions. The 77
batteries were divided into Group I and Group II for further
cyclic degradation tests. Group I, consisting of 22 batteries,
underwent cyclic degradation under fixed charge and dis-
charge currents (1C, 2C or 3C). Group II, comprising 55
batteries, was subjected to cyclic degradation under varying
operating conditions. In this group, the charge current was
randomly changed every five cycles, selected uniformly
among 1C, 2C and 3C, while the discharge current was
consistently set at 3C. All batteries recorded 101 cycles in
the second stage.

B. DATA PREPROCESSING

To meet the requirements of the LSTM network for time
series data, this study standardized the NASA and Mende-
ley battery datasets and converted them into a cycle-based
format to more accurately characterize the degradation
trend of the batteries. Firstly, the StandardScaler method

was used to standardize the data by removing the mean and
scaling to a unit standard deviation, so as to eliminate the
influence of different feature scales on model training and
improve the convergence speed and prediction accuracy of
the model. At the same time, to reduce the computational
complexity, irrelevant parameters such as test time, date
time, and entry points were removed, and only key features
such as charging and discharging voltages, currents, and
capacities were retained to ensure the consistency and
usability of the data.

IV. AGING PHASE IDENTIFICATION
A. HEALTH INDEX CONSTRUCTION BASED
ON PCA

Since the RUL is only obtainable after the battery has fully
aged, it cannot be directly used for classifying the aging
stages of the battery. To address this issue, this study
constructs HIs by applying PCA to the raw feature parame-
ters of the battery (such as voltage, current, capacity, etc.),
which can effectively replace RUL for classifying the
battery’s aging stages.

Figure 3 illustrates the complete process from data
processing to the classification of aging stages, including
PCA for dimensionality reduction, construction of the HI,
and the final classification of aging stages through steps
such as K-means clustering and outlier removal. The goal of
PCA is to extract the most representative principal compo-
nents from the battery data set to reduce the dimensionality
of the data features. Each principal component extracted by
PCA corresponds to a different HI, reflecting distinct
degradation characteristics of the battery. Specifically,
PC1 corresponds to HI1, which is primarily driven by the

Fig. 3. Aging stage classification flowchart.
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battery’s capacity and voltage; PC2 corresponds to HI2,
which is closely related to current and temperature; and PC3

corresponds to HI3, which reflects the changes in tempera-
ture and energy.

To validate whether HIs can effectively capture degra-
dation characteristics related to RUL, this study further
conducted Pearson correlation analysis. For battery B0036
in the NASA dataset, the correlation analysis results are as
follows:

• HI1 and RUL: ρ=−0.9941 (p= 0.0000)

• HI2 and RUL: ρ= 0.0032 (p= 0.9747)

• HI3 and RUL: ρ= 0.0883 (p= 0.3797)

The results show a significant negative correlation
between HI1 and RUL, indicating that HI1 effectively
reflects the degradation trend driven by battery capacity
and voltage. In contrast, HI2 and HI3 show weaker correla-
tions with RUL, with larger corresponding p-values,

suggesting that changes in current, temperature, and energy
have a smaller direct impact on RUL prediction. These
results demonstrate that classifying the battery’s health
stages based on HI1 and HI2 is reasonable, and that HIs
can effectively replace RUL for classifying aging stages.

B. AGING PHASE DIVISION WITH K-MEANS

The aging process of LIBs involves complex physico-
chemical changes, leading to a gradual decline in state of
health over time. As shown in Fig. 4, this process can be
categorized into three main stages: run-in, linear aging,
and nonlinear aging [34]. Each stage represents different
aging mechanisms that the battery undergoes during its
lifespan.

The K-means clustering algorithm was employed to
classify HIs extracted via PCA, facilitating the identifica-
tion of distinct battery aging stages. As illustrated in Fig. 5,
the battery life cycle data were divided into three clusters,
each corresponding to a specific aging stage.

• Run-in stage: Corresponding to the run-in RUL
changes within (1.0, 0.7), where degradation is gradual,
performance remains stable, and changes in health
indicators are minimal.

• Linear aging stage: Corresponding to the linear aging
RUL changes within (0.7, 0.3), where the health status
declines rapidly, degradation accelerates, health indi-
cators fluctuate significantly, and substantial changes
occur within the battery’s internal structure.

• Nonlinear aging stage: Corresponding to the nonlinear
aging RUL changes within (0.3, 0.0), where the bat-
tery’s health is near the failure point, degradation
accelerates further, and health indicators exhibit a sharp
decline.

Through K-means clustering, the characteristic
changes at each life stage of the battery can be more
precisely captured. Based on the features of each stage,
the observation and prediction horizons of the adaptive
LSTM are dynamically adjusted, thereby enhancing pre-
dictive accuracy in nonlinear aging phases.

Fig. 4. Typical evolution of the state of health and aging
mechanisms during battery lifetime [34].

Fig. 5. K-means clustering after elliptical envelop method. ðaÞ Battery B0036 from NASA dataset. ðbÞ Battery 35 from Mendeley
dataset.
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V. EXPERIMENTS AND RESULTS
A. MODEL TRAINING AND EVALUATION

The adaptive LSTM was trained on 70% of the data, with
20% used for testing and 10% for validation. Table I
provides the segmentation of different battery datasets
used for training, testing and validation. Table II lists the
hyperparameters assigned to both the adaptive LSTM and
other models, including the general LSTM, CNN, and
Transformer. A model with three hidden layers was con-
structed, with a learning rate set to 0.001, 200 units in each
hidden layer, an Adam optimizer, mean squared error for
training loss evaluation, and a batch size of 16. The feature
dimensions depend on the battery data. For the adaptive
LSTM, the observation range can be selected from Lo ∈
½1,10� and the prediction range from Lp ∈ ½1,8� (with ðLoÞ
and ðLpÞ both being integers). In contrast, other models use
fixed values for observation and prediction. Additionally,
an early stopping callback is integrated, terminating training
if validation loss shows no improvement within 50 epochs.

The model evaluates the stability and accuracy of
battery RUL predictions using two standard error metrics:
mean absolute error (MAE) and root mean squared error
(RMSE). equation (7) presents the calculation for MAE,
equation (8) presents the calculation for RMSE.

MAE =
1
n

Xn
i=1

jyi −byij (7)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

ðyi − byiÞ2
s

(8)

where yi represents the actual RUL value, byi denotes the
predicted RUL value, and n is the number of samples.

B. RUL PREDICTION FOR BATTERY USING
ADAPTIVE LSTM

The input for the adaptive LSTM includes the formulated
HI and a newly created RUL associated with each HI. The
created RUL values facilitate the implementation of super-
vised learning. Based on the values of the adaptive
observation and prediction horizons, the model predicts
new RUL values. Specifically, assuming Lo and Lp are set
to 4 and 2, respectively, the model takes the first four
values of the processed data frame in the HI series as the
input array and predicts the next two RUL values, which
correspond to the fifth and sixth values in the RUL series.
The RUL is defined as the number of cycles remaining
until the battery’s capacity decreases to 70%–80% of its
initial value, which is typically considered the end of
useful life for a battery. For example, in the case of the
B0036 battery from the NASA dataset, the Cyclemax is 194
cycles, while for batteries in the Mendeley dataset,
Cyclemax is 101 cycles. The RUL is calculated as shown
in equation (9):

RULðiÞ = 1 −
Cyclei

Cyclemax
(9)

where Cyclei represents the current cycle and Cyclemax
denotes the maximum cycle life of the battery.

The adaptive LSTM can leverage adaptive observation
and prediction horizons to forecast aging patterns for each
cluster. This allows the model to test various sets of horizon
values for each cluster and validate their accuracy. Conse-
quently, the horizon values that yield optimal prediction
results for a specific stage are adopted. By applying this
process across all clusters, predictions with minimal aver-
age RUL prediction error can be achieved. Different values
for Lo from ½1, 10� and for Lp from ½1, 8� were selected and
the battery was tested in controlled experiments. For each
combination of Lo and Lp, the RUL prediction that pro-
duced the best results was chosen.

Figure 6 illustrates the RUL predictions of batteries in
various clusters from the NASA and Mendeley datasets
using the adaptive LSTM method. It shows the relationship
between predicted and actual RULs over cycle counts. The
adaptive LSTM demonstrates strong RUL prediction per-
formance across different batteries and clusters. Notably,
for Clusters 0 and 1 of Battery 35, the predicted values
closely match the actual values, with a MAE below 0.03
and a RMSE below 0.05, indicating high prediction accu-
racy. However, Fig. 6(b) and 6(f) reveal significant predic-
tion deviations. Figure 6(b) shows the RUL predictions for

Table I. NASA and Mendeley battery datasets

Dataset Cluster
Training
cycles

Testing
cycles

Validation
cycles

NASA Cluster 0 50 14 7

Cluster 1 72 22 11

Cluster 2 14 4 2

Mendeley Cluster 0 24 7 4

Cluster 1 20 5 2

Cluster 2 20 6 3

Table II. Hyperparameters for model training and testing

Models Adaptive LSTM General LSTM CNN Transformer

Batch size 16 16 16 16

Learning rate 0.001 0.001 0.001 0.001

Hidden layers 3 3 3 2

Epochs 100 100 100 100

Feature dimension 4 4 4 4

Neuronal units 200 200 64 and 100 32 (head size)

Observation horizon 1–10 Single value Single value Single value

Prediction horizon 1–8 Single value Single value Single value
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Cluster 1 of B0036 battery from the NASA dataset. Pre-
dictions are accurate before the 15th cycle, but deviate
notably after, especially for higher cycle values
(e.g., around cycle 100), likely due to the model’s sensitiv-
ity to nonlinear degradation behaviors when a larger pre-
diction window is set. This cluster may be in a nonlinear
degradation phase, warranting further study for better
modeling. Similarly, Figure 6(f) presents the RUL predic-
tions for Cluster 2 of Battery 35 from the Mendeley dataset.
After 14 cycles, the predicted RUL diverges from the actual
values, suggesting a nonlinear degradation stage for this
cluster. Thus, additional model or data adjustments may be
needed to improve predictions in nonlinear regions.

In summary, the adaptive LSTM shows excellent RUL
prediction performance in most cases, especially for Cluster
0 and Cluster 1 of Battery 35. However, in specific cases
like Cluster 1 of Battery B0036 and Cluster 2 of Battery 35,
there are deviations in later cycles, indicating the need for
further model optimization or data adjustments to enhance
prediction accuracy. These results highlight the adaptive
LSTM’s ability to improve RUL prediction accuracy by
adjusting observation and prediction horizons according to
battery aging stages and characteristics, which is a signifi-
cant advantage over other methods.

C. COMPARISON AND ANALYSIS BETWEEN
ADAPTIVE LSTM AND OTHER MODELS

This section provides an in-depth analysis of the perfor-
mance of adaptive LSTM versus other methods in battery
RUL prediction tasks. By conducting experiments on dif-
ferent aging stages using NASA and Mendeley datasets,
this subsection focuses on examining the impact of the Lo
and Lp parameters on predictive accuracy.

Taking battery B0036 from the NASA dataset as an
example, Fig. 7 shows how prediction accuracy changes
under different Lo and Lp combinations in Cluster 0. When
Lo ranges from 2 to 6, the overall error remains relatively
high. However, once Lo exceeds 6, both MAE and RMSE
decrease significantly. When Lo reaches between 8 and 10,
the error values stabilize at a low level, regardless of the Lp
setting. This phenomenon indicates that a smaller Lo is
insufficient for capturing the features of the initial linear
aging stage, while increasing Lo allows the model to more
comprehensively learn the linear capacity aging trend of the
battery, thereby substantially improving prediction
accuracy.

Figure 8 presents the experimental results for the
Cluster 1 stage. At this stage, the battery’s aging trend

Fig. 6. RUL prediction for adaptive LSTM. ðaÞ Cluster 0 for battery B0036 from MASA dataset. ðbÞ Cluster 1 for battery B0036 from
MASA dataset. ðcÞ Cluster 2 for battery B0036 fromMASA dataset. ðdÞ Cluster 0 for battery 35 fromMendeley dataset. ðeÞ Cluster 1 for
battery 35 from Mendeley dataset. ðfÞ Cluster 2 for battery 35 from Mendeley dataset.
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exhibits nonlinear inflection points, making the improve-
ment in accuracy from simply increasing Lo less pro-
nounced than in Cluster 0. An Lo in the moderate range
(approximately 5–7) can significantly reduce MAE and
RMSE but extending Lo beyond this range does not further
decrease the errors. This is because the data in Cluster 1
contain fluctuations and nonlinear characteristics, and an
overly long observation window may average out these
variations, thereby reducing the model’s sensitivity to
recent changes and limiting its potential performance im-
provements. Figure 9 illustrates the results for Cluster 2
stage. At this stage, the battery aging rate and characteristics
become unstable, exhibiting pronounced nonlinear behav-
ior. Increasing Lo at this stage offers limited reduction in
MAE and RMSE. An excessively large Lo incorporates
extensive historical data, which does not significantly aid in

capturing rapid recent changes; instead, it may impede the
model’s ability to identify abrupt variations. Experimental
results indicate that Lo values within the range of 5–7
achieve relatively optimal prediction performance.

By comparing Figs. 7–9, it is evident that Lp affects
prediction errors differently across various aging stages. In
Cluster 0, small to medium Lp values exert minimal impact
on prediction errors. However, excessively large Lp values
slightly increase the error due to the uncertainty introduced
by longer prediction horizons. In Cluster 1, smaller Lp
values, such as Lp= 2 or Lp= 3, are more conducive to
enhancing prediction accuracy.When Lp increases to 6, 7 or
8, both MAE and RMSE rise significantly, attributable to
increased nonlinearity, which renders long-term predictions
more uncertain. Smaller Lp values enable the model to more
effectively track performance changes, thereby mitigating

Fig. 7. Illustration of the effects of different Lo and Lp combinations on prediction accuracy during the Cluster 0 stage. ðaÞMAE trends
for different Lo and Lp combinations in Cluster 0 of battery B0036 from the NASA dataset. ðbÞ RMSE trends for different Lo and Lp
combinations in Cluster 0 of battery B0036 from the NASA dataset.

Fig. 8. Illustration of the effects of different ðaÞ combinations on prediction accuracy during the Cluster 1 stage. ðbÞ MAE trends for
different Lo and Lp combinations in Cluster 1 of battery B0036 from the NASA dataset.
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Fig. 9. Illustration of the effects of different Lo and Lp combinations on prediction accuracy during the Cluster 2 stage. ðaÞMAE trends
for different Lo and Lp combinations in Cluster 2 of battery B0036 from the NASA dataset. ðbÞ RMSE trends for different Lo and Lp
combinations in Cluster 2 of battery B0036 from the NASA dataset.

Fig. 10. Optimal parameter combinations for each aging stage in the NASA dataset for battery B0036. ðaÞ Cluster 0 stage. ðbÞ Cluster 1
stage. ðcÞ Cluster 2 stage.
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long-term prediction bias. In Cluster 2, the benefits of
smaller Lp values are even more pronounced. Larger Lp
values hinder the model’s ability to accurately capture
abrupt future changes, resulting in significantly increased
errors.

Overall, while the impact of Lp on performance is less
substantial than that of Lo smaller Lp values are more
advantageous for accurate predictions during nonlinear
aging stages. Conversely, in the linear aging initial stage,
medium Lp values also achieve relatively good perfor-
mance. To further elucidate the optimal Lo and Lp combi-
nations for each aging stage, Fig. 10 presents the best
parameter combinations based on MAE. The following
optimal combinations were identified. In Cluster 0, the
optimal combination is Lo= 9 and Lp= 4, with an error
of 0.003796. In Cluster 1, the optimal combination is Lo= 7
and Lp= 6, with an error of 0.005271. In Cluster 2, the
optimal combination is Lo= 7 and Lp= 2, with an error of
0.010416. These findings indicate that parameter require-
ments significantly differ across aging stages. Leveraging
this characteristic, an adaptive LSTM can be constructed to
dynamically adjust Lo and Lp based on the current aging
stage, thereby achieving superior prediction performance.

To validate its effectiveness, this study conducts a
comparative analysis of the adaptive LSTM and other
models with fixed parameters, including general LSTM,
CNN, and Transformer, using both the NASA and Mende-
ley datasets. The results indicate (Table III) that in the
NASA dataset, the adaptive LSTM outperforms all other
models across various aging stages, particularly in the
nonlinear degradation phase, where it effectively mitigates
error accumulation caused by increasing nonlinearity. How-
ever, in the Mendeley dataset, the average prediction
accuracy of CNN and Transformer surpasses that of the
adaptive LSTM. Further analysis reveals that while the
adaptive LSTM achieves the best performance in Cluster 0,
its predictive capability in Cluster 1 and Cluster 2 is inferior
to that of CNN and Transformer. Possible reasons for this
discrepancy include the Mendeley dataset exhibiting stron-
ger local temporal patterns, where CNN benefits from
convolutional operations to capture short-term features,
and Transformer leverages self-attention mechanisms to
extract global patterns within short time windows, making

them more effective for this dataset. Additionally, the
smaller scale of theMendeley dataset may limit the adaptive
LSTM’s ability to learn optimal Lo and Lp adjustments, as
its dynamic tuning strategy typically requires a larger
dataset for effective generalization.

VI. ABLATION STUDY
To investigate the impact of various hyperparameters on
model performance, an ablation experiment was conducted,
systematically varying the number of LSTM layers, hidden
units, and activation functions. Table IV summarizes the
experimental configurations, including the baseline model
and several variations. Table V reports theMAE and RMSE

Table III. Comparison of MAE and RMSE errors for adaptive LSTM and other models on NASA and Mendeley
datasets

NASA dataset Mendeley dataset

Type MAE RMSE MAE RMSE

Adaptive LSTM Cluster 0 LojLp=9,4 LojLp=9,4 LojLp=8,3 LojLp=8,3
0.003796 0.004688 0.004355 0.005055

Cluster 1 LojLp=7,6 LojLp=7,6 LojLp=8,2 LojLp=8,2
0.005271 0.005915 0.030128 0.030177

Cluster 2 LojLp=7,2 LojLp=7,2 LojLp=10,2 LojLp=10,2
0.010416 0.011352 0.029218 0.029332

Average error 0.019483 0.021955 0.063701 0.064564

General LSTM Average error LojLp=10,4 LojLp=10,4 LojLp=10,3 LojLp=10,3
0.072832 0.075085 0.08424 0.086133

CNN Average error LojLp=8,4 LojLp=8,4 LojLp=8,2 LojLp=8,2
0.060709 0.064199 0.026112 0.032015

Transformer Average error LojLp=4,6 LojLp=4,6 LojLp=10,3 LojLp=10,3
0.069821 0.076491 0.048651 0.059121

Table IV. Ablation experiment configurations

Experiment
name

LSTM
layers Hidden units

Activation
function

Baseline 3 200 relu

LSTM layers 2,4,5 200 relu

Hidden units 3 50,100,150,250 relu

Activation
function

3 200 tanh, sigmoid,
softmax

Table V. Ablation experiment results

Experiment MAE RMSE

Baseline 0.075213 0.075697

LSTM layers_2 0.084807 0.085356

LSTM layers_4 0.111596 0.111727

LSTM layers_5 0.129514 0.129577

Hidden units_50 0.097496 0.097647

Hidden units_100 0.073599 0.074583

Hidden units_150 0.075698 0.075909

Hidden units_250 0.078008 0.078221

Activation function _ tanh 0.063745 0.064195

Activation function _ sigmoid 0.148890 0.148929

Activation function _ softmax 0.031234 0.031503
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values for each experimental configuration. Based on the
results, the baseline model configuration exhibits lower
error values and superior performance. Altering the number
of LSTM layers does not necessarily lead to performance
improvements. In ablation experiments with hidden units
ranging from 50 to 250, prediction errors were minimized
when the number of hidden units was between 100 and 200.
Notably, the configuration employing the softmax activa-
tion function yielded lower error values compared to the
baseline.

The ablation experiments indicate that 3 LSTM layers
paired with 200 hidden units and the use of a relu activation
function can achieve relatively high prediction accuracy.
However, replacing the activation function with softmax
can further enhance performance, thereby providing valu-
able insights for subsequent network architecture design
and hyperparameter selection.

VII. CONCLUSIONS AND OUTLOOK
To investigate the impact of aging characteristics at different
stages of LIB aging on prediction accuracy, this study
proposes a RUL prediction method for LIBs based on an
adaptive LSTM. A HI is constructed using PCA based on
battery state monitoring data. Considering the aging char-
acteristics of LIBs, an unsupervised clustering method is
used to classify theHI, dividing the battery aging process into
distinct stages: the run-in, linear aging, and nonlinear aging.
Different observation and prediction horizons are defined for
each stage, leading to the development of an adaptive LSTM
to better capture and interpret the features of each aging stage
and their influence on prediction accuracy.

Experimental results show that, in the NASA dataset,
the adaptive LSTM reduces the MAE and RMSE by 0.042
and 0.043, respectively, compared to the CNN, demonstrat-
ing its effectiveness in mitigating error accumulation during
the nonlinear aging stage. However, in the Mendeley dataset,
the average prediction accuracy of the adaptive LSTM is
slightly lower than that of the CNN and Transformer models.

The adaptive LSTM effectively addresses the varia-
tions in LIB characteristics across different aging stages. At
the same time, these findings provide deeper insights into
the advantages and limitations of the adaptive LSTM. In
future work, we will explore partitioning the HI into
different aging stages for RUL prediction and integrate
physical mechanisms with deep learning methods, as out-
lined in our previous work [35], to optimize the Lo and Lp
parameters for enhanced performance across varying aging
stages.
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