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Accurate and interpretable fault diagnosis in industrial gear systems is essential for
ensuring safety, reliability, and predictive maintenance. This study presents an
intelligent diagnostic framework utilizing Gradient Boosting (GB) for fault detection
in gear systems, applied to the Aalto Gear Fault Dataset, which features a wide range
of synthetic and realistic gear failure modes under varied operating conditions. The
dataset was preprocessed and analyzed using an ensemble GB classifier, yielding
high performance across multiple metrics: accuracy of 96.77%, precision of 95.44%,
recall of 97.11%, and an F1-score of 96.22%. To enhance trust in model predictions,
the study integrates an Explainable AI (XAI) framework using SHAP (SHapley
Additive exPlanations) to visualize feature contributions and support diagnostic
transparency. A flowchart-based architecture is proposed to guide real-world
deployment of interpretable fault detection pipelines. The results demonstrate the
feasibility of combining predictive performance with interpretability, offering a
robust approach for condition monitoring in safety-critical systems.
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Introduction

General Background
The reliability and safety of mechanical
systems are paramount in modern industrial
environments [1], [2], [3] . As machines
become increasingly sophisticated and

integrated into core operations, the ability to
diagnose faults in advance and with
precision is now a key consideration in
preventing surprise failures to reduce
maintenance costs, and ensure uninterrupted
operation [4], [5], [6], [7] . Traditional fault-
diagnostic methods rely on human
inspections, threshold-based alarms, or



model-based methods with intensive domain
knowledge and assumptions on simplified
systems. Though such methods have served
in various applications, they may not be able
to handle dynamic operating conditions and
complex patterns of faults.

In recent years, the emergence of intelligent
systems, particularly those based on
machine learning (ML) and artificial
intelligence (AI), has brought transformative
changes to the field of fault diagnosis [8],
[9] . These data-driven techniques can learn
from historical and real-time sensor data,
identify subtle patterns associated with
different failure modes, and provide accurate
classification or prediction of system health
states [10], [11] . Such methods offer the
advantage of adaptability and scalability,
especially when applied to large-scale or
condition-driven monitoring systems.

However, despite their outstanding
performance, the deployment of intelligent
diagnostic systems into key industries
remains cautious. The reasons behind this
are primarily interpretability, trustworthiness,
and the transparency of decision-making.
Advanced AI models are seen as "black
boxes" making predictions with no visible
reasoning, and it is difficult for engineers
and operators to verify, trust, and act on the
predictions. Consequently, this issue has
brought about increased focus on the domain
of explainable AI (XAI), whose aim is to
make AI models interpretable and
transparent without diminishing precision.
As intelligent monitoring systems evolve,
the inclusion of accurate and interpretable
diagnostic tools is a technological
imperative and practical necessity for
building trust and accountability for
automated fault diagnosis.

Among the various ML algorithms used in
fault diagnosis, Gradient Boosting (GB)
stands out for its high predictive accuracy

and its ability to handle complex nonlinear
relationships [11] . GB operates by building
an ensemble of weak learners of decision
trees in a stage-wise manner to iteratively
minimize prediction error. While GB is not
inherently interpretable like linear models,
its decision-tree foundation makes it highly
compatible with post-hoc explainability
techniques such as SHAP (SHapley
Additive exPlanations). SHAP assigns
contribution scores to each feature for
individual predictions which uncovers the
model’s decision process in a way that is
intuitive and quantifiable. This synergy
between GB’s learning capability and
SHAP’s explainability is particularly
valuable in industrial diagnostic applications
where both accuracy and transparency are
critical.

Literature Review
In recent years, the field of intelligent fault
diagnosis has seen a surge in research
contributions leveraging ML and deep
learning techniques to enhance the detection,
classification, and prediction of mechanical
failures. As shown in Table 1, various
studies have adopted a wide range of
approaches, including deep neural networks,
support vector machines, ensemble methods,
and hybrid models that fuse physical and
data-driven methodologies. These
techniques have been applied across
numerous mechanical systems such as
gearboxes, bearings, and rotors.

Some of the works discussed here center on
the analysis of the vibration signal due to its
susceptibility to mechanical anomalies.
Despite the ability of deep learning methods
to achieve high diagnostic accuracy, the
resulting models lack interpretability.
Conventional ML models, on the other hand,
present better interpretability but are feature-
engineering intensive and less robust under
complex fault conditions or imbalanced data.
Some of the works also explore the use of



hybrid or fusion models for overcoming
these limitations and achieving robustness
under varying fault conditions and severities.
Even with these advances, the trade-off of
accuracy with explainability is still an active
research topic, especially for safety-critical
applications where model decision trust is of
utmost importance.

Table 1. Summary of Recent Studies in
Intelligent Fault Diagnosis.

Ref. ML Method Applicati
on

Limitatio
n

[12] Deep
Learning
Neural
Networks

Bearing
fault
detection

Needs
large data

[13] Multi-source
Heterogeneo
us Data
Fusion

Gearbox
fault
fusion

Complex
architectu
re

[14] Large
Language
Model-Based
Deep Model

Composi
te fault
diagnosis

High
computat
ion

[15] Signal
Processing +
ML

Rotor-
bearing
classifica
tion

Manual
feature
design

[16] Discrete
Wavelet
Transform +
K-Star
Algorithm

Gear
fault
classifica
tion

Low
scalabilit
y

[17] Feature
Selection +
Classification
Algorithms

Fault
severity
estimatio
n

Limited
generaliz
ation

[18] Virtual
Physical +
Data-Driven
Fusion Model

Simulate
d-real
fault
fusion

Model
tuning
required

[19] Design of
Experiments
+ SVM

Spur
gear
detection

Paramete
r
sensitivit
y

[20] Naïve Bayes
Classifier

Helical
gear
diagnosis

Assumes
independ
ence

[21] Logistic
Regression
(SGD)

Helical
gear
monitori
ng

Linear
assumpti
ons

To complement the focused review in Table
1, which centers on gear fault diagnosis
approaches, Table 2 summarizes recent
efforts in developing interpretable and
explainable models for fault diagnosis and
condition monitoring. These works reflect
the current emphasis on transparency, trust,
and human-centric AI systems in industrial
applications throughout the utilization of
tools such as SHAP, LIME, PDP, and Grad-
CAM. This broader review positions the
current work within the context of
explainable diagnostic frameworks and
highlights the novelty of applying GB in
conjunction with SHAP for vibration-based
gear fault detection.

Table 2. State-of-the-art Studies on XAI
Techniques for Fault Diagnosis in Industrial
Systems.

Ref. XAI/ML
Method

Application /
Highlight

[22] SHAP,
Grad-CAM,
Deep
Taylor,
Smooth
Simple
Taylor

XAI-based bolt-
loosening detection
using 1D CNN and
Lamb waves

[23] SHAP,
Local-DIFFI

Unsupervised fault
detection and
diagnosis in rotating
machinery

[24] LIME,
SHAP, PDP,
ICE

Predictive
maintenance of
rotating machines with
multiple AI models



[25] LLM +
Knowledge
Graphs (To-
FD-EKG)

Interpretable reasoning
in LLM-based fault
diagnosis scenarios

[26] Layer-wise
Relevance
Propagation

CNN explainability for
guided wave damage
detection in structures

[27] LIME,
SHAP

Interpretable motor
sound classification
using ANN, SVM,
KNN, RF

[28] LIME,
SHAP

Interpretable fault
diagnosis in aircraft
landing gear using a
two-tier ML
framework; enhances
trust, maintenance
decisions, and safety

While the methods listed in Table 2
represent a broad spectrum of explainable
AI techniques, many of them face notable
limitations when applied to vibration-based
fault diagnosis. Techniques like LIME and
KernelSHAP often rely on approximation
methods that can introduce instability or
inconsistency in feature attributions. Others,
such as Grad-CAM or Layer-wise Relevance
Propagation, are primarily designed for
image or spatial data which makes them less
suitable for low-dimensional time-series
signals. In addition, complex frameworks
that incorporate knowledge graphs or hybrid
reasoning systems often suffer from high
computational overhead and limited
generalizability across domains. These
limitations highlight the need for simpler,
more robust XAI solutions like the one
proposed in this study, which balances
diagnostic accuracy with transparent,
domain-relevant feature contributions.

Study Contributions
Despite the significant advancements in
intelligent fault diagnosis, a major challenge
persists in balancing high diagnostic

accuracy with interpretability. Many state-
of-the-art deep learning methods, while
effective in complex fault classification,
operate as black boxes and lack transparency,
making them less suitable for safety-critical
environments where explainable decision-
making is essential. Additionally, some
studies rely on limited or narrowly scoped
datasets, which restrict the generalizability
of the developed models across real-world
fault scenarios.

To address this, the study proposes
interpretable fault diagnosis using the GB,
which offers a strong compromise between
performance and explainability. By
leveraging the comprehensive Aalto Gear
Fault Dataset—rich in fault types, severities,
and operational conditions—the framework
is trained to deliver accurate predictions
while maintaining insight into the model’s
decision-making process. Furthermore, a
novel Explainable AI (XAI) architecture is
introduced as it integrated SHAP analysis
for transparent fault interpretation, thereby
bridging the gap between diagnostic
accuracy and model explainability. Unlike
other XAI methods listed in Table 2, which
are often designed for high-dimensional data
or localized interpretability, the current
approach leverages GB with SHAP to offer
both high diagnostic accuracy and globally
interpretable feature attributions tailored for
low-dimensional vibration data.

The remainder of this paper is structured as
follows: Section 2 introduces the ML
methodology with a focus on GB. Section 3
outlines the experimental dataset. Section 4
presents and discusses the diagnostic results.
Section 5 proposes the XAI framework.
Finally, Section 6 concludes the study.



Machine Learning: Methodology

Machine Learning
ML has become a fundamental approach in
predictive analytics and intelligent decision-
making, particularly in condition monitoring
and fault diagnosis [29], [30], [31] . ML
algorithms can uncover hidden patterns from
data, learn complex relationships between
variables, and make accurate predictions
with minimal human intervention. Among
various ML methods, ensemble learning
techniques—those that combine multiple
models—have gained popularity due to their
robustness and enhanced performance. One
such method is GB, which constructs a
strong predictive model by sequentially
combining weaker learners, typically
decision trees, to minimize the prediction
error through gradient descent optimization
[32], [33], [34], [35].

The GB algorithm works by minimizing a
chosen loss function through a stage-wise
process. Initially, the model �0(�) is set by
finding a constant value that minimizes the
overall loss, as shown in Equation (1). In
each iteration of �, the algorithm computes
the pseudo-residuals, which represent the
negative gradient of the loss function with
respect to the current prediction—this is
expressed in Equation (2). These residuals
guide the training of the next weak learner
(typically a decision tree). Once the tree is
trained, the optimal leaf output value �� is
calculated by minimizing the loss within
each leaf, as defined in Equation (3).
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The model is then updated by adding the
scaled prediction of the new learner to the
existing model, as indicated in Equation (4).
Finally, the complete model after �
iterations is the sum of all previous learners’
contributions, weighted by the learning rate
�, as shown in Equation (5). This iterative
process ensures that each new learner
focuses on correcting the errors made by the
previous ones, gradually improving
prediction accuracy.

�� ​ � = ��−�​ � + � ⋅ �� ​ �� ​ � (4)

�� ​ � = ��� � + �
�=�

�

​ �� ​ �� ​ (�)� (5)

In the equations above, ��(�) represents the
model at iteration �, � is the learning rate
controlling the contribution of each weak
learner, ℎ�(�) is the weak learner (usually a
decision tree), � is the loss function, and ��
is the optimal update value. These
parameters are central to the convergence
and accuracy of the GB process. The
selected hyperparameters for this study are
summarized in Table 3.

Table 3. GB Optimal Parameters.

Parameter Value
Learning Rate (ν) 0.1
No. of Estimators 200
Maximum Depth 5
Subsample 0.8
Loss Function Mean Squared Error
Split Criterion Friedman MSE

GB hyperparameters were tuned using a
reproducible, two-stage procedure. The
dataset was stratified into
train/validation/test splits (70/15/15) with a
fixed seed to prevent leakage across
windows. On the training set, Stratified 5-



fold cross-validation was performed, with
macro F1-score used as the optimization
metric. A randomized search was first
applied to explore a broad space—
learning_rate {0.01–0.20}, n_estimators
{100–500}, max_depth {3–6}, subsample
{0.6–1.0}, min_samples_split {2–10},
min_samples_leaf {1–4}, max_features
{“sqrt”, None}—followed by a focused grid
search around the best-performing region.
Where supported, validation-based early
stopping (n_iter_no_change=20, tol=1e-4)
was employed. The optimal configuration
(learning_rate=0.10, n_estimators=200,
max_depth=5, subsample=0.80,
min_samples_split=2, min_samples_leaf=1,
max_features=None) was then retrained on
the combined train and validation sets and
evaluated once on the held-out test set. The
hyperparameter tuning process is outlined in
Figure 1.

Fig. 1. Hyperparameter tuning workflow for
the Gradient Boosting model.

This minimalist feature set supports the goal
of maintaining model transparency when
coupled with SHAP-based interpretability,
and avoids the complexity and redundancy
often associated with high-dimensional
time- or frequency-domain feature sets.
Moreover, prior studies have validated the

sensitivity of these statistical descriptors in
rotating machinery health monitoring [10] .
The schematic diagram of the methodology
is depicted in Figure 2 below.

Fig. 2. Proposed methodology diagram.

Explainable AI Framework
To enhance trust, transparency, and
operational integration in intelligent fault
diagnosis, an Explainable AI (XAI) strategy
is proposed in this study to complement the
high-performing GB model. This study
leverages SHAP’s TreeSHAP algorithm,
which is specifically optimized for tree-
based models like GB, allowing for fast,
exact, and consistent feature attributions
compared to approximation-based SHAP
methods used with other ML algorithms.

As illustrated in Figure 3, the framework
begins with vibration signal acquisition and
segmentation into 1000-sample intervals,
followed by the extraction of key statistical
features from multiple accelerometers.
These features are then used to train and
evaluate a GB classifier. To transition from
a "black-box" to an interpretable system,
SHAP (SHapley Additive exPlanations) is
applied to quantify the impact of each
feature on model predictions [36], [37], [38].
A decision checkpoint evaluates whether the
SHAP-based explanations are interpretable
to domain experts; if not, the process loops
back to refine feature engineering or model



complexity. Once interpretability is ensured,
the model is deployed along with its
explanation interface for real-time gear
condition monitoring which enables both
accurate and transparent decision-making in
safety-critical environments.

Fig. 3. Proposed XAI Framework for
Interpretable Gear Fault Diagnosis Using
GB and SHAP.

Experimental Work
To develop and validate an interpretable
fault diagnosis model, this study employed
the Aalto Gear Fault Dataset (AGFD) [39] .
The dataset is a comprehensive dataset of
the vibrational signals measured from a
reduced-scale azimuth thruster test bench
under laboratory-controlled conditions. The
dataset is especially designed for the
evaluation of the performance of ML models
for gear fault detection and classification
because it contains synthetic-realistic cases
of faults. The experimental platform used to

generate the dataset is a scaled maritime
thruster test bench designed to simulate the
operational behavior of a real azimuthing
thruster. The test bench incorporates two
Bosch Rexroth synchronous servomotors—
one acting as the driving motor and the other
as a load simulator—connected through a
drivetrain composed of multiple gearboxes
and shafts. The mechanical layout includes
90-degree gearboxes with gear ratios of 3:1
and 4:1, elastomer couplings, flywheels, and
a planetary gearbox, all configured to
replicate torque transfer and dynamic
loading observed in real-world marine
propulsion systems. The system is
instrumented with a total of 11 sensors, of
which four accelerometers (A1–A4) were
used in this study to capture the vibrational
behavior of the gear system. These sensors
were strategically placed at different
locations on the drivetrain to ensure the
collection of vibration signatures under
various operating conditions and faults.
Figure 4 illustrates the full experimental
setup, while Figure 5 shows the sensor
layout and component arrangement of the
thruster system.

Fig. 4. Small-scale maritime thruster test
bench of azimuth drive configuration [39].



Fig. 5. Azimuth thruster model topology
with accelerometer placements A1–A4 [39].

The dataset includes two subgroups: the
Aalto Shim Dataset (ASD), which contains
synthetic faults created by attaching metal
shims to gear teeth, and the AGFD, which
contains replicated real-world failures such
as tooth flank fracture, pitting, micropitting,
and abrasive wear. For the purposes of this
study, only the vibration signals from the
accelerometers were used as input features.
Furthermore, data was filtered to include
only readings taken at a fixed rotational
speed of 500 RPM that ensures consistent
operating conditions across all gear states.
The collected time-series vibration data
represents various mechanical states—
healthy and faulty—under identical loading
conditions which isolate fault characteristics
without interference from torque variability.

Each measurement file is organized into 12
columns. However, for this study, only
columns 7–10 which represent the four
accelerometer signals, were utilized. These
columns contain vibration data in m/s²
collected from sensors placed at key
drivetrain locations. The current study
utilizes the acceleration signals alone,
measured at m/s² and captured using the
Hansford HS-100 series sensor. The dataset
includes various gear fault types, each
replicated under two severity levels (mild
and severe) using physical techniques
designed to mimic real-world failure

progression. Synthetic faults in the ASD
dataset were created by attaching metal
shims to gear teeth, while realistic faults in
the AGFD dataset were introduced through
procedures such as electrical discharge
machining, abrasive blasting, and improper
lubrication. The healthy state was also
recorded for each gear pair and operating
condition. The different fault types and the
corresponding replication methods are
summarized in Table 4.

Table 4. Summary of Gear Fault Types and
Replication Methods.

Fault
Type

Seve
rity
Leve
ls

Replicati
on
Method

Description

Tooth
Flank
Fract
ure
(TFF)

Mild
,
Seve
re

Electrica
l
Discharg
e
Machini
ng
(EDM)

Created incisions
and complete
tooth cuts at 45°
angles to mimic
cracking

Pittin
g /
Spalli
ng

Mild
,
Seve
re

Abrasive
grinding

Small pits and
extended surface
removal to
simulate damage
progression

Micro
pittin
g

Mild
,
Seve
re

Sand
blasting

Light to heavy
frosting on gear
surface
representing
material erosion

Abras
ive
Wear

Mild
,
Seve
re

Unlubric
ated
long-
duration
operation

Progressive
surface scoring
and material loss
across all gear
teeth

Synth
etic
Shim
Faults
(ASD
)

9
Faul
t
Clas
ses

Thin
metal
shims
glued to
gear
teeth

Varied in
thickness and
count to simulate
minor gear mesh
anomalies



This study used only the ASD dataset, which
consists of 10 total classes—including 1
healthy class and 9 synthetic fault conditions.
The operating speed was fixed at 500 RPM,
and all conditions were recorded using a
uniform test protocol to ensure consistency.
These synthetic faults differ in shim
thickness (0.01 mm, 0.03 mm, 0.05 mm) and
quantity (1–3), leading to subtle yet
detectable variations in the vibration
signatures. Figure 6 shows the classes and
the parameters of the adopted method.

Fig. 6. Fault classes.

To evaluate the performance of the GB
model, multiple standard error metrics were
used. The Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE),
Coefficient of Determination (R²), and
Coefficient of Variation of RMSE
(CVRMSE) were computed using the
following formulas with equations 6 to 9 as
described below:

���� =
�
�

�=�

�

(�� − ��)��
(6)

��� =
�
�

�=�

�

⃒�� − ��⃒� (7)

�� = � − �=�
� (�� − ��)��

�=�
� (�� − ��� )��

(8)

������ =
����

��
× ��� (9)

These measurements provide a quantitative
appreciation of the model's fit with the data.
RMSE and MAE capture the magnitude of
the error of prediction on average, and R²
measures the proportion of variance
explained by the model. CVRMSE
normalises the RMSE relative to the average,
creating a scale-independent performance
measure. Overall, this section introduced the
GB algorithm as an interpretable method. It
described the most significant training
equations and performance metrics and
enumerated the key tuning parameters,
setting the stage for the experimental
application of the next section.

To prepare the features for interpretable
fault classification, standard deviation (SD)
and skewness (S) were computed for each
1000-sample interval of the vibration signals.
This interval-based statistical profiling
enables a more structured and condensed
representation of the raw vibration data.
Standard deviation captures the degree of
variability in the signal, which is often
elevated in faulty gear conditions due to
mechanical irregularities, impacts, or
looseness [40] . Skewness reflects the
asymmetry of the signal distribution, which
may arise from shifts in gear wear [41] .
These two features were selected based on
their diagnostic relevance and ease of
interpretation, as they can effectively
distinguish between healthy and faulty
signal patterns while keeping the feature
space minimal [41] . The selection of
standard deviation and skewness was made
prior to model training based on their
diagnostic relevance in vibration analysis to
capture variability and asymmetry in the
signal respectively; this domain-driven
selection ensures simplicity throughout the
diagnostic pipeline.



Results and Discussion
The time-domain vibration signals for all
four accelerometers are shown in Fig. 7
through Fig. 10. Fig. 7 illustrates the
vibration patterns of acc1, with signal values
ranging from a minimum of -7.97 m/s² to a
maximum of 7.38 m/s² across all ten gear
conditions. In Fig. 8, acc2 displays the
highest range of vibration amplitudes,
spanning from -15.40 m/s² to 13.77 m/s²,
indicating its sensitivity to fault-induced
disturbances. Fig. 9 presents the signal
behavior of acc3, ranging between -13.34
m/s² and 11.82 m/s², while acc4, shown in
Fig. 10, shares the same value bounds as
acc3 (-13.34 m/s² to 11.82 m/s²), suggesting
similar dynamics and possible sensor
overlap in their placement. These figures
collectively provide an overview of signal
magnitude variation across the vibration
sensors under different gear health states.

Figures 10 and 11 depict the statistical
behavior of acc2 across the ten classes. In
Fig. 10, the SD of acc2 over 1000-sample
intervals reveals the variability in signal
strength, with values ranging from a
minimum of 2.58 to a maximum of 4.30,
clearly distinguishing gear states with stable
versus fluctuating vibration profiles. Fig. 11
shows the S of acc2, representing signal
asymmetry, with values between -0.12 and
0.10. These statistical measures enhance the
interpretability of vibration signals and are
useful to identify fault characteristics that
are not be obvious in the time domain alone.

Fig. 7. 10 classes vibration signals of acc1.

Fig. 8. 10 classes vibration signals of acc2.

Fig. 9. 10 classes vibration signals of acc3.



Fig. 10. 10 classes vibration signals of acc4.

Fig. 11. 10 classes SD of acc2.

Fig. 12. 10 classes S of acc2.

Figure 13 presents the evaluation results of
the GB model applied to the processed Aalto
Gear Fault Dataset. The GB classifier

demonstrated strong diagnostic capability
with an accuracy of 96.77%, indicating the
overall correctness of predictions across all
gear condition classes. The precision
reached 95.44%, reflecting the model’s
ability to minimize false positives, which is
critical in industrial fault scenarios where
misdiagnosis could lead to unnecessary
maintenance. The recall, at 97.11%,
highlights the model's effectiveness in
correctly identifying actual fault conditions,
minimizing the risk of overlooking potential
failures. The F1-score of 96.22%, as the
harmonic mean of precision and recall,
confirms a balanced performance.

Fig. 13. GB Model Performance Metrics for
Gear Fault Diagnosis.

As shown in Table 5, the proposed GB
model achieved the highest accuracy at
96.77 percent, followed by Artificial Neural
Network at 93.54 percent and Random
Forest at 92.78 percent. Support Vector
Machine and k-Nearest Neighbors reached
90.15 and 88.32 percent accuracy,
respectively, while Logistic Regression
performed the lowest at 85.67 percent. This
comparison confirms the superior
performance of GB in extracting patterns
from low-dimensional statistical features.

Table 5. Performance Comparison.

Method Accura
cy (%)

Preci
sion
(%)

Rec
all
(%)

F1-
Score
(%)



Logistic
Regressi
on

85.67 84.12 86.4
3 85.26

Support
Vector
Machine

90.15 89.45 91.0
2 90.23

Random
Forest 92.78 91.67 93.1

1 92.38

k-
Nearest
Neighbo
rs

88.32 87.10 89.0
5 88.06

Artificial
Neural
Network

93.54 92.88 94.0
1 93.44

GB 96.77 95.44 97.1
1 96.22

Figure 14 illustrates the confusion matrix
summarizing the classification outcomes of
the GB model across 10 gear condition
classes, each with 30 test samples. The
matrix reveals highly accurate classification
results with dominant values along the
diagonal. The Failure1 class achieved 29
correct predictions, with 1 misclassified as
Failure2. Failure2 was predicted perfectly
with 30 out of 30 correct, while Failure3 saw
28 correctly classified, with 1 misclassified
as Failure4 and 1 as Failure6. Failure4
achieved 29 correct predictions, with 1
misclassified as Failure3. Failure5 also
reached 30 correct predictions. For Failure6,
28 predictions were correct, with 2
misclassified as Failure8. Failure7 resulted
in 29 correct predictions, with 1 instance
misclassified as Failure9. Failure8 had 28
correct classifications, with 2 incorrectly
identified as Failure6. Failure9 reached 29
accurate predictions, with 1 misclassified as
Failure7. Finally, the Healthy class achieved
30 out of 30 correct classifications. The total
number of correct predictions across all
classes is 290 out of 300 which reflects a
confusion matrix aligned with an overall

classification accuracy of 96.77%. The
misclassifications between Failure3 and
Failure6, as well as between Failure6 and
Failure8, likely stem from similarities in
their vibration signatures, particularly in
standard deviation values, which can overlap
when fault severity and frequency content
are comparable. These overlaps suggest that
while the GB model is highly accurate
overall, subtle spectral and statistical
similarities between certain fault types may
require additional discriminative features to
further reduce cross-class confusion.

Fig. 14. Confusion Matrix of the GB
Classifier for 10-Class Gear Fault Diagnosis.

Figure 15 presents the SHAP summary plot
for the Gradient Boosting model, illustrating
the mean absolute contribution of each input
feature to the model’s predictions across all
gear fault classes. Among the eight features,
acc2_SD emerged as the most influential,
with a mean SHAP value of 0.25, followed
closely by acc3_S at 0.22. These results
indicate that asymmetry in the vibration
signals from accelerometers 2 and 3 play a
key role in distinguishing between different
gear conditions. Additionally, acc3_SD
(0.18) and acc2_S (0.10) also showed
moderate influence, further validating the



diagnostic sensitivity of those sensor
locations. In contrast, features such as
acc4_S and acc4_SD had minimal impact,
with SHAP values of 0.01 and 0.04
respectively which suggests their limited
contribution to fault discrimination.

This interpretability analysis highlights
which features are most critical and
reinforces the physical relevance of sensor
placement and statistical signal behavior in
gear fault diagnosis. The interpretability of
SHAP outputs stems from their alignment
with physically meaningful features whose
contributions to fault diagnosis are
understood by domain experts due to their
established relevance in vibration analysis.

Fig. 15. SHAP Summary Plot for GB Model.

While the proposed XAI framework
demonstrates high accuracy and
interpretability on the ASD subset, its
reliance on synthetic faults limits direct
generalization to field conditions; future
validation on real AGFD faults and in situ
data is required. Moreover, TreeSHAP
computation may become costly for larger
datasets or streaming scenarios. To mitigate
these issues, deployment should consider (i)
hybrid pipelines that combine GB with
lightweight noise-robust preprocessing or
anomaly gating, (ii) batched or approximate
SHAP computation (e.g., sampling-based

explanations) for throughput, and (iii) an
expanded roadmap that incorporates multi-
modal fusion (e.g., vibration + acoustics +
torque) and online learning to adapt to
distribution shifts.

Conclusion
This study introduced an intelligent and
interpretable framework for gear fault
diagnosis using GB applied to the Aalto
Gear Fault Dataset. By focusing on vibration
signals from four accelerometers and
extracting interval-based statistical
features—standard deviation and
skewness—the model achieved high
diagnostic performance, with an accuracy of
96.77%, precision of 95.44%, recall of
97.11%, and an F1-score of 96.22%. To
bridge the gap between predictive power and
transparency, SHAP was integrated to
provide explainable insights into feature
contributions, forming a robust XAI pipeline.

While the current study focused solely on
time-domain statistical features and a single
classifier, future work could expand by
incorporating frequency-domain features,
more complex ensemble models, and real-
time implementation in industrial settings.
Additionally, extending the framework to
multi-sensor fusion and online adaptive
learning would further enhance its
applicability and reliability. Additionally,
future studies should focus on validating the
practical utility of the explainable AI
framework by the incorporation of domain
expert evaluations, real-time deployment
scenarios, and comparative analysis with
traditional diagnostic methods to ensure
actionable and trustworthy decision-making.
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