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Ensuring the safe operation of liquid rocket engine (LRE) systems requires reliable
fault diagnosis, yet the scarcity of real fault data limits deep learning applications
despite their modeling strengths. We address this by developing an offline detection
method based on piecewise stationary Vector Autoregressive (VAR) modeling,
employing a two-phase approach that first identifies candidate change points through
block fused LASSO regularization and subsequently refines them using Smoothly
Clipped Absolute Deviation (SCAD) regularization to leverage its asymptotic
unbiasedness. Validated on a high-fidelity LRE simulation dataset (26 sensors, 2000
time points) with injected faults including turbopump efficiency degradation,
hydrogen turbine leakage, and valve failures across 48 scenarios, our method
achieves 100% precision (£50-sample tolerance) in fault timing detection without
requiring training data, demonstrating superior performance to conventional ARMA
models while overcoming the data dependency of neural networks.
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I INTRODUCTION

The LRE, often referred to as the "heart" of
a spacecraft, is a critical component that
ensures the flight and safe launch of the
rocket. However, LREs are required to
operate for extended periods under harsh
conditions such as high temperatures, high
pressures, strong corrosion, and high energy
release, making them prone to failures
within the spacecraft system. If a LRE fails
during ignition or flight, it can lead to severe
accidents such as explosions in a very short
time frame (50ms), causing not only

significant economic losses but also
endangering the lives of astronauts.
Therefore, research on fault diagnosis
technology for LREs is particularly
important. The detection of abrupt changes
in multiple time series is a typical problem
in the field of fault diagnosis for LREs.

Recent years, LRE fault detection
approaches are divided into three types by
some scholars[1]: signal processing-based
approaches, model-driven approaches, and
data-driven approaches. Data-driven fault
detection methods involve the direct



processing of sensor-measured operational
data from LRE. Alternatively, data driven
techniques—such as correlation functions or
autoregressive moving average (ARMA[2])
models—may extract signal features (e.g.,
variance, frequency) to diagnose potential
engine failures. Deng et al.[3] developed an
ARMA model-based fault detection method
for the main-stage fault diagnosis of high-
thrust hydrogen-oxygen staged-combustion
cycle engines, and successfully validated the
reliability of the approach through hardware-
in-the-loop simulation. Xue et al.[4]
developed a real-time fault simulation
system based on ARMA models for reusable
liquid rocket engines, conducting simulation
tests on typical fault scenarios and validating
the algorithm's applicability through
hardware-in-the-loop testing. However,
since ARMA processes each signal
independently, it is prone to overlooking
system-level fault characteristics.

The VAR model was proposed by
Christopher Sims in 1980 as an innovation
to traditional simultaneous equation
models[5]. VAR model is widely applied in
fields such as economics[6][7][8]and
engineering[9]. The VAR model can be seen
as a multivariate extension of the univariate
AR model. By capturing the dynamic
relationships between multiple time series
variables, the VAR model can jointly predict
the future values of these variables.

However, high-dimensional VAR models
suffer from the issues of having a large
number of parameters and being
computationally challenging to solve.
Richard et al.[10] proposed a two-stage
method to fit sparse VAR (sVAR) models
where many AR coefficients are zero. In the
first stage, non-zero AR coefficients are
selected based on estimates of partial

spectral coherence (PSC) and the use of BIC.

PSC can be used to quantify the conditional
relationships between marginal series in

multivariate processes. A second refinement
stage is then applied to further reduce the
number of parameters. To address the issue
of high-dimensional VAR models requiring
the estimation of a large number of
parameters and potential inference problems,
Monica Billio et al.[11] proposed a new
Bayesian nonparametric (BNP) Lasso prior
(BNP-Lasso) for high-dimensional VAR
models, which can improve estimation
efficiency and prediction accuracy. In 2022,
Aramayis et al.[12] improved the sparse
VAR model (msVAR) by using time series
graphical lasso (TSGlasso) for sparse
inverse spectral density matrix estimation,
avoiding direct high-dimensional matrix
inversion, and introducing false discovery
rate (FDR) controlled multiple hypothesis
testing methods in the model refinement
stage, thereby improving the two-stage
sparse VAR framework proposed by Davis
et al.

Despite these advancements, existing
methods still face several limitations in the
context of LRE fault diagnosis. Signal
processing and ARMA-based approaches
often overlook system-level dependencies.
Traditional VAR methods, while able to
capture multivariate dynamics, encounter
computational difficulties in high
dimensions and strictly require global
stationarity—a condition rarely satisfied in
real LRE operations, where signals often
exhibit piecewise stationarity across
different stages (e.g., start-up ignition,
steady combustion, shutdown
depressurization). Moreover, most existing
VAR-based fault detection methods rely on
LASSO regularization, which enforces
sparsity but introduces bias by excessively
shrinking large coefficients, thereby limiting
detection accuracy.

To address these issues, this study
introduces a segmented VAR framework
that incorporates the piecewise stationarity



assumption and improves detection
performance by replacing LASSO with
SCAD regularization. The SCAD penalty
alleviates the bias problem of LASSO,
ensuring asymptotic unbiasedness and more
accurate identification of significant
variables while maintaining sparsity. In this
way, our method specifically addresses two
major shortcomings of existing approaches:
(1) the inability of ARMA or traditional
VAR methods to handle non-stationary LRE
fault data, and (2) the limitations of LASSO-
regularized VAR in precisely identifying
fault points under sparse conditions.

This paper focuses on an offline fault
diagnosis method for LRE operational data
based on the data generation mechanism of
the VAR model. First, we construct a
numerical simulation dataset containing
various potential fault types during the LRE
startup process. Then, we improve the VAR-
based change point detection method
proposed in [1] by replacing the LASSO
regularization in the second step with the
SCAD regularization method. The improved
detection method, employing SCAD
regularization, exhibits asymptotic
unbiasedness and the Oracle property,
enabling more accurate identification of
significant variables while maintaining
sparsity and avoiding excessive shrinkage of
large coefficients. Finally, we apply this
method to the fault diagnosis dataset,
achieving favorable detection performance.
The contributions of this study are
summarized as follows:

(1) We propose a novel VAR-based fault
point detection algorithm incorporating
SCAD regularization.

(2) Through simulations of the Liquid
Rocket Engine (LRE) system, we generated
a synthetic dataset covering both normal and
faulty states.

(3) We conducted fault point detection
experiments on a simulated liquid rocket
engine (LRE) dataset using the proposed

fault detection method, achieving 100%
precision. In addition, the algorithm was
validated on real-world LRE fault data,
further demonstrating its effectiveness.

The remainder of this paper is organized as
follows: Part II introduces the theoretical
background of the research and elaborates
on the proposed method in detail. Part III
and IV verifies the effectiveness and
superiority of the proposed model based on
simulation experiments and hot-fire testing
experiments. Part V summarizes the main
content of this paper.

II METHODOLOGY

VAR Model

Suppose we have a piecewise stationary
time series dataset. This data contains n+1
time points, with mo change points denoted
as 0=1¢,<t, <---<t, <t, ., =n.Then, for
any stationary segment where ¢, | <t <t,.

the VAR model can be expressed as:
X,=BX,,+0 and B,=L+S, (1)

Where X, is the p dimensional vector of
sensor observed time series at 7, B, is the

p % p transition matrix for the j—th

segment that reflects time-varying effects of
historical values. Further, each transition
matrix is assumed to be a superposition of a

stable L low rank component and a time
varying S; sparse component. Finally, we
assume that the p —dimensional noise
process is normally distributed;

i.e.0~N (0,2,). Building upon this
foundation, we may postulate that the
number of non-zero elements in j—th
sparse component S; is HSJHO =5 with

s << p° and that low rank component L’



has rank / with / << p .The low-rank

component L encodes the static cross-
autocorrelation structure across all p time

. * .
series, whereas S, captures dynamic cross-

sectional dependencies.

FISTA(Fast Iterative Shrinkage-
Thresholding Algorithm)

FISTA is an accelerated optimization
algorithm designed to solve large-scale
linear inverse problems, particularly those
involving sparse signal recovery and
regularized regression. It is an enhanced
version of the ISTA (Iterative Shrinkage-

Algorithm 1: FISTA.

Thresholding Algorithm), achieving
significantly faster convergence through
Nesterov’s momentum techniques.

FISTA solves convex optimization problems
of the form:

min ., F(x) = f(x)+g(x) 2

Where f(x) is a smooth convex function
1

Shax=of;

(e.g., least-squares loss 2 ), g(x)

is a non-smooth convex regularizer (e.g.,?, -

norm All xll, for sparsity).

Input: Objective function components (smooth part f°, non-smooth part g ), Lipschitz

constant L for f(x), initial solution x,, maximum iterations K . Function to compute gradient

of smooth part Vf',The tolerance value. ¢.

Output: Optimized solution x .

- . 1
1. Initialize Parameters: Set y, = x,,#, =1.Choose step size ¢, = 7

2. For each iteration & from 1 to K :

a. Gradient step:
I. Compute gradient at y, :

z, =y, —Vf ()

b. Proximal Operator (Shrinkage):
I. Apply proximal operator for g :

X, = prox, ,(z,)
c. Momentum Update:
I. Update step size:

te, = +sqre(1+41%)) /2
IT. Update extrapolation point:

Ve =X+ —Dx, —x,) /1,

3. Termination:
If ||, —x,[| <&
Break
4. End For
5. Return x’

The Changing points Detection
Procedure

The changing point detection procedure we
propose mainly consisting of two steps: (A)
solving a regularized regression problem



using the block fused lasso (BFL) penalty to
identify candidate change points, and (B)
filtering the obtained candidate points
through SCAD regularization to compute a
new information criterion.

Step 1: Identify Candidate Points

For a piecewise stationary time series
dataset containing 7 +1time points, we first
partition it into blocks of size by, keeping all
model parameters fixed within each block -
meaning each block's endpoints serve as
candidate change points. It is important to
note that to accurately identify true change
points, b, cannot be set too large. Therefore,
the selection of b, follows these criteria:

k =L2Jﬂ 3)

Thus, the time series length for each block is:

S

For j—th block, We define the following
variables:

X, =[X, ... X, ]
Y, =[X, X, ] (5)

Ty

br/ = [%/SLH" b 7 ]
For global variables, we define:

X =[X,,...X, JeR"

Tyt

Y =[Y,,...Y, 1eR"™ (6)

E 2[@},..., rkn]’ e R™”

Furthermore, we define the variable 7 as:

i X; 0 S
X X 0 )
Z — 2 2 = Rnxp n (7)
X;/ +1 X;/ +1 o X;k +

Based on (1), we can formulate the
following linear regression problem

Y =XL +Z0O+E (8)

Wherein @ =[6,...,0, | e R”*” where

6/ = S, ,then for the subsequent ones

0 - SJ.H—SJ. i=t )
0 otherwise

Based on Equation(8), the model can be
expressed as:

S PR 9 s +E (10

The model coefficients ® and L can be
estimated via a composite LASSO-
regularized approach, as expressed in the
linear regression formulation (8)

<@,i> =argming l|| Y-XL-7ZOl}
n

+A, I LI+ 4, Il Ol (11)

k, || ¢
+25, 21229,
I=1 || j=1

We employ the FISTA (Algorithm 1)for
efficient solution.

Step 2: Screen Candidate Points
In the previous step, we have obtained the
candidate change point set 4, , and now we

need a new step to filter the existing change



point set. Specifically, we already have m
change points, namely:
l=5,<s <+ <5, <5, ., =n

, Based on this, similar definitions as in Step
1 can be made:

X, :[XS/_%,...,XSﬂ]

Y, =[X, X, ]

o, [} .1 ms ]

X =[X,,....X, ] eR"™

(12)

Y =[YS1,...,YSW]'GR"X”
E :[m,..., S”I]VER”X‘D

I

Furthermore, we define the variable Z |

,,,,,, m

as:

m+1 ‘

X, 0 0 |
X X 0
Lo = . .1 (d3)
X,Y +1 X; +1 ;+l

And the corresponding coefficient matrix is
givenby ©®  =[6,,...,6,] . Then, based

on the variables we have defined, the
following linear regression expression can
be written:

Y=XL+Z O +E (14)

seeesSim S| eeesSiy

We then obtain ® by solving the

following optimization problem
incorporating SCAD regularization:

m+l

Y, =X (G D XX )
i=l

Prediction Error (Weighted Least Squares)

Segmented Sparsity Penalty (SCAD) ( 1 5)

+ ZPZ.L,aL (Lk) + ZP}LL,aL (Lk)
G __ S
Low-Rank Matrix Penalty (SCAD)  Low-Rank Matrix Penalty (SCAD)
In the equation, the term P, ,(®) represents E_(LO, )= i 1 ||Y SX, (0, .+ L)HZ
total 2 TS Sy ’ —g. S; S; Si15S; >
the SCAD (Smoothly Clipped Absolute . ST 17)
Deviation) regularization component. The +2 D PO, )
SCAD penalty function is defined as: o
+Z P/lL .ap (Lk)
k

Alx] if |xK A,
2 2
(ah] x| -2
2 (16)
P (x)= " ifA < x<al,
a—
2
@ if |x[>ad.

The total error can be expressed as:

Next, we perform iterative screening of the
number of change points. Let the set of
change points after the k -th iteration be

denoted as s = (sl(" ) ey sfn’?) .Therefore, the

error in the current iteration can be
expressed as:
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18

X o ‘“)(9(5‘“ 5(“)+L)H ( )
i1 »Si 2

Y o . —
H (s () [s5) s
my +1

+ Z Z Rl,a (9(3-}f]’,5'fk’).j) + Z aLﬂaL (L/)
7

i=l

We evaluates change points by sequentially
testing the impact of removing each
candidate point through an information
criterion (IC) framework. First, the IC is
defined as:

IC(s")=E(s")+m,w, (19)

In the equation, m, represents the current
number of change points (which

dynamically changes during iterations),

and @, denotes the sample-size-dependent
penalty weight. Based on the above equation,
the change in information criterion (AIC)

resulting from removing the r -th change
point can be expressed as:

AIC, =E(s")~E(s“) @,  (20)

A change point can be removed when AIC, .

By sequentially evaluating and removing
each candidate point in the current change
point set while computing AIC, we achieve
effective change point screening.

I SIMULATION
EXPERIMENTS

The experimental validation utilizes three
types of fault simulation data from a liquid
rocket engine. The model's effectiveness is

verified by evaluating the accuracy in
detecting the timing of simulated fault
occurrences.

This experiment utilizes a liquid rocket
engine simulation dataset, where numerical
simulation was achieved by establishing
component-level simulation modules using
Amesim software.

The simulation model outputs synthetic
readings from 26 sensors, with each sample
consists of 2000 data points collected at a 1
kHz sampling rate during steady-state
operation, representing a 2-second duration.
Faults were injected at three specific time
points: the 500th time point (0.5 seconds
after simulation start), the 1000th time point
(1.0 seconds after simulation start), and the
1500th time point (1.5 seconds after
simulation start). The fault magnitudes were
set to 0.8, 0.85, 0.9, and 0.95 of nominal
values respectively, generating a total of 48
distinct fault scenarios.

Simulation System Construction

This study simulates a liquid rocket engine
system to generate operational data under
both normal and fault conditions.

The liquid rocket engine (LRE) system,
comprising turbopump assemblies, thrust
chambers, and auxiliary subsystems (Fig. 1),
was simulated under fault conditions by
perturbing parameters in the nominal model.
Four failure modes were implemented:
turbopump efficiency degradation, hydrogen
turbine leakage, valve actuation faults, and
cooling jacket breaches.
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Figl. Schematic of LRE and selected failure modes.

The fault simulation of the liquid rocket
engine is based on a simulation model,
employing a fault-injection approach to

conduct a systematic and dynamic

comprehensive analysis of various potential

failure modes in a high-thrust hydrogen-

engines. The investigation implements fault
injection on three critical failure modes:
turbopump efficiency degradation, hydrogen
turbine module leakage, and valve actuation

failure, representing common yet high-

impact scenarios in liquid rocket engine

oxygen engine. Table 1 summarizes operation.
common fault modes in liquid rocket
Table 1. LRE failure modes.
. . Fault
Components | Classification Fault Mode Performance
Centrifugal Pump (1y Impqller damage Pump efficiency
(2) Bearing wear or damage decroase
Turbopump (3) Pump cavitation
. Turbine
Pump efficiency (1) Blade detachment efficiency

decrease

(2) Bearing wear or damage

decrease




(3) Turbine blade erosion
(4) Gas flow obstruction Downstream
(5) Turbine inlet flow stream flow rate
leakage decrease
Gas pipeline Increased flow
Pincline (1) Pipeline blockage resistance
p Liauid piveline (2) Pipeline leakage Downstream flow
e pip rate decrease
Combustion chamber Combustion deterioration Combustion
Gas generator Combustion deterioration gfﬁmency
ecrease
Cooling jacket blockage Inc.r cased flow
Thrust o resistance
Chamber Cooling jacket . Downstream flow
Cooling jacket leakage
rate decrease
Nozzle (1) Nozzle deformation Nozzle efficiency
(2) Large nozzle detachment | decrease
Regulating valve Stuck during switching i(rz(;uced flow
Others Cavitation tube Cavitation tube blockage
- Increased flow
Sonic nozzle Sonic nozzle blockage resistance

Turbine Efficiency Decrease

During operation, turbomachinery
components may experience various failure
modes including rotor rubbing/jamming,
shaft fracture, turbine blade detachment,
pump blade fracture, and turbopump
cavitation, all of which can lead to varying
degrees of efficiency degradation in the
turbine assembly. A detailed analysis of the
failure mechanisms reveals that when rotor
rubbing and partial turbine blade detachment
occur during operation, the former increases
the torque demand on the turbopump
assembly while the latter enhances the flow
resistance between propellant and blades.
Both effects contribute to reduced turbine
actuation capability, ultimately manifesting

as decreased turbine assembly efficiency[15].

To simulate these fault conditions, an
efficiency correction factor f'is introduced to

modify the operational efficiency of both the
turbine and centrifugal pump. This approach
models the rotational speed reduction caused
by power loss and the consequent decrease
in pump work output, achieving accurate
fault simulation as demonstrated in Fault
Mode 1 of Figure 1. The mathematical
representation of this relationship is as
follow:

Rurbine = danturbinef = nturbineT (21)

Where P

> e 18 the power, dp is the
pressure difference across the turbine, Q is
the volumetric flow rate, 7,,,,,. 1S the
turbopump efficiency, f is the correction

factor, n is the common rotational speed

turbine
of both the turbine and centrifugal pump,
and T is the torque.



Hydrogen Turbine Module Leakage
Hydrogen, as a fuel, is relatively prone to
leakage due to its small molecular weight.
Furthermore, hydrogen turbopumps operate
at extremely high rotational speeds reaching
tens of thousands of revolutions per minute.
The coaxial design of these turbopumps,
combined with higher pressure at the turbine
end compared to the pump end, creates
conditions conducive to hydrogen leakage
into the pump and surrounding
environment[16].

In this failure scenario, liquid hydrogen
leaking directly into the pump and
environment essentially introduces two
additional flow paths to the engine system.
To model this condition, a valve assembly
with a maximum flow area A is added to
each flow path. The opening size of these
valves is controlled by external signals to

simulate varying degrees of leakage severity.

The mathematical representation of this
leakage model is as follows:

hy =1k + 1k, (22)
W, =c, Ar\2pAp (23)

Where &, and & are the flow rate through
the primary valve, %, is the flow rate

through the leakage valve, and 4 is the
maximum flow area of the leakage passage.

Valve Opening failure

Valve control constitutes a critical factor for
normal engine startup. The simulation of
valve failures - including failure to open,
slow opening, and blockage - can be
achieved by adjusting the timing and
response speed of five main valves: the
Main Oxidizer Valve (MOV), Main Fuel
Valve (MFV), Fuel Preburner Oxidizer
Valve (FPOV), Combustion Chamber
Coolant Valve (CCV), and Oxidizer
Preburner Oxidizer Valve (OPOV). The

following equations primarily regulate flow
through control functions to simulate these
valve failure modes:

= c, Ar\|2pAp (24)

Where # is the flow rate through the valve,
¢, 1s the flow coefficient, 4 is the

maximum flow area, ¢ is the control
function, p is the average density of the

fluid flowing through the valve, and Ap is

the pressure difference between the two
ports of the valve.

Data Preprocessing

The data preprocessing module consists of
two main steps: data normalization and
noise generation.

Data Normalization

Since the variables calculated by the liquid
rocket engine's mathematical model exhibit
significant differences in magnitude,
normalization is essential to ensure
consistency across different parameters. To
address this, all simulation-derived data are
uniformly scaled using the Min-Max
normalization method, which transforms the
values into a common range. This technique
involves identifying the global minimum
and maximum values of the dataset before
applying the normalization formula:

XX
nomalized ~—
X max X min

(25)

where X is the original data value, X . is

the minimum value in the dataset,
and X 1is the maximum value in the dataset.

This transformation scales all features to a
fixed range, ensuring consistent treatment of
variables regardless of their original
measurement scales.



The normalized simulation data (without
noise injection) for all three types of faults
are illustrated in the figure.

Noise Generation

In the process of sensor measurements for
liquid rocket engines, environmental
interference and measurement errors
inevitably introduce random noise into the
actual data. To accurately simulate this
phenomenon, this study employs a Gaussian
noise model to enhance the normalized data.

In this study, Gaussian noise was injected
into the normalized signals to realistically
simulate sensor uncertainty in liquid rocket
engine measurements. Specifically, three
noise intensity levels were considered: 2.5%,
5%, and 7.5% of the signal amplitude.
Among these, the 5% noise level closely
reflects the signal-to-noise ratio (SNR)
observed in actual liquid rocket engine
sensor data, while the 2.5% and 7.5% levels
were introduced as additional robustness
tests to evaluate the stability of the proposed

'.W .
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method under lower and higher noise
conditions.

The mathematical expression of the
Gaussian noise model is as follows:

X X ormalized +%Al' ~ N (OD 0-2) (26)

noisy n

Where X, . . .1is the normalized value
within[0,1], 0is the Gaussian-distributed
noise term, and o determines the noise
magnitude as a given percentage (2.5%, 5%,
or 7.5%) of signal amplitude. This
formulation allows us to evaluate robustness
under different noise intensities that
approximate varying levels of sensor
uncertainty. By doing so, the additive noise
model retains the primary signal trends
while superimposing controlled random
fluctuations. This design allows us to
approximate sensor measurement
disturbances under different noise levels
without completely distorting the essential
dynamics of the simulated engine data.
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Fig 2. The preprocessed simulation data for four types of faults. (a), low-pressure fuel turbine
efficiency degradation fault. (b), abnormal oxygen main valve opening. (c), high-pressure
oxygen turbine efficiency degradation Fault. (d), high-pressure fuel turbine efficiency

degradation fault.

Implementation Details

Experiment Design

The simulation model outputs synthetic
readings from 26 sensors, with each sample
consists of 2000 data points collected at a
1kHz sampling rate during steady-state
operation, representing a 2-second duration.
Faults were injected at three specific time
points: the 500th time point (0.5 seconds
after simulation start), 1000th time point
(1.0 seconds after simulation start), and
1500th time point (1.5 seconds after
simulation start). The fault magnitudes were
set to 0.8, 0.85, 0.9, and 0.95 of nominal
values respectively, generating a total of 48
distinct fault scenarios. The running
environment is described as follows: the
CPU is a Core 15-13600KF @ 3.50GHz, the
memory is 32GB, the GPU is a GTX 4070,
and the programming language is R 4.4.0.

Parameter Selection

In our change-point detection method,
several important tuning parameters are
involved, including the regularization

parameters 4,,,4,,, 4;,in Step 1, the
penalty term @, in the information criterion,

and the tolerance level to/ used in the
FISTA optimization. The following provides
the approach for selecting them:

A, :In this study, we manually select 4, ,

from the range[\/logp,lo\/logp] . This
n

n
choice is motivated by the non-asymptotic
analysis of [17]. Within this interval, we
perform a grid search over a set of evenly
spaced candidate values. The optimal 4, , is

then selected as the one that minimizes the
validation error across the candidate grid.
4., :To select the regularization

parameter 4, , , we adopt a block-based

cross-validation approach. In the simulation
study, 20% of the time series blocks are
randomly selected as the validation set, with
the blocks spaced evenly from a random
initial point. The last time points of these
selected blocks form the set T. We then



estimate © for a range of candidate A

values using only the data excluding T.
These estimates are subsequently used to
predict the time series at the time points in
T. The value of 4,, that minimizes the

mean squared prediction error over T is
selected as the optimal parameter via cross-
validation.

4, :The regularization parameter 4, , ,which

controls the inter-block sparsity structure, is
theoretically required to

satisfy 4, , =0 ((nd: )" ) as stated in

Assumption H3 of[ 14], implying that its
value should vanish as the sample size
 increases. For simplicity, we set

4., = 0 throughout this study.

o, ‘The penalty weight controlling the

number of change points (the larger the
value, the fewer the change points). In this
study, it is manually selected from the range

[31—0 In(7T —1)In(p), % In(7 —1)In(p)],which is

selected based on the theoretical range
suggested by Assumption H4 in[14]. Guided
by this theoretical interval, we further
perform a grid search within the range to
determine the optimal @, .

tol :The convergence tolerance & in
Algorithm 1 is manually set to 10~ here.

The regularization parameter in Step 2 is
selected with reference to that in Step 1.

Evaluation Index

The classification performance is evaluated
based on the proportion of true positives,
which focuses solely on the ratio between
true positives (TP) and false positives (FP):

TP

P=—"" 27)
TP+ FP

True positive (TP) is counted when any
detected break point §, falls within +p lags

of a true change point s, (accounting for

VAR lag effects). Precision P measures the
proportion of correctly identified breaks

among all detections. The tolerance window
is setto p =50 timepoints, accommodating

both the model's autoregressive structure.

Result and Discussion

For the 48 sets of fault scenario data
generated by the LRE simulation model, we
conducted fault point detection using three
approaches: the baseline method from [14],
our SCAD-regularized variant, and the
LASSO-regularized variant as an additional
reference. Experiments were performed
under three Gaussian noise levels: 2.5%, 5%,
and 7.5% of the signal amplitude. While all
methods achieved 100% precision at the
2.5% noise level due to the clarity of fault
signatures, under higher noise conditions
(5% and 7.5%), the SCAD-based method
demonstrated noticeably more robust
detection performance compared to the
LASSO-based approach. This agrees with
the theoretical findings of [18], who showed
that SCAD’s non-convex penalty avoids the
over-shrinkage of large coefficients that is
common with LASSO, thereby preserving
essential structural signals and enhancing
robustness. In addition, we also conducted
comparative experiments with the model in
[19] to further validate the effectiveness of
our method.

Figure 3 illustrates the detection results of
one of the fault data sets using the improved
method proposed in this paper.

Figure 3 shows the change point detection

results for three different fault scenarios:

1. At the 1000th data point, an abnormal
fault in the oxygen main valve opening
is injected with a fault factor of 0.9.



2. At the 500th data point, a fault in the extraction of the low-rank component L of

high-pressure oxygen turbine efficiency transition matrix in step 1. It is evident that
is injected with a fault factor of 0.85. the parameter estimation of L in step 1 is
3. At the 1500th data point, a fault in the highly accurate, with the residuals
low-pressure fuel turbine efficiency is containing only Gaussian noise and a
injected with a fault factor of 0.8. distinct pulse signal at the fault injection
time point

In (a)(c)(e), the calculation results of
(X, — L X,) are presented, reflecting the

Table 2. Detection results of liquid rocket engine fault simulation data using three models under
different noise levels

Noise Level LASSO-VAR SCAD-VAR BSS -VAR
(Proposed)

2.5% Accuracy = 100% Accuracy = 100% Accuracy =95.83%

5.0% Accuracy = 100% Accuracy = 100% Accuracy = 87.5%

7.5% Accuracy = 91.66% Accuracy = 95.83% Accuracy = 83.33%
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Fig 3. Fault point detection results for 3 scenarios. (a)(c)(e), the calculation results of
(X, -L'X .) . (b)(d)() Results of fault point detection. The red vertical lines indicate the actual

fault injection points at 500, 1000, and 1500, respectively. The black vertical lines denote the
detected fault points at 484, 1012, and 1496, respectively.

IV HOT-FIRE TESTING
EXPERIMENTS

To further verify the effectiveness of the
proposed change-point detection method,
this paper validates it using real-world data
from a hot-fire test of a certain model of
liquid rocket engine. During the test, over
100 sensors were deployed on the engine to
monitor its health status. A leakage fault was
detected during the experiment. However,
unlike in simulation scenarios, the actual
fault occurrence time in the hot-fire test is

unknown. The change-point detection results
of the proposed method applied to the hot-
fire test time series data are shown in Fig. 4.
Considering that the original data contains
confidential information, de-identification
measures were applied. Specifically, the data
was standardized and noise was injected.
Only processed features and fault labels are
published to ensure compliance with data
security regulations.

In contrast to simulated environments, the
method also proves effective when applied
to real-world fault scenarios in liquid rocket
engine testing.
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Fig 4. Fault point detection result for hot-fire testing experiments

V CONCLUSION

This paper proposes an offline change-point
detection method based on the VAR model
and applies it to fault diagnosis in liquid
rocket engines (LREs). Fault point detection
experiments were conducted on an LRE
system simulation dataset, achieving a
precision of 100%, which demonstrates the
effectiveness of the method in the context of
LRE fault diagnosis. In addition, the
proposed method was further validated on
real-world fault data from hot-fire testing
experiments, confirming its practical
applicability and robustness. Compared to
the change-point detection method in [14],
the proposed approach introduces the SCAD
regularization technique, leveraging its non-
convex penalty mechanism to reduce the
shrinkage of large coefficients, thereby
minimizing estimation bias and achieving a
more accurate sparse solution. Furthermore,

unlike artificial neural network methods, the
proposed method does not require extensive
training data and can localize fault points
with relatively high precision.

However, the proposed method still has
several limitations. First, although FISTA
accelerates the optimization process, the
block-wise segmentation strategy requires
sequential processing of high-dimensional
VAR models for each block. As the data
scale increases—such as longer time series
or more sensors—the number of blocks
grows linearly, leading to significantly
increased computational costs and
challenges in meeting real-time
requirements. Second, key parameters such
as the regularization coefficients (4, ,, 4,,)

and the convergence tolerance ( &) must be
manually tuned, which relies on expert
knowledge or trial-and-error. This parameter
selection process is not only time-consuming



but also introduces subjectivity, potentially
resulting in unstable outcomes. Finally, the
method divides the time series into fixed-
length blocks, implicitly assuming a uniform
distribution of change points. In practice,
however, failures in liquid rocket engines
often concentrate in specific periods (e.g.,
the ignition phase). Fixed block sizes lack
the flexibility to adapt to such temporal
variations, potentially causing insufficient
resolution in change-point-dense regions and
redundant computation in sparse ones.

Moreover, the proposed framework is built
on the assumption of piecewise stationarity.
This assumption is supported by the
operational characteristics of LREs, where
the working process can be divided into
several distinct phases such as ignition,
steady combustion, and shutdown
depressurization. Each phase typically
corresponds to different control logics, fuel
flow adjustments, or structural responses,
which lead to clear differences between
transient and steady states. While transient
signals exhibit strong non-stationary
behaviors (e.g., rapid thrust rise, chamber
pressure oscillation, or temperature jumps),
steady phases usually demonstrate small
fluctuations and relatively stable inter-
variable relationships, thus presenting local
stationarity suitable for VAR modeling.
Nevertheless, under conditions with strong
high-frequency disturbances, this
assumption may no longer hold, which
imposes limitations on the model’s
generality.

We hope to further enhance the method's
real-time applicability and robustness
through adaptive segmentation and
automated parameter selection in future
work.
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Appendix A

Table 1 summarizes the symbols used in this paper.

Table 1 List of symbols used in this paper.

Symbol Meaning

X, Multivariate time series observation at time !

B Transition matrix for the j—th segment that reflects time-varying effects of
’ historical values

L Low rank component

S , Sparse component

P Number of variables (sensor channels)

b, Intercept vector for the 77— th segment

k, Length of the 7~ segment

er Multivariate time series observations in block J

Yr,- Multivariate time series observations in block 7/

br,- Error (innovation) terms in block J

X Collection of all historical inputs across all blocks

Y Collection of all current outputs across all blocks

E Collection of all error terms.

Block-structured matrix built from segment predictors X, describing

- segment-specific contributions (Eq. 7)

® Parameter matrix capturing structural changes across segments(Eq. 9)

Aw>ns s, | Regularization parameters controlling penalties.

S; End index of the i —th segment

P, (x) SCAD (Smoothly Clipped Absolute Deviation) penalty function with
“ parameters A and 4 .

m Number of segments (or sub-intervals) in the time series.

P, e Turbine output power

0 Mass flow rate through the turbine

N orbine Turbine efficiency

A Rotational speed (frequency) of turbine shaft

i Rotational speed of turbine (rpm)

T Torque produced by turbine

", The total flow rate through the valve system

", The flow rate through the leakage valve.

", The flow rate through the primary valve.

¢, Flow coefficient of the leakage passage.

A Maximum flow area of the leakage passage.

p Fluid density.

Ap Pressure drop across the leakage valve.
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