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Abstract: Ensuring the safe operation of liquid rocket engine (LRE) systems requires reliable fault diagnosis, yet
the scarcity of real fault data limits deep learning applications despite their modeling strengths. We address this by
developing an offline detection method based on piecewise stationary vector autoregressive modeling, employing
a two-phase approach that first identifies candidate change points through block fused LASSO regularization and
subsequently refines them using smoothly clipped absolute deviation regularization to leverage its asymptotic
unbiasedness. Validated on a high-fidelity LRE simulation dataset (26 sensors, 2000 time points) with injected
faults including turbopump efficiency degradation, hydrogen turbine leakage, and valve failures across 48
scenarios, our method achieves 100% precision (£50-sample tolerance) in fault timing detection without requiring
training data, demonstrating superior performance to conventional autoregressive moving average models while

overcoming the data dependency of neural networks.

Keywords: LRE health monitoring; SCAD regularization; VAR model

I. INTRODUCTION

The liquid rocket engine (LRE), often referred to as the
“heart” of a spacecraft, is a critical component that ensures
the flight and safe launch of the rocket. However, LREs are
required to operate for extended periods under harsh con-
ditions such as high temperatures, high pressures, strong
corrosion, and high energy release, making them prone to
failures within the spacecraft system. If an LRE fails during
ignition or flight, it can lead to severe accidents such as
explosions in a very short time frame (50 ms), causing not
only significant economic losses but also endangering the
lives of astronauts. Therefore, research on fault diagnosis
technology for LREs is particularly important. The detec-
tion of abrupt changes in multiple time series is a typical
problem in the field of fault diagnosis for LREs.

Recent years, LRE fault detection approaches are
divided into three types by some scholars [1]: signal
processing-based approaches, model-driven approaches,
and data-driven approaches. Data-driven fault detection
methods involve the direct processing of sensor-measured
operational data from LRE. Alternatively, data-driven tech-
niques—such as correlation functions or autoregressive
moving average (ARMA [2]) models—may extract signal
features (e.g., variance, frequency) to diagnose potential
engine failures. Deng et al. [3] developed an ARMA model-
based fault detection method for the main-stage fault diag-
nosis of high-thrust hydrogen—oxygen staged-combustion
cycle engines, and successfully validated the reliability of
the approach through hardware-in-the-loop simulation. Xue
et al. [4] developed a real-time fault simulation system
based on ARMA models for reusable LREs, conducting
simulation tests on typical fault scenarios and validating the
algorithm’s applicability through hardware-in-the-loop
testing. However, since ARMA processes each signal
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independently, it is prone to overlooking system-level fault
characteristics.

The VAR model was proposed by Christopher Sims in
1980 as an innovation to traditional simultaneous equation
models [5]. VAR model is widely applied in fields such as
economics [6][7][8] and engineering [9]. The VAR model
can be seen as a multivariate extension of the univariate AR
model. By capturing the dynamic relationships between
multiple time series variables, the VAR model can jointly
predict the future values of these variables.

However, high-dimensional VAR models suffer from
the issues of having a large number of parameters and being
computationally challenging to solve. Richard et al. [10]
proposed a two-stage method to fit sparse VAR (sVAR)
models where many AR coefficients are zero. In the first
stage, nonzero AR coefficients are selected based on esti-
mates of partial spectral coherence (PSC) and the use of BIC.
PSC can be used to quantify the conditional relationships
between marginal series in multivariate processes. A second
refinement stage is then applied to further reduce the number
of parameters. To address the issue of high-dimensional
VAR models requiring the estimation of a large number
of parameters and potential inference problems, Monica
Billio et al. [11] proposed a new Bayesian nonparametric
(BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR
models, which can improve estimation efficiency and pre-
diction accuracy. In 2022, Aramayis et al. [12] improved the
sparse VAR model (msVAR) by using time series graphical
lasso (TSGlasso) for sparse inverse spectral density matrix
estimation, avoiding direct high-dimensional matrix inver-
sion, and introducing false discovery rate (FDR) controlled
multiple hypothesis testing methods in the model refinement
stage, thereby improving the two-stage sparse VAR frame-
work proposed by Davis et al.

Despite these advancements, existing methods still
face several limitations in the context of LRE fault diagno-
sis. Signal processing and ARMA-based approaches often
overlook system-level dependencies. Traditional VAR
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Algorithm 1: FISTA.

Input: Objective function components (smooth part f, non-
smooth part g), Lipschitz constant L for f(x), initial solution x,
maximum iterations K. Function to compute gradient of smooth
part Vf, The tolerance value. €.
Output: Optimized solution x*.

1. Initialize Parameters: Set y; = x,, ; = 1. Choose

step size 1, = 1
2. For each iteration k from 1 to K:

a. Gradient step:
I. Compute gradient at y;:
=y — Vf ()
b. Proximal Operator (Shrinkage):
I. Apply proximal operator for g:
X = prox, (%)
¢. Momentum Update:
I. Update step size:
tre1 = (1 + sqri(1 + 41%)) /2
II. Update extrapolation point:
Yirr =X + (G = 1) = 01) /e
3. Termination:
If ||xe — x| < &
Break
4. End For

5. Return x*

methods, while able to capture multivariate dynamics,
encounter computational difficulties in high dimensions
and strictly require global stationarity—a condition rarely
satisfied in real LRE operations, where signals often exhibit
piecewise stationarity across different stages (e.g., start-up
ignition, steady combustion, and shutdown depressuriza-
tion). Moreover, most existing VAR-based fault detection
methods rely on LASSO regularization, which enforces
sparsity but introduces bias by excessively shrinking large
coefficients, thereby limiting detection accuracy.

To address these issues, this study introduces a seg-
mented VAR framework that incorporates the piecewise
stationarity assumption and improves detection performance
by replacing LASSO with SCAD regularization. The SCAD
penalty alleviates the bias problem of LASSO, ensuring
asymptotic unbiasedness and more accurate identification
of significant variables while maintaining sparsity. In this
way, our method specifically addresses two major short-
comings of existing approaches: (1) the inability of ARMA
or traditional VAR methods to handle nonstationary LRE
fault data and (2) the limitations of LASSO-regularized VAR
in precisely identifying fault points under sparse conditions.

This paper focuses on an offline fault diagnosis method
for LRE operational data based on the data generation
mechanism of the VAR model. First, we construct a
numerical simulation dataset containing various potential
fault types during the LRE startup process. Then, we
improve the VAR-based change-point detection method
proposed in [1] by replacing the LASSO regularization in
the second step with the SCAD regularization method. The
improved detection method, employing SCAD regulariza-
tion, exhibits asymptotic unbiasedness and the Oracle
property, enabling more accurate identification of signifi-
cant variables while maintaining sparsity and avoiding
excessive shrinkage of large coefficients. Finally, we apply

this method to the fault diagnosis dataset, achieving favor-
able detection performance. The contributions of this study
are summarized as follows:

(1) We propose a novel VAR-based fault point detection
algorithm incorporating SCAD regularization.

(2) Through simulations of the LRE system, we gener-
ated a synthetic dataset covering both normal and
faulty states.

(3) We conducted fault point detection experiments on a
simulated LRE dataset using the proposed fault detec-
tion method, achieving 100% precision. In addition,
the algorithm was validated on real-world LRE fault
data, further demonstrating its effectiveness.

The remainder of this paper is organized as follows:
Section II introduces the theoretical background of the
research and elaborates on the proposed method in detail.
Sections III and IV verify the effectiveness and superiority
of the proposed model based on simulation experiments and
hot-fire testing experiments. Section V summarizes the
main content of this paper.

Il. METHODOLOGY
A. VAR MODEL

Suppose we have a piecewise stationary time series dataset.
These data contain n + 1 time points, with my change points
denoted as 0 =1y <ty <---<ty,, <t =n Then, for
any stationary segment where 7;_; < r < ¢;. the VAR model
can be expressed as

X,=B'X,_i+e and Bj=L"+5; (1)

where X, is the p dimensional vector of sensor observed
time series at #, B; is the p X p transition matrix for the j — th
segment that reflects time-varying effects of historical
values. Further, each transition matrix is assumed to be a
superposition of a stable L* low-rank component and a
time-varying SJ’-‘ sparse component. Finally, we assume that
the p—dimensional noise process is normally distributed,
i.e., e~N(0,5".). Building upon this foundation, we may
postulate that the number of nonzero elements in j— th
sparse component S; is [|S7[|, = s with 5 << p* and that
low-rank component L* has rank [ with / << p. The low-
rank component L* encodes the static cross-autocorrelation
structure across all p time series, whereas S]’-‘ captures
dynamic cross-sectional dependencies.

B. FAST ITERATIVE SHRINKAGE-
THRESHOLDING ALGORITHM (FISTA)

Fast iterative shrinkage-thresholding algorithm (FISTA) is
an accelerated optimization algorithm designed to solve
large-scale linear inverse problems, particularly those
involving sparse signal recovery and regularized regression.
It is an enhanced version of the iterative shrinkage-thresh-
olding algorithm (ISTA), achieving significantly faster
convergence through Nesterov’s momentum techniques.

FISTA solves convex optimization problems of the
form:

Minyeg F(x) = f(x) + g(x) @)
where f(x) is a smooth convex function (e.g., least-squares

loss 1 ||[Ax — b[3), g(x) is a nonsmooth convex regularizer
(e.g., £-norm Al|x||; for sparsity).
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C. The Changing points Detection Procedure

In the changing point detection procedure, we propose mainly
two steps: (A) solving a regularized regression problem using
the BFL penalty to identify candidate change points and
(B) filtering the obtained candidate points through SCAD
regularization to compute a new information criterion.

1) STEP 1: IDENTIFY CANDIDATE POINTS. For a piece-
wise stationary time series dataset containing n + 1 time
points, we first partition it into blocks of size b,,, keeping all
model parameters fixed within each block—meaning each
block’s endpoints serve as candidate change points. It is
important to note that to accurately identify true change
points, b, cannot be set too large. Therefore, the selection of
b, follows these criteria:

ky = [2v/n] 3

Thus, the time series length for each block is

n
b, = {—J 4
NG “)
For j — th block, we define the following variables:
Xr- = [Xr s ’Xr-—l}
Jj J-1 J
Yr,- = [Xr,-_|+1’ cee ’Xr/] (5)
erj = [grj_1+1’ s ,8,,1_]
For global variables, we define:
X = [X,], ... ,X,Wl]’ € R™P
y=[Y,,... ,Y,M]’ € R™P 6)

e=[e,,...,

Furthermore, we define the variable Z as

X, 0 - 0
X, X, - 0
Z = c Rnxpk,, (7)
/. /. . /
Tk +1 Tl +1 Tkp+1

Based on the above definition, we can formulate the
following linear regression problem

YV=XL"+Z0O +¢ ®)
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Based on Equation, the model can be expressed as:

Y, X,, X, *S;
N +e (10
Thy+1 er,,+1 X’k,,+1 .S;Fknﬂ

The model coefficients ® and L can be estimated via a
composite LASSO-regularized approach, as expressed in
the linear regression formulation (8)

. 1
<®,L> = argming 1cq—||Y — XL —Z0O|3
n
(11)

l

2.0

kn

+ ALl + 22,1181 + 43, Z
=

1

We employ the FISTA (Algorithm 1) for efficient
solution.

2) STEP 2: SCREEN CANDIDATE POINTS. In the previ-
ous step, we have obtained the candidate change point set
A,, and now we need a new step to filter the existing change
point set. Specifically, we already have m change points,
namely: 1 =5y <1 <--- <5, <S54 = n. Based on this,
similar definitions as in Step 1 can be made:

ij = [ij—l 9 oo ,Xsl__l}
Ys/- = [Xs/-_1+l7 te 7ij}
ssj = [gsj_|+l’ s ’gx_,l
12)
X =[X,....X; |" e R™
V=[Y,,...Y,] € R
e=g,....8 | € R
Furthermore, we define the variable Z;  ; as:
X'y, 0 0
X'y, X'y, 0
Zg, . sy = : (13)
! /. /
m+1 Sm+1 m+1

And the corresponding coefficient matrix is given by
0 =[01,...,0;,]". Then, based on the variables we
have d"eﬁned the followmg linear regression expression can
be written:

Wherein © = [0,...,0';]' € RPEXP where 6/, = V=XL"+Z, @ o, teE (14)
S7, then for the subsequent ones o
. . . We then obtain © by solvmg the following
0. = Sin1 =5 L= t{ (9) optimization problem 1ncorp0rat1ng SCAD regularization:
! 0 otherwise
~ A m+1 1 2 m+1
(L’®x1 ,,,,,, s, ,,,) = arg min {Z Y‘v,‘ - Xs,» (e(xi,],si) + L) + Z ZP/la Si_1.8;)
L, . g U7 Si — Si-1 5
Prediction Error (Weighted Least Squares) Segmented Sparsity Penalty (SCAD) 15)
+ ZPAL,(JL (Lk) ZP&«”L (Lk)
k k
—— ——
Low-Rank Matrix Penalty (SCAD)  Low-Rank Matrix Penalty (SCAD)
In the equation, the term P,,(*) represents the Alx| if x| <4,
smoothly clipped absolute deviation (SCAD ) regulariza- RS
tion component. The SCAD penalty function is Pra(x) = <a+la);21 ?f A< x| < ad. (16)
defined as = if |x| > al.
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The total error can be expressed as

m+1 1

Etotal (L’G)s] ,,,,, S ) = Z

2

YSi - Xsi(g(si—lvsi> + L)

Si = Si-1 2

m+1

+ Z ZP’I"I(g(S/—hS;)J)
=

+ ZP (L)
k

)

Next, we perform iterative screening of the number of

change points. Let the set of chkange pognts after the k-th

iteration be denoted as s%) = (s(1 e ,sfnk ). Therefore, the
error in the current iteration can be expressed as

my+1 1
= s s
2
Y[S(k) 0y = X[s(k) S(k)>(9<s )y F L) (18)
i—1"i -7 -1 2
my+1

+ Z} ZP/I,(J (9(51('5)1 ’S’(k))‘]’) + XK:PAL,W (Lf)
=1

We evaluate change points by sequentially testing the
impact of removing each candidate point through an
information criterion (IC) framework. First, the IC is
defined as:

1C(sW) = e(s®)) + mw, (19)

In the equation, m;, represents the current number of
change points (which dynamically changes during itera-
tions), andw,denotes the sample-size-dependent penalty
weight. Based on the above equation, the change in infor-
mation criterion (AIC,) resulting from removing the r-th
change point can be expressed as

AIC, = e(s®)) — e(sW) — o, (20)

A change point can be removed when AIC,. By
sequentially evaluating and removing each candidate point
in the current change point set while computing AIC, we
achieve effective change point screening.

lll. SIMULATION EXPERIMENTS

The experimental validation utilizes three types of fault
simulation data from a LRE. The model’s effectiveness is
verified by evaluating the accuracy in detecting the timing
of simulated fault occurrences.

This experiment utilizes a LRE simulation dataset, where
numerical simulation was achieved by establishing compo-
nent-level simulation modules using Amesim software.

The simulation model outputs synthetic readings from
26 sensors, with each sample consists of 2000 data points
collected at a 1 kHz sampling rate during steady-state
operation, representing a 2-second duration. Faults were
injected at three specific time points: the 500th time point
(0.5 seconds after simulation start), the 1000th time point
(1.0 seconds after simulation start), and the 1500th time
point (1.5 seconds after simulation start). The fault magni-
tudes were set to 0.8, 0.85, 0.9, and 0.95 of nominal
values, respectively, generating a total of 48 distinct fault
scenarios.

D. SIMULATION SYSTEM CONSTRUCTION

This study simulates an LRE system to generate operational
data under both normal and fault conditions.

The LRE system, comprising turbopump assemblies,
thrust chambers, and auxiliary subsystems (Fig. 1), was
simulated under fault conditions by perturbing parameters
in the nominal model. Four failure modes were implemen-
ted: turbopump efficiency degradation, hydrogen turbine
leakage, valve actuation faults, and cooling jacket breaches.

The fault simulation of the LRE is based on a simulation
model, employing a fault-injection approach to conduct a
systematic and dynamic comprehensive analysis of various
potential failure modes in a high-thrust hydrogen—oxygen
engine. Table I summarizes common fault modes in LREs.
The investigation implements fault injection on three critical
failure modes: turbopump efficiency degradation, hydrogen
turbine module leakage, and valve actuation failure, repre-
senting common yet high-impact scenarios in LRE operation.

3) TURBINE EFFICIENCY DECREASE. During operation,
turbomachinery components may experience various fail-
ure modes including rotor rubbing/jamming, shaft fracture,
turbine blade detachment, pump blade fracture, and turbo-
pump cavitation, all of which can lead to varying degrees of
efficiency degradation in the turbine assembly. A detailed
analysis of the failure mechanisms reveals that when rotor
rubbing and partial turbine blade detachment occur during
operation, the former increases the torque demand on the
turbopump assembly while the latter enhances the flow
resistance between propellant and blades. Both effects
contribute to reduced turbine actuation capability, ulti-
mately manifesting as decreased turbine assembly effi-
ciency [15]. To simulate these fault conditions, an
efficiency correction factor f is introduced to modify the
operational efficiency of both the turbine and centrifugal
pump. This approach models the rotational speed reduction
caused by power loss and the consequent decrease in pump
work output, achieving accurate fault simulation as dem-
onstrated in Fault Mode 1 of Figure 1. The mathematical
representation of this relationship is as follow:

Pturbine = dperlurbinaf = nturbineT (21)

where P, 15 the power, dp is the pressure difference
across the turbine, Q is the volumetric flow rate, #,,,pi, 15
the turbopump efficiency, f is the correction factor, n,,,4;.
is the common rotational speed of both the turbine and
centrifugal pump, and T is the torque.

4) HYDROGEN TURBINE MODULE LEAKAGE. Hydro-
gen, as a fuel, is relatively prone to leakage due to its small
molecular weight. Furthermore, hydrogen turbopumps
operate at extremely high rotational speeds reaching tens
of thousands of revolutions per minute. The coaxial design
of these turbopumps, combined with higher pressure at the
turbine end compared to the pump end, creates conditions
conducive to hydrogen leakage into the pump and sur-
rounding environment [16].

In this failure scenario, liquid hydrogen leaking
directly into the pump and environment essentially intro-
duces two additional flow paths to the engine system. To
model this condition, a valve assembly with a maximum
flow area A is added to each flow path. The opening size of
these valves is controlled by external signals to simulate
varying degrees of leakage severity. The mathematical
representation of this leakage model is as follows:
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Fig. 1. Schematic of LRE and selected failure modes.
My = 1y + fy (22) E. DATA PREPROCESSING

(23)

1y = c,Aty/2pAp

where ri1; and 77y are the flow rate through the primary
valve, ri1, is the flow rate through the leakage valve, and A is
the maximum flow area of the leakage passage.

5) VALVE OPENING FAILURE. Valve control constitutes
a critical factor for normal engine startup. The simulation of
valve failures—including failure to open, slow opening,
and blockage—can be achieved by adjusting the timing and
response speed of five main valves: the main oxidizer valve,
main fuel valve, fuel preburner oxidizer valve, combustion
chamber coolant valve, and oxidizer preburner oxidizer
valve. The following equations primarily regulate flow
through control functions to simulate these valve failure

modes:
m = c,At\/2pAp

where 11 is the flow rate through the valve, ¢, is the flow
coefficient, A is the maximum flow area, 7 is the control
function, p is the average density of the fluid flowing
through the valve, and Ap is the pressure difference
between the two ports of the valve.

24

The data preprocessing module consists of two main steps:
data normalization and noise generation.

6) DATA NORMALIZATION. Since the variables calcu-
lated by the LRE’s mathematical model exhibit significant
differences in magnitude, normalization is essential to
ensure consistency across different parameters. To address
this, all simulation-derived data are uniformly scaled using
the Min-Max normalization method, which transforms the
values into a common range. This technique involves
identifying the global minimum and maximum values of
the dataset before applying the normalization formula:
X - Xmin

Xnomalized = X (25)

max Xmin
whereXis the original data value, X, ;,is the minimum value
in the dataset, and X, is the maximum value in the dataset.
This transformation scales all features to a fixed range,
ensuring consistent treatment of variables regardless of their
original measurement scales.

The normalized simulation data (without noise injec-
tion) for all three types of faults are illustrated in the figure.

7) NOISE GENERATION.
surements for LREs, environmental

In the process of sensor mea-
interference and
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TABLE I. LRE failure modes

Components Classification Fault mode Fault performance

Turbopump Centrifugal pump (1) Impeller damage Pump efficiency decrease
(2) Bearing wear or damage
(3) Pump cavitation

Pump efficiency decrease (1) Blade detachment Turbine efficiency decrease

(2) Bearing wear or damage Downstream stream flow rate decrease
(3) Turbine blade erosion
(4) Gas flow obstruction
(5) Turbine inlet flow leakage

Pipeline Gas pipeline (1) Pipeline blockage Increased flow resistance

Liquid pipeline
Thrust Chamber Combustion chamber
Gas generator

Cooling jacket

Cooling jacket leakage

Nozzle

(2) Pipeline leakage

Combustion deterioration

Cooling jacket blockage

(1) Nozzle deformation

Downstream flow rate decrease
Combustion efficiency decrease

Combustion deterioration

Increased flow resistance
Downstream flow rate decrease
Nozzle efficiency decrease

(2) Large nozzle detachment

Others Regulating valve
Cavitation tube

Sonic nozzle

Stuck during switching
Cavitation tube blockage

Reduced flow area
Increased flow resistance

Sonic nozzle blockage

measurement errors inevitably introduce random noise into
the actual data. To accurately simulate this phenomenon,
this study employs a Gaussian noise model to enhance the
normalized data.

In this study, Gaussian noise was injected into the
normalized signals to realistically simulate sensor uncer-
tainty in LRE measurements. Specifically, three noise inten-
sity levels were considered: 2.5%, 5%, and 7.5% of the signal
amplitude. Among these, the 5% noise level closely reflects
the signal-to-noise ratio observed in actual LRE sensor data,
while the 2.5% and 7.5% levels were introduced as additional
robustness tests to evaluate the stability of the proposed
method under lower and higher noise conditions.

The mathematical expression of the Gaussian noise
model is as follows:

Xnoisy = Xnormalized +e, €NN(O’O-2) (26)

where X, maiizea 1S the normalized value within [0,1], € is
the Gaussian-distributed noise term, and o determines the
noise magnitude as a given percentage (2.5%, 5%, or 7.5%)
of signal amplitude. This formulation allows us to evaluate
robustness under different noise intensities that approxi-
mate varying levels of sensor uncertainty. By doing so, the
additive noise model retains the primary signal trends while
superimposing controlled random fluctuations. This design
allows us to approximate sensor measurement disturbances
under different noise levels without completely distorting
the essential dynamics of the simulated engine data. The
preprocessed simulation data are shown in Fig. 2.

F. IMPLEMENTATION DETAILS

8) EXPERIMENT DESIGN. The simulation model outputs
synthetic readings from 26 sensors, with each sample
consists of 2000 data points collected at a 1kHz sampling
rate during steady-state operation, representing a 2-second
duration. Faults were injected at three specific time points:
the 500th time point (0.5 seconds after simulation start),
1000th time point (1.0 seconds after simulation start), and

1500th time point (1.5 seconds after simulation start). The
fault magnitudes were set to 0.8, 0.85, 0.9, and 0.95 of
nominal values, respectively, generating a total of 48
distinct fault scenarios. The running environment is
described as follows: the CPU is a Core i5-13600KF @
3.50GHz, the memory is 32GB, the GPU is a GTX 4070,
and the programming language is R 4.4.0.

9) PARAMETER SELECTION. In our change-point detec-
tion method, several important tuning parameters are
involved, including the regularization parameters 4 ,, 4,
A3, in Step 1, the penalty term @, in the information criterion,
and the tolerance level fol used in the FISTA optimization.
The following provides the approach for selecting them:
A1yt In this study, we manually select A, from the

range[/"¢2,10,/°°22]. This choice is motivated by the

nonasymptotic analysis of [17]. Within this interval, we
perform a grid search over a set of evenly spaced candidate
values. The optimal 4, is then selected as the one that
minimizes the validation error across the candidate grid.

Az To select the regularization parameter 4,,, we
adopt a block-based cross-validation approach. In the sim-
ulation study, 20% of the time series blocks are randomly
selected as the validation set, with the blocks spaced evenly
from a random initial point. The last time points of these
selected blocks form the set 7. We then estimate ® for a
range of candidate 4, , values using only the data excluding
T. These estimates are subsequently used to predict the time
series at the time points in 7. The value of /,, that
minimizes the mean squared prediction error over T is
selected as the optimal parameter via cross-validation.

A3, The regularization parameter 43 ,, which controls
the inter-block sparsity structure, is theoretically required to
satisfy A3, = o((nd;)™")as stated in Assumption H3 of
[14], implying that its value should vanish as the sample
size n increases. For simplicity, we set 43, = 0 throughout
this study.

@,: The penalty weight controlling the number of
change points (the larger the value, the fewer the change
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Fig. 2. The preprocessed simulation data for four types of faults. (a) Low-pressure fuel turbine efficiency degradation fault.
(b) Abnormal oxygen main valve opening. (c) High-pressure oxygen turbine efficiency degradation fault. (d) High-pressure fuel

turbine efficiency degradation fault.

points). In this study, it is manually selected from the range
[51n(T = 1) In(p),5In(T = 1) In(p)], which is selected
based on the theoretical range suggested by Assumption
H4 in [14]. Guided by this theoretical interval, we further
perform a grid search within the range to determine the
optimal w,.

tol: The convergence tolerance € in Algorithm 1 is
manually set to 10> here.

The regularization parameter in Step 2 is selected with
reference to that in Step 1.

10) EVALUATION INDEX. The classification performance
is evaluated based on the proportion of true positives (TP),
which focuses solely on the ratio between TP and false
positives (FP):

TP

=575 27
TP + FP

TP is counted when any detected break point ; falls
within £p lags of a true change point s; (accounting for
VAR lag effects). Precision P measures the proportion of
correctly identified breaks among all detections. The toler-
ance window is set to p = 50 timepoints, accommodating
both the model’s autoregressive structure.

G. RESULT AND DISCUSSION

For the 48 sets of fault scenario data generated by the LRE
simulation model, we conducted fault point detection using
three approaches: the baseline method from [14], our
SCAD-regularized variant, and the LASSO-regularized
variant as an additional reference. Experiments were per-
formed under three Gaussian noise levels: 2.5%, 5%, and
7.5% of the signal amplitude. The experimental results are
summarized in Table II. While all methods achieved 100%
precision at the 2.5% noise level due to the clarity of fault
signatures, under higher noise conditions (5% and 7.5%),
the SCAD-based method demonstrated noticeably more
robust detection performance compared to the LASSO-
based approach. This agrees with the theoretical findings
of [18], who showed that SCAD’s nonconvex penalty
avoids the over-shrinkage of large coefficients that is
common with LASSO, thereby preserving essential struc-
tural signals and enhancing robustness. In addition, we also
conducted  comparative  experiments  with  the
model in [19] to further validate the effectiveness of our
method.

Figure 3 illustrates the detection results of one of the
fault datasets using the improved method proposed in
this paper.

JDMD Vol. 4, No. 4, 2025



246 Tianxiang Teng et al.

TABLEIl. Detection results of liquid rocket engine fault simulation data using three models under different noise levels
Noise level LASSO-VAR SCAD-VAR (Proposed) BSS-VAR

2.5% Accuracy = 100% Accuracy = 100% Accuracy =95.83%
5.0% Accuracy = 100% Accuracy = 100% Accuracy = 87.5%
7.5% Accuracy =91.66% Accuracy =95.83% Accuracy = 83.33%

0.8

0.4 0.6
|
0.8

E ©
: A
N 3
o | o
3 o~
o o 7|
o
T T T T T
0 500 1000 1500 2000
(@
«© |
o
o
| ]
© ©
@
<
o ©
Q
S 3 -
o N ]
o o
~ : o |
? T T T T T ©
0 500 1000 1500 2000
(©
X
o
<
o | <
o «© _|
o
S g
o <
o o
o
o o
e
=
o
T T T T T
0 500 1000 1500 2000
(c)

500 1000 1500 2000

®

Fig. 3. Fault point detection results for 3 scenarios. (a)(c)(e) The calculation results of (X,_;

— L*X,). (b)(d)(f) Results of fault point

detection. The red vertical lines indicate the actual fault injection points at 500, 1000, and 1500, respectively. The black vertical lines
denote the detected fault points at 484, 1012, and 1496, respectively.

Figure 3 shows the change-point detection results for
three different fault scenarios:
1. At the 1000th data point, an abnormal fault in the
oxygen main valve opening is injected with a fault
factor of 0.9.

2. At the 500th data point, a fault in the high-pressure
oxygen turbine efficiency is injected with a fault factor
of 0.85.

3. Atthe 1500th data point, a fault in the low-pressure fuel
turbine efficiency is injected with a fault factor of 0.8.

In (a)(c)(e), the calculation results of (X,_; — L*X,)are
presented, reflecting the extraction of the low-rank

component L* of transition matrix in step 1. It is evident
that the parameter estimation of L* in step 1 is highly
accurate, with the residuals containing only Gaussian noise
and a distinct pulse signal at the fault injection time point.

IV. HOT-FIRE TESTING
EXPERIMENTS

To further verify the effectiveness of the proposed change-
point detection method, this paper validates it using real-
world data from a hot-fire test of a certain model of LRE.
During the test, over 100 sensors were deployed on the
engine to monitor its health status. A leakage fault was
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Fig. 4. Fault point detection result for hot-fire testing
experiments.

detected during the experiment. However, unlike in simu-
lation scenarios, the actual fault occurrence time in the hot-
fire test is unknown. The change-point detection results of
the proposed method applied to the hot-fire test time series
data are shown in Fig. 4.

Considering that the original data contain confidential
information, de-identification measures were applied. Spe-
cifically, the data were standardized, and noise was injected.
Only processed features and fault labels are published to
ensure compliance with data security regulations.

In contrast to simulated environments, the method also
proves effective when applied to real-world fault scenarios
in LRE testing.

V. CONCLUSION

This paper proposes an offline change-point detection
method based on the VAR model and applies it to fault
diagnosis in sSLREs. Fault point detection experiments were
conducted on an LRE system simulation dataset, achieving
a precision of 100%, which demonstrates the effectiveness
of the method in the context of LRE fault diagnosis. In
addition, the proposed method was further validated on
real-world fault data from hot-fire testing experiments,
confirming its practical applicability and robustness. Com-
pared to the change-point detection method in [14], the
proposed approach introduces the SCAD regularization
technique, leveraging its nonconvex penalty mechanism
to reduce the shrinkage of large coefficients, thereby mini-
mizing estimation bias and achieving a more accurate
sparse solution. Furthermore, unlike artificial neural net-
work methods, the proposed method does not require
extensive training data and can localize fault points with
relatively high precision.

However, the proposed method still has several lim-
itations. First, although FISTA accelerates the optimiza-
tion process, the block-wise segmentation strategy
requires sequential processing of high-dimensional
VAR models for each block. As the data scale increases
—such as longer time series or more sensors—the number
of blocks grows linearly, leading to significantly increased
computational costs and challenges in meeting real-time
requirements. Second, key parameters such as the regu-
larization coefficients (4;,, 4,,) and the convergence
tolerance (¢) must be manually tuned, which relies on
expert knowledge or trial and error. This parameter
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selection process is not only time consuming but also
introduces subjectivity, potentially resulting in unstable
outcomes. Finally, the method divides the time series into
fixed-length blocks, implicitly assuming a uniform distri-
bution of change points. In practice, however, failures in
LREs often concentrate in specific periods (e.g., the igni-
tion phase). Fixed block sizes lack the flexibility to adapt
to such temporal variations, potentially causing insuffi-
cient resolution in change-point-dense regions and redun-
dant computation in sparse ones.

Moreover, the proposed framework is built on the
assumption of piecewise stationarity. This assumption is
supported by the operational characteristics of LREs, where
the working process can be divided into several distinct
phases such as ignition, steady combustion, and shutdown
depressurization. Each phase typically corresponds to dif-
ferent control logics, fuel flow adjustments, or structural
responses, which lead to clear differences between transient
and steady states. While transient signals exhibit strong
nonstationary behaviors (e.g., rapid thrust rise, chamber
pressure oscillation, or temperature jumps), steady phases
usually demonstrate small fluctuations and relatively stable
inter-variable relationships, thus presenting local stationar-
ity suitable for VAR modeling. Nevertheless, under con-
ditions with strong high-frequency disturbances, this
assumption may no longer hold, which imposes limitations
on the model’s generality.

We hope to further enhance the method’s real-time
applicability and robustness through adaptive segmentation
and automated parameter selection in future work.
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Appendix A

Table Al summarizes the symbols used in this paper.

TABLE Al. List of symbols used in this paper

Symbol Meaning

X, Multivariate time series observation at time ¢

B; Transition matrix for the j — th segment that
reflects time-varying effects of historical values

Lx Low-rank component

S; Sparse component

P Number of variables (sensor channels)

b, Intercept vector for the n — th segment

k, Length of the n — th segment

X, Multivariate time series observations in block j

Y, Multivariate time series observations in block j

s,]' Error (innovation) terms in block j

X Collection of all historical inputs across all
blocks

Yy Collection of all current outputs across all
blocks

€ Collection of all error terms.

4 Block-structured matrix built from segment
predictors X, , describing segment-specific
contributions (Eq. 7)

(C] Parameter matrix capturing structural changes
across segments (Eq. 9)

Atns Aons A3, Regularization parameters controlling
penalties.

S; End index of the i — th segment

P a(x) SCAD (smoothly clipped absolute deviation)
penalty function with parameters 4 and a.

m Number of segments (or subintervals) in the
time series.

Pobine Turbine output power

(0] Mass flow rate through the turbine

Niurbine Turbine efficiency

f Rotational speed (frequency) of turbine shaft

Nyrbine Rotational speed of turbine (rpm)

T Torque produced by turbine

Tty The total flow rate through the valve system

71y The flow rate through the leakage valve.

71 The flow rate through the primary valve.

Cq Flow coefficient of the leakage passage.

A Maximum flow area of the leakage passage.

p Fluid density.

Ap Pressure drop across the leakage valve.
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