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Abstract: Missing data handling is vital for multi-sensor information fusion fault diagnosis of
motors to prevent the accuracy decay or even model failure, and some promising results have
been gained in several current studies. These studies, however, have the following limitations: 1)
effective supervision is neglected for missing data across different fault types. 2) Imbalance in
missing rates among fault types result in inadequate learning during model training. To overcome
the above limitations, this paper proposes a dynamic relative advantage-driven multi-fault
synergistic diagnosis method to accomplish accurate fault diagnosis of motors under imbalanced
missing data rates. Firstly, a cross-fault-type generalized synergistic diagnostic strategy is
established based on variational information bottleneck theory, which is able to ensure sufficient
supervision in handling missing data. Then, a dynamic relative advantage assessment technique is
designed to reduce diagnostic accuracy decay caused by imbalanced missing data rates. The
proposed method is validated using multi-sensor data from motor fault simulation experiments,
and experimental results demonstrate its effectiveness and superiority in improving diagnostic
accuracy and generalization under imbalanced missing data rates.
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I. INTRODUCTION
The motor is a crucial power component in

sophisticated equipment like armored vehicles,
aircraft, and ships, significantly influencing overall
performance and reliability [1]. During operation,
motors are susceptible to faults from high-frequency
operation, inadequate cooling, deferred maintenance,
or power variations [2]. If no action is taken in time,
these faults will directly affect the equipment
performance, even resulting in substantial economic
losses and casualties [3]. Hence, accurate and
effective fault diagnosis technology is vital for
ensuring equipment safety and improving reliability.

The advancement of industrial information
technology has led to the widespread utilization of
various sensors in equipment health monitoring,
including those for vibration, temperature, and
pressure. These sensors are employed to monitor the
real-time and comprehensive service status of critical
components and systems [4]. Concurrently, deep
learning models have gained prominence in the

domain of multi-sensor information fusion fault
diagnosis due to their exceptional capacity for
nonlinear characterization learning [5]. By leveraging
deep learning, diagnostic methods can establish a
direct mapping from multi-sensor data to fault
classification, obviating the necessity for elucidating
fault mechanisms or engaging in intricate feature
engineering [6]. In recent years, numerous deep
learning-based approaches coupled with multi-sensor
data have demonstrated efficacy in motor fault
diagnosis. For instance, Wei et al. [7] proposed a fault
diagnosis model based on multi-head self-attention
and multi-sensor deep feature fusion network. Li et al.
[8] proposed a multi-sensor information fusion fault
diagnosis model that integrated a two-stage recurrent
neural net-work with a convolutional block attention
module. Li et al. [9] designed a multi-view graph
neural network that combines time domain and
frequency do main features for multi-sensor
information fusion fault diagnosis.

High-quality multi-sensor datasets are essential
for achieving high diagnostic accuracy for deep
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learning model-based methods in fault diagnosis of
motors [10], but it is inevitable in real-world
industrial applications that the multi-sensor data
collected by monitoring sensors may contain
imperfect data, such as drift, loss, mutation, and
empty acquisitions, due to the complexity of
equipment operating conditions, variability of combat
environments, sensor degradation, and other factors
[11]. Utilizing such inferior multi-sensor data directly
in fault diagnosis algorithms can significantly impact
diagnostic performance, leading to reduced accuracy
and potential algorithm failure [12][13]. In response
to this dilemma, researchers have focused on
handling missing data in multi-sensor information
fusion fault diagnosis of motors. For instance, Yu et
al. [14] introduced a novel fault data generation
approach that combined physical models and periodic
generation to address network variations in bearing
fault diagnosis. Shao et al. [15] integrated complete
data and uncertain information using dynamic
Bayesian networks to mitigate data integrity issues
and minimize prediction errors. Song et al. [16]
proposed a fuzzy clustering framework that
incorporated weighted non-negative latent factor
analysis to cluster incomplete data with high
precision. Yang et al. [17] presented a data
enhancement method based on a diffusion probability
model for fault diagnosis in scenarios with
unbalanced data. In these studies, the reconstruction
network based on data generation mechanisms, such
as generative adversarial networks, can effectively
alleviate the impact of poor-quality data on
diagnostic performance, using physical constraints.
Thereby, these networks can achieve excellent
diagnostic performance under inadequate fault
samples. More importantly, they do not require
additional structures or auxiliary data.

Although existing methods have achieved
promising results in missing data processing, there
are still some limitations as follows:

1)They choose to either directly mask the
missing data or only consider reconstructing the
missing data based on the features of gettable data.
Direct masking avoids the interference of missing
data on forward feature extraction, but it overlooks
potential useful information. The method that only
considers the obtained data features improves data
utilization efficiency, but it neglects the effective
supervision of missing data across different fault
types, which may lead to the performance decline of
diagnostic models, especially in the scenarios of high
missing data rates. Therefore, a new missing data
handling methodology that considers missing data

supervision is needed to guide the intelligent
diagnosis network to more effectively learn and
classify faults types.

2)They consider the issue of missing data but
overlook the impact of the imbalance in missing rates
among fault types. In industrial scenarios, the
operating conditions of motors inevitably change, and
the missing data rates of different fault types often
exhibit significant differences. The missing rate for
certain fault types may be as low as 20%, while for
others it may be as high as 80%. This discrepancy
triggers the channel imbalance problem, where the
strong channels with less missing data dominate
model training, while the weak channels with more
missing data may be neglected, resulting in
inadequate training for some fault types and affecting
overall diagnostic performance. Therefore, it is key to
effectively balance the training data of different fault
types under data missing conditions, ensuring that
each fault type is sufficiently learned.

To address the aforementioned issues, this paper
proposes a dynamic relative advantage-driven multi-
fault synergistic diagnosis method to accomplish
accurate fault diagnosis of motors under imbalanced
missing data rates. In the proposed method, there are
two distinctive compositions: a cross-fault-type
generalized synergistic diagnosis strategy and a
dynamic relative advantage assessment technique.
The cross-fault-type generalization synergistic
diagnostic strategy focuses on using the variational
information bottleneck theory to obtain an optimal
representation of fault types, which is able to ensure
sufficient supervision in handling missing data. The
dynamic relative advantage assessment technique is
composed of a reconstruction loss and a two-layer
collaborative optimization algorithm, which reduces
diagnostic accuracy degradation caused by missing
data imbalance. The effectiveness of the proposed
method is validated using multi-sensor data from
motor fault simulation experiments. The contributions
of this work can be summarized as follows.

1)A cross-fault-type generalized synergistic
diagnosis strategy based on variational information
bottleneck theory is proposed to enable reconfigured
networks to be adequately supervised when missing
data are made up. Through minimizing the
information bottleneck loss for redundancy reduction
and leveraging label-based supervision on missing
data, cross-type generalizable representations are
progressively generated from the optimized features
of other fault types. Therefore, the method can guide
the reconfiguration network to maximize the retention



of task-relevant features, thereby achieving higher
diagnostic accuracy under missing data.

2) A dynamic relative advantage assessment
technique is designed to quantify the expressive
capability of different fault types, which can facilitate
collaborative learning of different fault types. On the
one hand, the relative advantage of each fault type is
defined dynamically based on the reconfiguration loss.
On the other hand, a two-layer collaborative
optimization algorithm is designed to dynamically
adjust the supervisory weights by means of a
synergistic training and adaptive supervisory
adjustment, which makes the inductive loss gap
between fault types smaller. Therefore, this technique
can avoid the degradation of fault diagnosis accuracy
caused by imbalance in data missing rate.

The article is structured as follows: Section II
presents the pertinent preliminary research; Section
III delineates the proposed methodology; Section IV
validates the method's efficacy through simulation
experiments and comparative analysis with

established approaches; Section V encapsulates the
paper findings and outlines potential future research
directions.

Ⅱ. PRELIMINARY
A. DEFINITION OF MISSING DATA

Missing data are defined as two types:
incomplete data and complete missing data.
Incomplete data refers to situations where there are
parts of the sensor monitoring data that are missing,
usually due to sensor failures or other limitations that
result in the loss of certain data segments, but still
result in partially valid data. In contrast, Complete
missing data refers to a situation where the sensor
fails to monitor any data, leaving the relevant portion
completely empty. This is usually caused by
equipment failures, communication breakdowns or
other serious problems that prevent access to any
valid information.

Fig.1. Model architecture of the dynamic relative advantage-driven synergistic fault diagnosis method



B. SYMBOL DEFINITION

Assume that the training data contains K types of
faults, and each fault type includes L sensor data. The
concatenation of all fault data is utilized to define an
auxiliary fault, leading to a total of L+1 data entries
for simplicity. The training samples are denoted by

[ ]{ }kl k KZ 
and

[ 1 ]{ }K
k
l KW  

, where [ ]k K denotes the
sample serial number, lk

l
dZ  R denotes the feature

vector of the sensor, and k
lW denotes the

corresponding fault label. For consistency of
expression, all features of fault type L are collected

1 1 2[ ; ;K
L L LZ Z Z ; ]K

LZ . senc denotes the adaptive
encoder, k

senc denotes its corresponding parameter,
and xenc denotes the interactive residual autoencoder,

k
xenc denotes its corresponding parameter.

1K
dec
 denotes the parameters of the decoder.

Ⅲ. Dynamic Relative Advantage-
Driven Multi-Fault Synergistic

Diagnosis Method
The proposed method is composed of two parts:

a cross-fault-type generalized synergistic diagnosis
strategy and a dynamic relative advantage assessment
technique. As shown in Fig 1, the model architecture
is depicted. Stage Ⅰ consists of the training process
of samples from three fault types with complete data,
while stages Ⅱ and Ⅲ are used to illustrate the model
training and inference methods under missing data
conditions. In short, the features l

kZ of the sensors
corresponding to each fault type are mapped to their
representations k

ly through a parameterized
variational encoder k

senc . Subsequently, each fault
type final representation ˆ kly is constructed by a
parameterized k

xenc cross-fault-type encoder using
representations from other fault types { } k

k
l ky  ,rather

than relying solely on its own self-representation k
ly .

A. GENERALIZED SYNERGISTIC DIAGNOSIS
STRATEGY ACROSS FAULT TYPES

To ensure that the reconstruction module
receives adequate guidance under missing data
training framework and that each fault type obtains its
optimal representation during learning, this section
proposes a cross-fault-type generalized synergistic
diagnostic strategy. As illustrated in Fig. 2, this
strategy generates a generalized diagnosis across fault
types using the optimal representations of other fault
types, regardless of whether the data is missing or
available.
1） Synergistic Diagnostic Strategy Derivation

For different sensor features k
lZ , the generalized

synergistic characterization k
ly of fault types is

derived as follows. First, a sample is taken from the
complete sensor feature set, denoted as (k k k

ly P y z ∣
; ), { | 1}k

senc klk k C    . Then, the cross-fault type
representation for all sensors is calculated as ˆ kly 

({ } ; )k
l

k
l xenck

kR y





 , where k
l is defined as the set of

all sensor features excluding the features of sensor k
itself, denoted as  [ ], 1,lk

k
l k K C k k      .Finally,

using the above symbols, the final representation of
feature , [ ], [ ]l

kz l L k K   can be reduced
to  , if 1; ,otherwise.ˆk k

l
l

lk kly y C y  . Meanwhile, the
representation of the auxiliary fault K+1 is the
concatenation of the sensor features of all fault types,
denoted as 1 1 2: [ ; ; ; ]K K

l l l ly y y y   , and the encoder
parameters for all fault types k are collected
using { , }enc sen n

k
c

k k
xe c    . When all encoder

parameters are gathered using 1
[ ]: { }K

enc enc k K
K

  , the
above process can be summarized
as ( | ; )en

k k k k
l cR y zy   .For typical multi-fault- multi-

sensor synergistic fault diagnosis, the generalized

Algorithm: Synergistic Fault Diagnosis Strategy
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

Input: Sensor feature matrix 1
L
K Z ,

Completeness matrix { }klC C
Output: Final representations ˆ kly ,auxiliary
faul 1

l
Ky  , shared labels k

lW
Initialize: model parameters 
for l ∈ [1, L] do

for k ∈ [1, K] do // Self-Representation
via Variational Encoder

if 1klC  then
( ; )k k k k

l sency P y z  ∣
else k

ly null
{ [ ] 1, }lk

k
l k K C k k     ∣

// Available fault types
if | | 0k

l  then
)ˆ ({ } ;k

l

k k
l l xenck

ky R y






else ˆ kly null
if 1klC  then

 l
l
k

ky y
else if lˆ nulk

ly  then
ˆl

l
k

ky y
end for

1 1 2[ ; ; ; ]K K
l l l ly y y y  

for k ∈ [1, K+1] do
( | ; )k k k k

decl R w yw   if l
ky null

else null
end for
valid ←{W | W null}k k

l l 
if |valid| >0 then

majority← argmax(w∈valid) count(w)
Wk
l ←majority ∀ k ∈ [1, K+1]

end if
end for

return y ᵏ, 1
l
Ky  , Wk

l



synergistic representation of the auxiliary fault 1
l
Ky 

is used for the final sensor fault label prediction,
which is equivalent to passing the representation to a
decoder with parameter 1 1 1 1( | ;:K k

l
k k

dec R w yw   
1 )k

dec
 .Additionally, in this strategy, each individual

sensor also performs fault type label prediction,
denoted as  : ( | ; ),dec dec

k k k k k
l Kw R w y k    , and all

sensors share the same label 1
l
kW  . The above

algorithm illustrates the derivation of the strategy.
2） Parameter Optimization

The learning objective based on the variational
information bottleneck is to maximize the target
information while effectively compressing the
original features. In the generalized synergistic
diagnosis method across fault types, this objective
can be transformed into an optimization problem,
which is achieved by minimizing the Information
Bottleneck (IB) loss.

[ 1]
min ( ) : ( , ; ) ( , ; )k k k

IB
K

k

k
I z y I y w

 
     L (1)

Where
[ 1]{ , }enc dec K

k k
k    collects all model parameters,

( , )I   represents the mutual information between two
random variables, and the “bottleneck” width,
denoted by λ, realizes the filtering of redundant
information and the coefficients 0  are two of the
balanced predefined constant loss functions. However,
since calculating the cross-fault type information

( , ; )k kI z y  and ( , ; )k kI y w  is difficult, this paper
employs the variational upper bound of ( )IB L :

1

1
( ) ( )

[ ( ( | ; ) || ( )) log ( | ; )]

K

IB VIB
k

enc d
k k k k k k k

ecD p y z q y q w y




    

  

EL L
(2)

Where [ ]E is the expectation for the random
variables Zk, Yk, and Wk; ( || )D   represents the KL
divergence between two distributions; and ( )kq y
and ( | ; )d

k k
ec
kq w y  represent the variational

distributions approximating ( | ; )e
k k

nc
kp y z  and

( | ; )d
k k

ec
kq w y  .

The variational encoder adopts a Gaussian
form ( | ; ) ( ; ( ; ), ( ; ))k k k k k k k

enc nc
k

enc ep y z y f z f z   ΣN μ
,

where ( ; ) d
enc
kf    Rμ

and ( ; ) d d
enc
kf   Σ R are the

mean vector and covariance matrix determined by the
network model, and ( )kq y is fixed as a dimensional
spherical Gaussian, i.e., ( ) ( ; , )k

d d
kq y y 0N I , where

0d and Id are the d-dimensional zero vector and the d
× d identity matrix, respectively. The decoder is a
simple classifier model in the form of ( | )k kq w y 
softmax ( ( ))c

kf y , where ( ), [ 1]c
kf y k K  maps the

representation to the logic used for classification
through an MLP, resulting in the following:

( ; ) ( ; ))e
k k k k k

enc ncy f z f z   Σòμ
(3)

Where  denotes the element-wise product.
Therefore, ( )VIB L can be approximated as the
following ( )VIB L :

1

1 1

1( ) ( ( | ; ) || ( ))

[log ( | ; )]

K

VIB en

c

L
k k k k
l l l

k

k k k
l l

c
l

de

L
D p y z q y

q w y







   

 



Eò

L
(4)

Where ò is the random variable in the
reparameterization trick.

This formula bypasses the expectation in the
equation, allowing us to compute unbiased random
gradients through backpropagation with a single
sample. dynamic relative advantage assessment
technique. Minimizing ( )VIB

L θ helps achieve the
optimal representation for each sensor, thereby
meeting the goal of the information bottleneck theory,
which is to maximize prediction accuracy while
compressing features. In the generalized synergistic
diagnosis strategy, the system learns the features of
all sensors, regardless of whether a fault type has
complete sensor data. For both missing and available
data, the cross-fault type encoder receives supervision
for the labels by minimizing the VIB loss ( )V IB L .
For complete data, the cross-fault type encoder
receives additional supervision from this feature by
minimizing the following Mean Squared Error (MSE):

Fig.2. A cross-fault-type generalized synergistic
diagnosis strategy



2
2

1

1( ) || ||ˆ kMSE l

L
k k

l
k l

y
L

y


   L (5)

Where ( )MSE
k L denotes the loss of mean square

error,
k lkL C  represents k fault types. The overall

loss function for training is：

[ ]
( ) : ( ) ( )VIB MSE

k K

k k


     L L L (6)

Where the coefficient k balances the supervisory
loss for different fault types.

In summary, the supervisory methods for the
encoder include two types: the adaptive encoder
( , [ ])s

k
enc k K  and the interactive residual

autoencoder ( , [ ])x
k
enc k K  . When training for a

fault type with missing sensors, parameters k
senc and

k
xenc rely not only on the supervision of sensor

features but also on label supervision. However, in
the case of uneven missing rates, the parameters
corresponding to sensors with higher missing rates
experience less frequent supervision. This situation
may lead to overfitting of some predictive labels,
while others may be underfitted.

B. A DYNIMIC RELATIVE ADVANTAGE
ASSESSMENT TECHNIQUE

In order to better quantify the strength of each
fault type relative to other fault types, the concept of
relative advantage is proposed in this paper. As
shown in Fig. 3, the relative advantages of different
fault types are defined and adjusted by analyzing the
learning effect and interpolation loss of the fault types
during the training process. In this way, balanced
learning of different fault types can be achieved by
adaptively adjusting the supervision intensity

k during the learning process of each sensor.
1) Definition of relative advantage

A strong advantage of a fault type is
characterized by a better learning effect or a smaller
missing rate in the interpolation task, which results in
a smaller interpolation loss during the training
process. This phenomenon inspires us to define the
relative advantage of fault types based on the
interpolation loss. For subsequent analysis, the
average interpolation loss for all fault types is first
defined, denoted as:

[ ]
( ) ( ) /MSE MS

K

k
E

k
K


   L L (7)

For ( )m
MSE L , the failure type relative advantage

is formally defined as:
( ) [ ( ) ( )] / ( )MSE MSE MSE

k kRA      L L L (8)
When ( ) 0kRA   , fault k is considered strongly

dominant relative to other faults; when ( ) 0kRA  
the interpolation loss of fault type � is comparable to

the average and is in equilibrium, and when
( ) 0kRA  ＜ , the interpolation loss of fault � is greater

than the average loss, implying that the fault type
performs weakly in the training and belongs to
weakly dominant faults.
2) A two-layer collaborative optimization algorithm

The relative advantage vector for each fault type
is set to 1 2( ) [ ( ), ( ), , ( )]TKr RA RA RA     , and
the weight vector of all the supervised adjustments is
set to 1 2[ , , , ]TK     . To ensure the
effectiveness of learning, the supervised conditioning
is inversely related to the relative advantage of each
fault type. Therefore, the objective of supervised
regulation is to minimize changes in the relative
advantage during the training process. The synergistic
training and supervised regulation is formulated as
the following two-layer collaborative optimization
problem:

1 2,

[ ]

min ( )

arg min (

; ;

) ( )

T
p

VIB M
k k

SE
k K


   




 

  

     

 

L L

r
(9)

where 1 is a constant to ensure that the supervision
weights are positive; 2 denotes the ℓp-paradigm
that constrains the supervision and ensures the
stability of the training; and  denotes the self-
adaptive tuning of the supervision by minimizing the

Fig.3. A dynamic relative advantage assessment
technique



correlation between the supervision and the relative
advantage.

The core of the above two-layer collaborative
optimization algorithm is to optimize the weights in
the outer layer and the model parameters  in the
inner layer to minimize the weighting error, the
weights and the model parameters are interdependent
and alternately iterated. Fix  ,optimize  ,and
update the model parameters to minimize the
weighting error after weighting. Fix  , optimize  ,
calculate the current relative advantage ( )r  , and
adjust the weights  to reflect the performance of the
model. Inner layer optimization: optimize the model
parameters  , so that the weighted error is
minimized:

[ ]
arg min ( ) ( )VIB MSE

k K

k k


     L L (10)

where ( )VIB L denotes the underlying training error
term and

[ ]
( )k

M E
k K

k
S


 L denotes the weight-weighted

model error term.
To ensure that each parameter update disrupts

model training due to unusually large gradients, the
process of introducing gradient constraints into the
inner optimization is introduced, and each time the
gradient is computed, the dynamic smoothing of the
gradient is performed first, and then the gradient
constraints are applied:

MAL MAL

MALclipped
MAL

MAL

( )if ( )
( )( )   if ( )
( )

k k

kk
k

k

L L c
LL c L c
L

 
 


 






  
      

(11)
where clipped ( )kL   is the gradient after applying
the gradient constraint. Outer layer optimization:
Optimize the weight  , so that the weight
distribution is reasonable:

1 2min ( ) ; ;T
p

      r (12)

The weights are updated according to the
following rules:

 1 2

( 1) ( ) ( )
[ , ]Proj ( )t t tr       (13)

where
1 2[ , ]Proj   denotes the projection of the update-

ed weights into the constraint range, and  denotes
the learning rate, which controls the update step size.
3) Dynamic supervised conditioning training

Since the training process is affected by
stochastic gradients, variations in the error may lead
to unstable model performance. Therefore, a dynamic
supervision technique is proposed. The key to

dynamic supervision is the use of moving average
loss to smooth out the error variations:

MAL MAL 1 MSE( ) (1 ) ( ) ( )K k
gg

k
gL L L       (14)

Where [0,1]  denotes the smoothing coefficient,
which controls the weight of the historical error and
the current error. the larger β is, the higher the weight
of the current error is. the smaller β is, the more
emphasis is placed on the historical error.

Fig.4. Motor failure simulation experiment device

Fig.5. Failure simulation photos
TABLE I. Working conditions of motors

Serial
No.

Load/Rotating
Speed

Serial
No.

Load/Rotating
Speed

1 0N·m/15Hz 7 0N·m/35Hz
2 10N·m/15Hz 8 10N·m/35Hz
3 15N·m/15Hz 9 20N·m/35Hz
4 0N·m/25Hz 10 0N·m/45Hz
5 10N·m/25Hz 11 10N·m/45Hz
6 20N·m/25Hz 12 20N·m/45Hz



Ⅳ EXPERIMENTS AND RESULTS
A. DATA DESCRIPTION

In order to validate the effectiveness of the
proposed dynamic relative advantage-driven
synergistic multi-fault diagnosis method under the
condition of imbalanced data missing rate, multi-
channel signals under various motor health states
were acquired from the motor experimental setup
shown in Fig. 4. The signal data consists of nine
channels with a sampling frequency of 25.6 kHz. the

channel signals are mainly from the three-axis
acceleration signals at the drive end and the fan end,
as well as the current signals. As shown in Fig 5,
eight different motor health states were simulated.
Each sample in the dataset was constructed using a
sliding window of length 1024 with non-overlapping
windows. Table I lists the 12 operating conditions in
the experiment. At each motor speed, 1200 samples
were collected, of which 80% were used for training
and 20% for testing.
B. DATA PRE-PROCESSING

In order to simulate the missing data and
unbalanced missing rates in real-world environments,
the number of missing values for each feature in the
tensor was randomly quantified, mainly for the outer
gear ring faults, inner gear ring faults, and rolling
body faults. And five types of randomized missing
rates were set while keeping the unbalanced missing
rates for three fault types to reflect the different levels
of data availability in real scenarios. Table shows the
missing rates Ⅱ.
C. REALIZATION DETAILS

Using Transformer encoder as an adaptive
encoder for all fault types, interactive residual
autoencoder as a cross-fault type encoder, and
multilayer perceptron as a decoder. The number of
self-attentive layers for all adaptive encoders is 4, and
all layers have 16 heads and 256-dimensional hidden
embeddings. All cross-fault type encoders consisted
of 4 interactive residual autoencoder blocks with RA
layer sizes of 256-128-64-32-64-128-256, and the
outputs were 128-dimensional vectors as
representations of the corresponding fault types, and
the model was trained using the optimizer Adam with
a learning rate of 1 × 10-4 and a batch size of 256. The
specific network structure is shown in Table Ⅳ. The
parameter set-tings are shown in Table Ⅲ, and in the
experimental validation, A weighted F1 score was
used as the performance metric and the final result
was derived from the average of 3 or more replicated
experiments.
D. Results and efficiency of experiments
1. Experimental validation at high deletion rates

TABLE Ⅱ. Random Missing Rate and Symbol

Description of symbols Defect rate
(I1 , O1, C1) (0.2, 0.5, 0.4)
(I2 , O2, C2) (0.4, 0.6, 0.3)
(I3 , O3, C3) (0.6, 0.3, 0.2)
(I4 , O4, C4) (0.7, 0.4, 0.6)
(I5 , O5, C5) (0.5, 0.95, 0.6)
(I6 , O6, C6) (0.5, 0.9, 0.95)
(I7 , O7, C7) (0.9, 0.9, 0.95)

TABLE Ⅲ. Related Parameter Settings

Parameter symbol Numeric size
 0.5
P 3

1 0.9
2 0.3

 1e-3
 5e-3

TABLE Ⅳ. Network Configuration

Layer Parameters
Input (A/L/V) Size: 130 (A), 1024 (L), 384 (V)

Transformer
Encoder

Layers: 3, Heads: 8, Embd Size:
128, FFN Hidden: 512 (128×4),

Activation: GELU
Embedding

Fusion
Size: 384 (128×3, A+L+V

concatenation)
Residual AE

Blocks
Layers: 128→64→32 (3 blocks),
BN: - (use_bn=False), Dropout: 0

Residual XE
Cross-modal

Input: 256 (A+L/V+A/L+V),
Output: 128 (target modality),

Layers: 128→64→32 (3 blocks)
Classifier Fc

Classifier
Layers: 128→128, Dropout: 0.3,

BN: Optional (opt.bn)

Optimizer
Adam (lr=opt.lr, β1=0.9,

β2=0.999), LR Scheduler: Cosine
Annealing + Warmup



To simulate extreme data scarcity scenarios, we
conducted systematic tests on synthetic datasets with
three different sensors with up to 95% missing rate
under the same fault type, and designed three
differentiated scenarios: scenario 5 with missing rate
of (0.5, 0.95, 0.6) (70.3% on average), scenario 6
with missing rate of (0.5, 0.9, 0.95) (80% on average),
and scenario 7 with missing rate of (0.9, 0.9, 0.95)
(mean 91.7%).

The experimental results show that the method
performs well in the baseline condition (40%-
60%missing rate) with an accuracy of 95.2% and an
F1 value of 0.948; as the average missing rate
increases, the accuracy drops to 88.7% and an F1
value of 0.872 in Scenario 1 (70.3% missing rate),
and the accuracy plummets to 62.1% and an F1 value
of 0.589 in Scenario 3 (91.7% missing rate). When
the average missing rate exceeds 85%, the model
accuracy falls below 70%, indicating that the method
relying on the generalized joint diagnosis strategy
across fault types fails due to data sparsity. The
underlying reason is that when the valid sensor data is
less than 15%, the correlation features across fault
types are too sparse to generate meaningful
representations, resulting in the diagnostic
performance degrading to a level similar to that of
random prediction. Fig. 6 visualizes the trend of the
average F1 index of the proposed method for four
scenarios with increasing average missing rate.
2. Training time

For the real-time requirements of industrial
applications, the training time comparison between
the proposed method and the baseline model is shown
in Figure V. The experiments were conducted in the
same hardware environment (NVIDIA RTX 4060
GPU, 32GB video memory) and the results are shown
below:

Fig.6.Mean F1 index under sequential increase in
mean deletion rate

TABLE Ⅴ. Comparison of training time of the
proposed method with the baseline model

Method Training
time instruction

Proposed
method

18.5 ±
1.2

Contains VE/CFE dual
coding with shared label

constraints

Method D 28.7 ±
2.5

Contains adversarial
training loop, slower

convergence

Method E 22.3 ±
1.8

Requires sample pair
similarity computation,

higher complexity

Method F 5.6 ± 0.5
Contains only single
feature extraction, no

deep network



The training time of the proposed method is
longer than that of the traditional method C, but it is
35.6% and 17.0% shorter compared to GAN and
diffusion models, respectively. This is due to the
lightweight cross-fault encoder design that avoids
complex adversarial games or global feature
comparisons. In batch training scenarios, the training
time of the proposed method is in the acceptable
range (about 20 seconds per epoch), which is suitable
for the daily model iteration requirements of most
industrial production lines.

Fig.7. Comparison of ablation experiment results



E. ABLATION EXPERIMENT
1. Impact of different modules on the proposed

methodology
In the ablation experiment, by comparing the

following three scenarios: 1) the absence of cross-
fault type generalized synergistic diagnosis strategy
(Method A); 2) the absence of the dynamic relative
advantage assessment technique (Method B); and 3)
the F1 score of the method proposed in this
experiment under conditions of missing data with
imbalanced missing rates. The results are shown in
Fig 7 (a). The method proposed outperforms the other
two methods in diagnostic classification accuracy
under different imbalanced missing rates for outer
race fault, inner race fault, and rolling element fault.
Fig 7 (b) and 7 (c) show the fault diagnosis
classification results for missing rates of (0.4, 0.6, 0.3)
and (0.7, 0.4, 0.6), respectively. Fig 7 (e) further
illustrates the learning curves accuracy and F1 score
for the three methods with a missing rate of (0.4, 0.6,
0.3), providing further evidence of superiority.

Additionally, Fig 7 (f) and 7 (g) present the
relative advantages of the three methods during
training, with missing rates of (0.4, 0.6, 0.3) for the
outer race fault, inner race fault, and rolling element

fault. Fig 7 (f) indicates that when the relative
advantage aware-ness supervision technique is not
implemented, the sensor data corresponding to the
rolling element fault predominates over the other two
fault types. A comparison between Fig 7 (f) and 7 (g)
clearly shows that the supervision technique
facilitates more balanced learning, thereby reducing
the inductive loss gap between fault types and
enhancing the model's generalization ability.
2. Impact of hyperparameters on model

performance
The sensitivity analysis of systematic parameters

shows that the combination (λ=0.5, ξ₁=0.9, ξ₂=0.3,
α=1e-3, β=5e-3) performs optimally in terms of
accuracy, F1 score, convergence speed and noise
robustness, which verifies the reasonableness of the
theoretical derivation; among them, the accuracy rate
decreases significantly when λ deviates from 0.5,
which embodies the key role of information
bottleneck trade-off, ξ₁<0.9 or ξ₂>0.3 will lead to a
significant reduction in noise robustness, and α,β
exceeding the recommended range will increase the
noise robustness. 0.9 or ξ₂>0.3 will lead to a
significant decrease in noise robustness, highlighting
the filtering ability of the threshold on industrial noise,
and α/β exceeding the recommended range will

Fig.8. Parameter correlation analysis



increase the number of convergence rounds affecting
the real-time efficiency; in summary, the optimal
intervals for the hyperparameters are clarified as λ ∈
[0.4,0.6], ξ₁ ∈ [0.85,0.95], ξ₂ ∈ [0.25,0.35], α ∈
[5e-4,1.5 e-3], β∈[3e-3,7e-3]. The detailed parameter
correlations are shown in Fig. 8.
F. COMPARISON EXPERIMENT

To validate the advantages of the proposed met-
hod for fault diagnosis of motor under conditions of
data missingness and imbalanced missing rates, this
paper compares the proposed method with three
existing approaches.

1) Method C [15] proposed a new method to
compensate the data integrity problem and minimize
the prediction error by integrating complete data with
uncertain information through a dynamic Bayesian
network.

2) Method D [16] proposed a fuzzy clustering
framework that combines non-negative latent factor
analysis has been included and feature-weighted
fuzzy double C-mean clustering novel clustering of
incomplete data with high accuracy.

3) Method E [17] proposed a novel data
augmentation method based on deo diffusion
probability model for fault diagnosis under
unbalanced data with missing rates.

4) Method F [18] proposed an improved deep
convolutional generative adversarial network with
discriminator gradient gap regularization for specific
application scenarios.

5) Method G [19] proposed a strategy based on a
feature-fusion deep convolutional generative
adversarial network architecture.

The comparison results, shown in Fig. 9, can be
summarized as follows: When the missing data rate is
low (i.e., 0.0 and 0.1), the proposed method
outperforms all comparison models because other
models have not been fully exposed to data missing
scenarios and struggle to handle such situations. In
contrast, our method continues to perform cross-fault-
type representation learning effectively, even when
no data is missing. When the missing data rate is
moderate (e.g., between 0.2 and 0.6), despite using a
less data-intensive supervised training technical, the
proposed method's performance is at least on par with
other models, demonstrating its advantage in missing
data supervision. When the missing data rate is high
(e.g., between 0.7 and 0.9), our method maintains
relatively stable performance with only slight to
moderate degradation, whereas comparison models
exhibit significant performance declines. These
results indicate that our method effectively leverages

the supervisory information from available fault types,
with label information playing a key role in
improving performance. Overall, the method
demonstrates excellent robustness under varying
missing data rates, proving its effectiveness and broad
applicability.

Ⅴ. CONCLUSIONS
In this paper, a dynamic relative advantage-

driven synergistic diagnosis method is proposed for
motors under imbalanced missing data rates. First, a
generalized synergistic diagnosis strategy across fault
types based on the variational information bottleneck
theory is constructed, which is supervised by the
optimal representation of each fault type and the
available data and labels in order to efficiently utilize
incomplete samples of the missing data and perform
effective supervision. Additionally, a dynamic
relative advantage assessment technique is designed
to reduce diagnostic accuracy degradation caused by
imbalanced missing data rates. This is achieved by
quantifying the relative advantage of each fault type
through reconstruction loss and employing a two-
layer collaborative optimization algorithm with
adaptive supervision weights to adjust the training
process. The effectiveness of the method is verified
through motor failure simulation experiments, and the
robustness of the proposed method is demonstrated in
the absence of data. Future research will focus on
exploring the convergence of the algorithm and
further improving the network performance.
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