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Abstract: Missing data handling is vital for multi-sensor information fusion fault diagnosis of motors to prevent
the accuracy decay or even model failure, and some promising results have been gained in several current studies.
These studies, however, have the following limitations: 1) effective supervision is neglected for missing data
across different fault types and 2) imbalance in missing rates among fault types results in inadequate learning
during model training. To overcome the above limitations, this paper proposes a dynamic relative advantage-
driven multi-fault synergistic diagnosis method to accomplish accurate fault diagnosis of motors under imbal-
anced missing data rates. Firstly, a cross-fault-type generalized synergistic diagnostic strategy is established based
on variational information bottleneck theory, which is able to ensure sufficient supervision in handling missing
data. Then, a dynamic relative advantage assessment technique is designed to reduce diagnostic accuracy decay
caused by imbalanced missing data rates. The proposed method is validated using multi-sensor data from motor
fault simulation experiments, and experimental results demonstrate its effectiveness and superiority in improving

diagnostic accuracy and generalization under imbalanced missing data rates.
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I. INTRODUCTION

The motor is a crucial power component in sophisticated
equipment like armored vehicles, aircraft, and ships, sig-
nificantly influencing overall performance and reliability
[1]. During operation, motors are susceptible to faults from
high-frequency operation, inadequate cooling, deferred
maintenance, or power variations [2]. If no action is taken
in time, these faults will directly affect the equipment’s
performance, even resulting in substantial economic losses
and casualties [3]. Hence, accurate and effective fault
diagnosis technology is vital for ensuring equipment safety
and improving reliability.

The advancement of industrial information technology
has led to the widespread utilization of various sensors in
equipment health monitoring, including those for vibration,
temperature, and pressure. These sensors are employed to
monitor the real-time and comprehensive service status of
critical components and systems [4]. Concurrently, deep
learning models have gained prominence in the domain of
multi-sensor information fusion fault diagnosis due to their
exceptional capacity for nonlinear characterization learning
[5]. By leveraging deep learning, diagnostic methods can
establish a direct mapping from multi-sensor data to fault
classification, obviating the necessity for elucidating fault
mechanisms or engaging in intricate feature engineering
[6]. In recent years, numerous deep learning-based ap-
proaches coupled with multi-sensor data have demonstrated
efficacy in motor fault diagnosis. For instance, Wei et al. [7]
proposed a fault diagnosis model based on multi-head self-
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attention and multi-sensor deep feature fusion network. Li
et al. [8] proposed a multi-sensor information fusion fault
diagnosis model that integrated a two-stage recurrent neural
network with a convolutional block attention module. Li
et al. [9] designed a multi-view graph neural network that
combines time domain and frequency domain features for
multi-sensor information fusion fault diagnosis.
High-quality multi-sensor datasets are essential for
achieving high diagnostic accuracy for deep learning
model-based methods in fault diagnosis of motors [10],
but it is inevitable in real-world industrial applications that
the multi-sensor data collected by monitoring sensors may
contain imperfect data, such as drift, loss, mutation, and
empty acquisitions, due to the complexity of equipment
operating conditions, variability of combat environments,
sensor degradation, and other factors [11]. Utilizing such
inferior multi-sensor data directly in fault diagnosis algo-
rithms can significantly impact diagnostic performance,
leading to reduced accuracy and potential algorithm failure
[12,13]. In response to this dilemma, researchers have
focused on handling missing data in multi-sensor informa-
tion fusion fault diagnosis of motors. For instance, Yu et al.
[14] introduced a novel fault data generation approach that
combined physical models and periodic generation to
address network variations in bearing fault diagnosis.
Shao et al. [15] integrated complete data and uncertain
information using dynamic Bayesian networks to mitigate
data integrity issues and minimize prediction errors. Song
et al. [16] proposed a fuzzy clustering framework that
incorporated weighted non-negative latent factor analysis
to cluster incomplete data with high precision. Yang et al.
[17] presented a data enhancement method based on a
diffusion probability model for fault diagnosis in scenarios
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with unbalanced data. In these studies, the reconstruction
network based on data generation mechanisms, such as
generative adversarial networks, can effectively alleviate
the impact of poor-quality data on diagnostic performance,
using physical constraints. Thereby, these networks can
achieve excellent diagnostic performance under inadequate
fault samples. More importantly, they do not require addi-
tional structures or auxiliary data.

Although existing methods have achieved promising
results in missing data processing, there are still some
limitations as follows:

1) They choose to either directly mask the missing data
or only consider reconstructing the missing data
based on the features of gettable data. Direct masking
avoids the interference of missing data on forward
feature extraction, but it overlooks potentially useful
information. The method that only considers the
obtained data features improves data utilization effi-
ciency, but it neglects the effective supervision of
missing data across different fault types, which may
lead to the performance decline of diagnostic models,
especially in the scenarios of high missing data rates.
Therefore, a new missing data handling methodology
that considers missing data supervision is needed to
guide the intelligent diagnosis network to more effec-
tively learn and classify fault types.

2) They consider the issue of missing data but overlook
the impact of the imbalance in missing rates among
fault types. In industrial scenarios, the operating
conditions of motors inevitably change, and the miss-
ing data rates of different fault types often exhibit
significant differences. The missing rate for certain
fault types may be as low as 20%, while for others it
may be as high as 80%. This discrepancy triggers the
channel imbalance problem, where the strong chan-
nels with less missing data dominate model training,
while the weak channels with more missing data may
be neglected, resulting in inadequate training for
some fault types and affecting overall diagnostic
performance. Therefore, it is key to effectively bal-
ance the training data of different fault types under
data missing conditions, ensuring that each fault type
is sufficiently learned.

To address the aforementioned issues, this paper pro-
poses a dynamic relative advantage-driven multi-fault syn-
ergistic diagnosis method to accomplish accurate fault
diagnosis of motors under imbalanced missing data rates.
In the proposed method, there are two distinctive composi-
tions: a cross-fault-type generalized synergistic diagnosis
strategy and a dynamic relative advantage assessment
technique. The cross-fault-type generalization synergistic
diagnostic strategy focuses on using the variational infor-
mation bottleneck theory to obtain an optimal representa-
tion of fault types, which is able to ensure sufficient
supervision in handling missing data. The dynamic relative
advantage assessment technique is composed of a recon-
struction loss and a two-layer collaborative optimization
algorithm, which reduces diagnostic accuracy degradation
caused by missing data imbalance. The effectiveness of the
proposed method is validated using multi-sensor data from
motor fault simulation experiments. The contributions of
this work can be summarized as follows:

1) A cross-fault-type generalized synergistic diagnosis
strategy based on variational information bottleneck

theory is proposed to enable reconfigured networks to
be adequately supervised when missing data are made
up. Through minimizing the information bottleneck
loss for redundancy reduction and leveraging label-
based supervision on missing data, cross-type gener-
alizable representations are progressively generated
from the optimized features of other fault types.
Therefore, the method can guide the reconfiguration
network to maximize the retention of task-relevant
features, thereby achieving higher diagnostic accu-
racy under missing data.

2) A dynamic relative advantage assessment technique
is designed to quantify the expressive capability of
different fault types, which can facilitate collaborative
learning of different fault types. On the one hand, the
relative advantage of each fault type is defined
dynamically based on the reconfiguration loss. On
the other hand, a two-layer collaborative optimization
algorithm is designed to dynamically adjust the super-
visory weights by means of a synergistic training and
adaptive supervisory adjustment, which makes the
inductive loss gap between fault types smaller. There-
fore, this technique can avoid the degradation of fault
diagnosis accuracy caused by imbalance in data
missing rate.

The article is structured as follows: Section II presents
the pertinent preliminary research; Section III delineates the
proposed methodology; Section IV validates the method’s
efficacy through simulation experiments and comparative
analysis with established approaches; Section V encapsu-
lates the paper findings and outlines potential future
research directions.

Il. PRELIMINARY
A. DEFINITION OF MISSING DATA

Missing data are defined as two types: incomplete data and
complete missing data. Incomplete data refer to situations
where there are parts of the sensor monitoring data that are
missing, usually due to sensor failures or other limitations
that result in the loss of certain data segments, but still result
in partially valid data. In contrast, complete missing data
refer to a situation where the sensor fails to monitor any
data, leaving the relevant portion completely empty. This is
usually caused by equipment failures, communication
breakdowns, or other serious problems that prevent access
to any valid information.

B. SYMBOL DEFINITION

Assume that the training data contain K types of faults, and
each fault type includes L sensor data. The concatenation of
all fault data is utilized to define an auxiliary fault, leading
to a total of L+/ data entries for simplicity. The training
samples are denoted by {Z}, (x| and {W}} ¢k, Where
k € [K] denotes the sample serial number, Zf € R% denotes
the feature vector of the sensor, and Wk denotes the
corresponding fault label. For consistency of expression,
all features of fault type L are collected ZX+! = [z1;72;

-;ZK]. senc denotes the adaptive encoder, R,
denotes its corresponding parameter, and xenc denotes
the interactive residual autoencoder, RX,,. denotes its
corresponding parameter. %Ktl denotes the parameters
of the decoder.
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lll. DYNAMIC RELATIVE
ADVANTAGE-DRIVEN MULTI-FAULT
SYNERGISTIC DIAGNOSIS METHOD

The proposed method is composed of two parts: a cross-
fault-type generalized synergistic diagnosis strategy and a
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dynamic relative advantage assessment technique. As shown
in Fig. 1, the model architecture is depicted. Stage I consists
of the training process of samples from three fault types with
complete data, while stages II and III are used to illustrate the
model training and inference methods under missing data
conditions. In short, the features Z! of the sensors corre-
sponding to each fault type are mapped to their representa-
tions j}f‘ through a parameterized variational encoder R¥,,..
Subsequently, each fault type final representation 3 is
constructed by a parameterized R%,. cross-fault-type
encoder using representations from other fault types
{)‘1’,‘ Fe 41 Tather than relying solely on its own self-represen-
tation )7’1‘.

A. GENERALIZED SYNERGISTIC
DIAGNOSIS STRATEGY ACROSS FAULT
TYPES

To ensure that the reconstruction module receives adequate
guidance under missing data training framework and that
each fault type obtains its optimal representation during
learning, this section proposes a cross-fault-type
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Fig. 2. A cross-fault-type generalized synergistic diagnosis

strategy.
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Fig. 1. Model architecture of the dynamic relative advantage-driven synergistic fault diagnosis method.
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Algorithm: Synergistic Fault Diagnosis Strategy

1: Input: Sensor feature matrix Zf“,

2:  Completeness matrix C = {Cy;}

3: Output: Final representations 3%, auxiliary
4: fault yK*1, shared labels W¥

5: Initialize: model parameters 0

6: forle[l, L] do

7. for k € [1, K] do // Self-Representation
8: via Variational Encoder

9: if C; =1 then

10: ¥ <P Riene)

11: else ¥ ~null

12: pr={k'elK]|Cp =1, k' #k}
13: /I Available fault types
14: if |#5| > 0 then

15: 5’5{‘_R({yf{/}k’e/f§§ Rienc)

16: else 3 = null

17: if Ci; =1 then

18: Ve

19: else if 3 # null then

20: R

21: end for

22: = D5yt f]

23: for k € [1, K+1] do

24: wE~R(WK |y RE ) if yE € null

25: else null

26: end for

27: valid « {WKW¥ % null}

28: if Ivalidl >0 then

29: majority < argmax(wevalid) count(w)
30: WK e—majority V k € [1, K+1]

31: end if

32: end for

33: return y,~, yK+!, Wk

generalized synergistic diagnostic strategy. As illustrated in
Fig. 2, this strategy generates a generalized diagnosis across
fault types using the optimal representations of other fault
types, regardless of whether the data is missing or available.

1. SYNERGISTIC DIAGNOSTIC STRATEGY DERIVA-
TION. For different sensor features Z¥, the generahzed
synergistic characterization y, of fault types is derived
as follows. First, a sample is taken from the complete
sensor feature set, denoted as yi~P(¥|zt; R%,,.).Vk €
{k|Cy; = 1} Then, the cross fault type representation for
all sensors is calculated as ¥ = R ({yl e st R%,,.c), where
pF is defined as the set of all sensor features excluding
the features of sensor k itself, denoted as ﬂ"

{k' € [K],Cy =1, k' #k}. Finally, using the above
symbols, the final representation of feature zi,Vl €
[L],Vk € [K] can be reduced to y, = {y*,if Cyy=1;
¥, otherwise. }. Meanwhile, the representation of the aux-
iliary fault K+/ is the concatenation of the sensor features
of all fault types, denoted as yK*! := [y};y%; ---;yK], and
the encoder parameters for all fault types k are collected
using R¥,. = {ERSW, R%,,.}. When all encoder parame-
ters are gathered using REL' = {RE, }icix), the above

process can be summarized as yf~R(y*|2*; R¥,.). For typi-
cal multi-fault-multi-sensor synergistic fault diagnosis, the
generalized synergistic representation of the auxiliary fault
yK*+1 is used for the final sensor fault label prediction, which
is equivalent to passing the representation to a decoder with
parameter REFT Wi ~R(WATT AT REFD) - Additionally,
in this strategy, each individual sensor also performs
fault type label prediction, denoted as Rk _:wi~

R(wk[y*; RE ), k € [K], and all sensors share the same
label W"Jrl The above algorithm illustrates the derivation of
the strategy

2. PARAMETER OPTIMIZATION. The learning objective
based on the variational information bottleneck is to maxi-
mize the target information while effectively compressing
the original features. In the generalized synergistic diagno-
sis method across fault types, this objective can be trans-
formed into an optimization problem, which is achieved by
minimizing the Information Bottleneck (IB) loss.

i = kKoY — 7(vk ke
n;r{nL,B(ER)- ke%ﬂ]l(z SER) = AUGWER) (D

where R = {R(,., R, }ick 4y collects all model parame-
ters, I(- , -) represents the mutual information between two
random varrables and the “bottleneck” width, denoted by 2,
realizes the filtering of redundant information and the
coefficients 4 > 0 are two of the balanced predefined con-
stant loss functions. However, since calculating the cross-
fault type information I(zF,y*;R) and I(y*,wk;R) is
difficult, this paper employs the variational upper bound
of Z15(R):
Lis(R) <Lyp(R) = 2 E
3(R) < Lyp(R) Pt )

[D7(p(5*25 RE)g(F)) — 4 log g(wk|yk; RE, )]

where E[] is the expectation for the random variables 7k Y-,
and Dg(- | ) represents the KL divergence between
two distributions; and g(y*) and g(wk[y*; R, L) represent
the variational distributions approximating p(y*|z*; R¥,.)

and Q( k|y7 dec) .
The variational encoder adopts a Gaussian form

(y |Z mlecnc - yk f[l Z 2Rlecnc) fE(Z mem))’ where
fuls e,,C) € R? and fx(+; RE,.) € R™? are the mean vec-
tor and covariance matrix determined by the network
model, and g(y*) is fixed as a dimensional spherical Gauss-
ian, ie., q(yY) =N(*;0,, I,), where 0d and Id are the
d-dimensional zero vector and the d X d identity matrix,
respectively. The decoder is a simple classifier model in the
form of g(wk|y*) = softmax(f.(y*)), where f.(*), k €
[K + 1] maps the representation to the logic used for
classification through an MLP, resulting in the following:

Vo= fu(25 REe) + 0075 (5 RE)) A3)

where © denotes the element-wise product. Therefore,
Ly;(R) can be approximated as the following Ly;5(R):

k
L[ZI P le(p(yl |Z1amenc)|‘q( ))

- yEf)[ log q( |yl7 dec)] (4)

where 0 is the random variable in the reparameteriza-
tion trick.

This formula bypasses the expectation in the equation,
allowing us to compute unbiased random gradients through
backpropagation with a single sample dynamic relative

. 1 L K+1
Lyp(R) =
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advantage assessment technique. Minimizing Ly,5(0)
helps achieve the optimal representation for each sensor,
thereby meeting the goal of the information bottleneck
theory, which is to maximize prediction accuracy while
compressing features. In the generalized synergistic diagno-
sis strategy, the system learns the features of all sensors,
regardless of whether a fault type has complete sensor data.
For both missing and available data, the cross-fault type
encoder receives supervision for the labels by minimizing the
VIB loss Ly;3(R). For complete data, the cross-fault type
encoder receives additional supervision from this feature by
minimizing the following mean squared error (MSE):
L

Lssp(R) = 7 £ I ~ 5413 ®

k =1
where L% ¢ (R) denotes the loss of mean square error,
L, =" Cy represents k fault types. The overall loss function
for training is:

L(R):=Ly;R)+ X ”kLlﬁ/[sg(m) (6)
ke[K]
where the coefficient #* balances the supervisory loss for
different fault types.

In summary, the supervisory methods for the encoder
include two types: the adaptive encoder (R%,,., k € [K])
and the interactive residual autoencoder (R%,,., k € [K]).
When training for a fault type with missing sensors, param-
eters RX,,. and R%,,. rely not only on the supervision of
sensor features but also on label supervision. However, in
the case of uneven missing rates, the parameters corre-
sponding to sensors with higher missing rates experience
less frequent supervision. This situation may lead to over-
fitting of some predictive labels, while others may be
underfitted.

B. A DYNAMIC RELATIVE ADVANTAGE
ASSESSMENT TECHNIQUE

In order to better quantify the strength of each fault type
relative to other fault types, the concept of relative advan-
tage is proposed in this paper. As shown in Fig. 3, the
relative advantages of different fault types are defined and
adjusted by analyzing the learning effect and interpolation
loss of the fault types during the training process. In this
way, balanced learning of different fault types can be
achieved by adaptively adjusting the supervision intensity
9% during the learning process of each sensor.

1. DEFINITION OF RELATIVE ADVANTAGE. A strong
advantage of a fault type is characterized by a better
learning effect or a smaller missing rate in the interpolation
task, which results in a smaller interpolation loss during the
training process. This phenomenon inspires us to define the
relative advantage of fault types based on the interpolation
loss. For subsequent analysis, the average interpolation loss
for all fault types is first defined, denoted as:

Lyse(R) = kez[“K]LIIi/ISE(m)/K @)

For Lc-(R), the failure type relative advantage is
formally defined as:

RA"(ER) = [I:MSECR) - LI/fx[SE(m)]/EMSE(m) 3

When RAK(R) > 0, fault k is considered strongly
dominant relative to other faults; when RA*(R) =0 the
interpolation loss of fault type k is comparable to the
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Fig. 3. A dynamic relative advantage assessment technique.

average and is in equilibrium, and when RA¥(R) <0,
the interpolation loss of fault k is greater than the average
loss, implying that the fault type performs weakly in the
training and belongs to weakly dominant faults.

2. A TWO-LAYER COLLABORATIVE OPTIMIZATION
ALGORITHM. The relative advantage vector for each
fault type is set to r(R)=[RA'(R), RA2(R), -+ ,
RAK(R)]T, and the weight vector of all the supervised
adjustments is set to 9 =[9',9%, --- ,9X]7. To ensure
the effectiveness of learning, the supervised conditioning is
inversely related to the relative advantage of each fault type.
Therefore, the objective of supervised regulation is to
minimize changes in the relative advantage during the
training process. The synergistic training and supervised
regulation is formulated as the following two-layer collab-
orative optimization problem:

minr(R)79;9 2 &3 9], = &

R =arg minLy;(R) + T 9LE . (R) ©)
R kelK]

where £ is a constant to ensure that the supervision weights
are positive; &, denotes the ¢p-paradigm that constrains the
supervision and ensures the stability of the training; and d
denotes the self-adaptive tuning of the supervision by
minimizing the correlation between the supervision and
the relative advantage.

The core of the above two-layer collaborative optimi-
zation algorithm is to optimize the weights 9 in the outer
layer and the model parameters R in the inner layer to
minimize the weighting error, the weights and the model
parameters are interdependent and alternately iterated. Fix
8, optimize R, and update the model parameters to mini-
mize the weighting error after weighting. Fix R, optimize 9,
calculate the current relative advantage r(R ), and adjust the
weights 9 to reflect the performance of the model. Inner
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layer optimization: optimize the model parameters R, so
that the weighted error is minimized:

?R = arg n’}l}%n LVIB(ER) + k? 19kL§45E(m)

10
- 10

where Ly;3(R) denotes the underlying training error term
and )75 9Ly 5 (R) denotes the weight-weighted model
error term.

To ensure that each parameter update disrupts model
training due to unusually large gradients, the process of
introducing gradient constraints into the inner optimization
is introduced, and each time the gradient is computed, the
dynamic smoothing of the gradient is performed first, and
then the gradient constraints are applied:

VirLyviar (Re) if VrLyaL (Ri) < ¢

Cug‘%ﬁg‘;i;“ if Vg{LMAL(mk) >c
an

where Vg Ljippea(Ry) is the gradient after applying the
gradient constraint. Outer layer optimization: Optimize the
weight 8, so that the weight distribution is reasonable:

rrgn r(R)8;9>¢&;119], <& (12)

VERLclipped(mk) = {

The weights are updated according to the following
rules:

90+1) = Proji, ¢ (81 — ar(R()) (13)

where Proji ¢ denotes the projection of the updated

weights into the constraint range, and « denotes the learning
rate, which controls the update step size.

3. DYNAMIC SUPERVISED CONDITIONING TRAINING.
Since the training process is affected by stochastic gradi-
ents, variations in the error may lead to unstable model
performance. Therefore, a dynamic supervision technique
is proposed. The key to dynamic supervision is the use of
moving average loss to smooth out the error variations:

Lf/IAL(ERg) =(1 _ﬂ)L]ﬁ/[AL(mg—l) + ﬂL]ﬁ/ISE(ERg) (14)

where € [0, 1] denotes the smoothing coefficient, which
controls the weight of the historical error and the current
error. The larger f is, the higher the weight of the current
error is. The smaller f is, the more emphasis is placed on the
historical error.

IV. EXPERIMENTS AND RESULTS
A. DATA DESCRIPTION

In order to validate the effectiveness of the proposed
dynamic relative advantage-driven synergistic multi-fault
diagnosis method under the condition of imbalanced data
missing rate, multi-channel signals under various motor
health states were acquired from the motor experimental
setup shown in Fig. 4. The signal data consist of nine
channels with a sampling frequency of 25.6 kHz. The
channel signals are mainly from the three-axis acceleration
signals at the drive end and the fan end, as well as the
current signals. As shown in Fig. 5, eight different motor
health states were simulated. Each sample in the dataset was
constructed using a sliding window of length 1024 with
non-overlapping windows. Table I lists the 12 operating
conditions in the experiment. At each motor speed, 1200

Fig. 5. Failure simulation photos.

Table I. Working conditions of motors

Serial Load/Rotating Serial Load/Rotating
No. Speed No. Speed

1 ON-m/15Hz 7 ON-m/35Hz

2 10N-m/15Hz 8 10N-m/35Hz
3 15N-m/15Hz 9 20N-m/35Hz
4 ON-m/25Hz 10 ON-m/45Hz

5 10N-m/25Hz 11 10N-m/45Hz
6 20N-m/25Hz 12 20N-m/45Hz

samples were collected, of which 80% were used for
training and 20% for testing.

B. DATA PRE-PROCESSING

In order to simulate the missing data and unbalanced
missing rates in real-world environments, the number of
missing values for each feature in the tensor was randomly
quantified, mainly for the outer gear ring faults, inner gear
ring faults, and rolling body faults. And five types of
randomized missing rates were set while keeping the
unbalanced missing rates for three fault types to reflect
the different levels of data availability in real scenarios.
Table II shows the missing rates.
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Table Il. Random missing rate and symbol
Description of symbols Defect rate
@, 04, Cy) 0.2,0.5,04)
(I, Oy, Cy) 0.4, 0.6, 0.3)
I3, 05, G3) (0.6, 0.3, 0.2)
4, 04, Co) (0.7, 0.4, 0.6)
(Is, Os, Cs) (0.5, 0.95, 0.6)
(Is, O, Co) (0.5, 0.9, 0.95)
(7, 07, C7) (0.9, 0.9, 0.95)
Table Ill. Related parameter settings

Parameter symbol Numeric size
A 0.5

P 3

S 0.9

3] 0.3

a le-3

s 5e-3

C. REALIZATION DETAILS

Using Transformer as an adaptive encoder for all fault types,
interactive residual autoencoder as a cross-fault type encoder,
and multilayer perceptron as a decoder. The number of self-
attentive layers for all adaptive encoders is 4, and all layers
have 16 heads and 256-dimensional hidden embeddings. All
cross-fault type encoders consisted of 4 interactive residual
autoencoder blocks with RA layer sizes of 256-128-64-32-
64-128-256, and the outputs were 128-dimensional vectors
as representations of the corresponding fault types, and the
model was trained using the optimizer Adam with a learning
rate of 1 x 10~ and a batch size of 256. The specific network
structure is shown in Table IV. The parameter settings are
shown in Table III, and in the experimental validation, a
weighted F1 score was used as the performance metric, and
the final result was derived from the average of 3 or more
replicated experiments.

D. RESULTS AND EFFICIENCY OF
EXPERIMENTS

1. EXPERIMENTAL VALIDATION AT HIGH DELETION
RATES. To simulate extreme data scarcity scenarios, we
conducted systematic tests on synthetic datasets with three
different sensors with up to 95% missing rate under the
same fault type and designed three differentiated scenarios:
scenario 5 with missing rate of (0.5, 0.95, 0.6) (70.3% on

Table IV. Network configuration
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Fig. 6. Mean F1 index under a sequential increase in mean
deletion rate.

average), scenario 6 with missing rate of (0.5, 0.9, 0.95)
(80% on average), and scenario 7 with missing rate of (0.9,
0.9, 0.95) (mean 91.7%).

The experimental results show that the method performs
well in the baseline condition (40%—-60% missing rate) with
an accuracy of 95.2% and an F1 value of 0.948; as the
average missing rate increases, the accuracy drops to 88.7%
and an F1 value of 0.872 in Scenario 1 (70.3% missing rate),
and the accuracy plummets to 62.1% and an F1 value of
0.589 in Scenario 3 (91.7% missing rate). When the average
missing rate exceeds 85%, the model accuracy falls below
70%, indicating that the method relying on the generalized
joint diagnosis strategy across fault types fails due to data
sparsity. The underlying reason is that when the valid sensor
data are less than 15%, the correlation features across fault
types are too sparse to generate meaningful representations,
resulting in the diagnostic performance degrading to a level
similar to that of random prediction. Figure 6 visualizes the
trend of the average F1 index of the proposed method for four
scenarios with increasing average missing rate.

2. TRAINING TIME. For the real-time requirements of
industrial applications, the training time comparison
between the proposed method and the baseline model is
shown in Table V. The experiments were conducted in the
same hardware environment (NVIDIA RTX 4060 GPU,
32GB video memory) and the results are shown below:
The training time of the proposed method is longer than
that of the traditional method C, but it is 35.6% and 17.0%

Layer

Parameters

Input (A/L/V)
Transformer Encoder
Embedding Fusion
Residual AE Blocks
Residual XE Cross-modal
Classifier Fc Classifier

Optimizer

Size: 130 (A), 1024 (L), 384 (V)

Layers: 3, Heads: 8, Embd Size: 128, FFN Hidden: 512 (128x4), Activation: GELU

Size: 384 (128x3, A+L+V concatenation)

Layers: 128—64—32 (3 blocks), BN: - (use_bn=False), Dropout: 0

Input: 256 (A+L/V+A/L+V), Output: 128 (target modality), Layers: 128—564—32 (3 blocks)
Layers: 128—128, Dropout: 0.3, BN: Optional (opt.bn)

Adam (Ir=opt.Ir, 1=0.9, p2=0.999), LR Scheduler: Cosine Annealing + Warmup

JDMD Vol. 4, No. 2, 2025
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Table V. Comparison of training time of the proposed method with the baseline model

Method Training time Instruction

Proposed method 185+1.2 Contains VE/CFE dual coding with shared label constraints
Method D 28.7+£2.5 Contains adversarial training loop, slower convergence

Method E 223+1.8 Requires sample pair similarity computation, higher complexity
Method F 5.6+0.5 Contains only single feature extraction, no deep network

shorter compared to GAN and diffusion models, respec-
tively. This is due to the lightweight cross-fault encoder
design that avoids complex adversarial games or global
feature comparisons. In batch training scenarios, the train-
ing time of the proposed method is in the acceptable range
(about 20 seconds per epoch), which is suitable for the daily
model iteration requirements of most industrial produc-
tion lines.

E. ABLATION EXPERIMENT

1. IMPACT OF DIFFERENT MODULES ON THE PRO-
POSED METHODOLOGY. In the ablation experiment,
by comparing the following three scenarios: 1) the absence
of cross-fault type generalized synergistic diagnosis strat-
egy (Method A); 2) the absence of the dynamic relative
advantage assessment technique (Method B); and 3) the F1
score of the method proposed in this experiment under
conditions of missing data with imbalanced missing rates.
The results are shown in Fig. 7(a). The method proposed
outperforms the other two methods in diagnostic classifi-
cation accuracy under different imbalanced missing rates
for outer race fault, inner race fault, and rolling element
fault. Fig. 7(b) and (c) show the fault diagnosis classifica-
tion results for missing rates of (0.4, 0.6, 0.3) and (0.7, 0.4,
0.6), respectively. Figure 7(e) further illustrates the learning
curve accuracy and F1 score for the three methods with a
missing rate of (0.4, 0.6, 0.3), providing further evidence of
superiority.

Additionally, Fig. 7(f) and (g) present the relative
advantages of the three methods during training, with
missing rates of (0.4, 0.6, 0.3) for the outer race fault,
inner race fault, and rolling element fault. Figure 7(f)
indicates that when the relative advantage awareness super-
vision technique is not implemented, the sensor data cor-
responding to the rolling element fault predominates over
the other two fault types. A comparison between Fig. 7(f)
and (g) clearly shows that the supervision technique facil-
itates more balanced learning, thereby reducing the induc-
tive loss gap between fault types and enhancing the model’s
generalization ability.

2. IMPACT OF HYPERPARAMETERS ON MODEL PER-
FORMANCE. The sensitivity analysis of systematic
parameters shows that the combination (A=0.5, &, =0.9,
&, =0.3, a = le-3, p = Se-3) performs optimally in terms of
accuracy, F1 score, convergence speed and noise robust-
ness, which verifies the reasonableness of the theoretical
derivation; among them, the accuracy rate decreases sig-
nificantly when A deviates from 0.5, which embodies the
key role of information bottleneck trade-off, £,<0.9 or
£,>0.3 will lead to a significant reduction in noise robust-
ness, and o, exceeding the recommended range will
increase the noise robustness. 0.9 or £>0.3 will lead to
a significant decrease in noise robustness, highlighting the
filtering ability of the threshold on industrial noise, and o/f

exceeding the recommended range will increase the number
of convergence rounds affecting the real-time efficiency; in
summary, the optimal intervals for the hyperparameters are
clarified as A € [0.4, 0.6], & € [0.85, 0.95], & € [0.25,
0.35], a € [Se-4, 1.5 e-3], p €[3e-3, 7e-3]. The detailed
parameter correlations are shown in Fig. 8.

F. COMPARISON EXPERIMENT

To validate the advantages of the proposed method for
fault diagnosis of motor under conditions of data missing-
ness and imbalanced missing rates, this paper compares the
proposed method with three existing approaches.

1) Method C [15] proposed a new method to compensate
the data integrity problem and minimize the predic-
tion error by integrating complete data with uncertain
information through a dynamic Bayesian network.

2) Method D [16] proposed a novel fuzzy clustering
framework that combines nonnegative latent factor
analysis with feature-weighted fuzzy double C-mean
clustering, achieving high accuracy for incomplete
data clustering.

3) Method E [17] proposed a novel data augmentation
method based on a deep diffusion probability model
to address fault diagnosis challenges under unbal-
anced data distributions with varying missing rates.

4) Method F [18] proposed an improved deep convolu-
tional generative adversarial network with discrimi-
nator gradient gap regularization for specific
application scenarios.

5) Method G [19] proposed a strategy based on a feature
fusion deep convolutional generative adversarial net-
work architecture.

The comparison results, shown in Fig. 9, can be
summarized as follows: When the missing data rate is
low (i.e., 0.0 and 0.1), the proposed method outperforms
all comparison models because other models have not been
fully exposed to data missing scenarios and struggle to
handle such situations. In contrast, our method continues to
perform cross-fault-type representation learning effec-
tively, even when no data is missing. When the missing
data rate is moderate (e.g., between 0.2 and 0.6), despite
using a less data-intensive supervised training technical, the
proposed method’s performance is at least on par with other
models, demonstrating its advantage in missing data super-
vision. When the missing data rate is high (e.g., between 0.7
and 0.9), our method maintains relatively stable perfor-
mance with only slight to moderate degradation, whereas
comparison models exhibit significant performance de-
clines. These results indicate that our method effectively
leverages the supervisory information from available fault
types, with label information playing a key role in improv-
ing performance. Overall, the method demonstrates
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Fig. 9. Comparison results of the proposed method and the other
existing methods.

excellent robustness under varying missing data rates,
proving its effectiveness and broad applicability.

V. CONCLUSIONS

In this paper, a dynamic relative advantage-driven syner-
gistic diagnosis method is proposed for motors under
imbalanced missing data rates. First, a generalized syner-
gistic diagnosis strategy across fault types based on the
variational information bottleneck theory is constructed,
which is supervised by the optimal representation of each
fault type and the available data and labels in order to
efficiently utilize incomplete samples of the missing data
and perform effective supervision. Additionally, a dynamic
relative advantage assessment technique is designed to
reduce diagnostic accuracy degradation caused by imbal-
anced missing data rates. This is achieved by quantifying
the relative advantage of each fault type through recon-
struction loss and employing a two-layer collaborative
optimization algorithm with adaptive supervision weights
to adjust the training process. The effectiveness of the
method is verified through motor failure simulation experi-
ments, and the robustness of the proposed method is
demonstrated in the absence of data. Future research will
focus on exploring the convergence of the algorithm and
further improving the network performance.
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