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Abstract: This paper investigates the use of XAI and TAI methods for condition monitoring on a laser cutting
machine. The focus is on the analysis of the rack and pinion contact with wear being predicted by four differently
derived ANFIS models. Using both model-agnostic and model-specific parameters integrated in a weighted
evaluation framework, the models are evaluated with respect to the effectiveness of explanations. This framework is
based on the observation of the outputs of the individual layers of ANFIS, also focusing on aspects of two multi-
valued logics, namely fuzzy logic and support logic. The results show that the introduced weighted evaluation
framework makes it possible to quantify the explainability of the individual models in terms of XAI and TAI.
Finally, a preselection of a model for predicting the wear of the rack and pinion contact can be made.
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1 Introduction
The use of AI methods is considered an innovative
opportunity in many applications [1]. In Germany
alone, and primarily in the manufacturing industry,
around 220 billion euros were already generated in
2019 using AI applications [2]. Turnover is forecast
to more than double to 488 billion euros by 2025,
which would correspond to a 13% share of the gross
domestic product. Despite this enormous potential, a
decisive hurdle in the use of AI methods is their so-
called black box behavior. This leads to a loss of
acceptance and trust, as the inner workings and
decisions of AI models are not intuitively
comprehensible to non-experts [3, 4]. To counteract
this, various approaches to Explainable Artificial
Intelligence (XAI) are currently being pursued in
research. The focus lies on the development of
transparent and interpretable AI systems [5]. As part

of a German Federal Ministry of Education and
Research (BMBF) research project, the condition
monitoring of the rack and pinion contact of a laser
cutting machine is being investigated. Condition
monitoring of rack and pinion systems is technically
demanding, as these open-drive mechanisms are
directly exposed to wear-inducing influences. Key
damage mechanisms include material loss caused by
relative motion between the gear components and
abrasive particles in the lubricant, as well as tooth
breakage resulting from fatigue failure or excessive
mechanical loads. Feed axis failures are a major
source of machine downtime and maintenance,
service, and unavailability can amount to up to 18%
of overall life cycle costs. Therefore, effective
condition monitoring becomes both economically and
technically essential [6].

The approach presented in this paper is footed on
knowledge-based AI and includes the use of
Adaptive-Network-Based Fuzzy Inference System(s)
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(ANFIS). Thus, the interpretability of condition
monitoring in the form of human understandable
explanations is ensured and improves the machine in
terms of availability and reliability. In particular, this
will result in shorter downtimes as well as damage to
the laser cutting machine. Due to the high importance
of the system in terms of functional safety and
economic efficiency, the Trustworthy Artificial
Intelligence (TAI) approach, as set out in the German
standardization roadmap for artificial intelligence,
must be guaranteed during operation [3, 7].

The focus of this paper is the evaluation of
ANFIS in the context of XAI and TAI in relation to
four different models (M1-M4) for the condition
monitoring of the rack and pinion contact. To this end,
a new methodology in the form of a weighted
evaluation framework is presented. This approach
follows current research to derive and apply
evaluation metrics for XAI methods as described in
[8] and [9]. AI developers and users will be able to
evaluate and quantify the effectiveness of
explanations of a model both model-agnostically and
model-specifically. The focus is on factors of
complexity-based and semantic-based interpretability
as well as local and global explanations of the models.

The paper is structured as follows. Section two
presents the theoretical background. Section three
contains a description of the laser cutting machine
and the experimental setup. The data preprocessing
and the derivation of the initial state (M1) are
presented in section 4. The computational complexity
of ANFIS and the data set are also discussed. Section
5 introduces the new methodology. The focus is on
the derivation and training of models M2-M4 as well
as the presentation of the weighted evaluation
framework in the context of XAI and TAI. The sixth
section contains the results and analyses. Section 7
summarizes the paper and provides an outlook on
further research opportunities.

2 Theoretical Background

2.1 Support Logic
Support logic is based on the idea of modeling
uncertainty in an expert system. As in fuzzy logic,
multi-valued logic is also used here, as most of the
information in the world cannot be adequately
represented with two-valued logic. For this reason,
human communication is often based on probability
theory, which includes the mathematical property [10,
11]:

� � = 1 − � ¬ � (1)

These restrictions are relaxed in support logic by
applying the following [10, 11]:

� � ≤ 1 − � ¬ � (2)

� � describes the support for an assertion � . An
assertion corresponds to a logical statement or claim.
Using this approach, it is possible to specify an
assertion in a system, with both support for ( �� -
lower support) and support against an assertion (�� -
upper support). This is translated to truth values, in a
value range of [0,1]. The unsureness � stands for the
ignorance of information on the assertion and can
also assume a value between 0 and 1. �� is
synonymous with the amount of support that can
guarantee absolute certainty of the truth of an
assertion. Therefore, the latter stands for the
minimum confidence in an assertion. In comparison,
�� defines the amount of support that possibly
corresponds to the truth of the assertion. The
following equations apply [11]:

�� � ≥ �� � (3)

�� � = 1 − �� ¬� (4)

� � = ��(�) − ��(�) (5)

For a visual and explainable representation, an
assertion is required first. This could be, for example:

�: "��������� � �� ���� ���"

The transcription to support logic could be as follows.

Fig. 1. Possible results of the support logic

Due to the low �� , it can be argued with a low truth
value that the assertion is “definitely true”. As a
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result of the high ��, however, it can be argued with
an even lower truth value that the assertion is
“definitely false” (1- ��). The reason for this lies in
the high unsureness � of the system.

2.2 Structure and function of an
ANFIS

An ANFIS is based on a hybrid neuro-fuzzy model
and was developed by Jang in 1993. Here, a fuzzy
system is embedded in a feedforward neural network
with five layers L1-L5 [12]. In terms of training,
ANFIS falls into the category of supervised learning
methods [13]. Figure 2 shows an example of an
ANFIS (type 3 architecture) as investigated in this
paper with two input vectors {�1, �2} and fuzzy sets
{���, ���} each as well as a target vector �.

Fig. 2. Structure of the ANFIS (type 3 architecture),
adapted from [14]

The functionality of the individual layers is described
in more detail below. The set {1,2,3,4} applies to the
index � and the set {1,2} to the index � . In the first
layer L1, the node functions Ο�

1 are used to fuzzify
the input vectors. The crisp value � of the input
vector is assigned a function value ���(�) of the fuzzy
set. Equation 6 [12, 14] applies here:

Ο�
1 = ���� �1 , ���� �2 (6)

For example, the notation in [12] results in equation 7
for a gaussian membership function:

����(�) = �
−

�−��
��

2

(7)

The so-called premise parameters { �� , �� } are
optimized during the ANFIS learning process and are
used to calculate the premise of the Takagi-Sugeno
rules. In layer L2, each node models the conjunctive
operation (AND operation) of two degrees of
membership, which describes the non-normalized

firing strength of a rule. For this purpose, the function
values of the membership functions are multiplied
with each other [12, 14]:

Ο�
2 = �� = ���� �1 ∗ ���� �2 (8)

In the third layer, the ratio of the ith firing strength of
a rule to the sum of all firing strengths is calculated.
The outputs of the nodes are also referred to as
normalized firing strengths [12]:

Ο�
3 = �� � =

��

�=1
4 ��� (9)

In ANFIS, the function � of the conclusion of a
Takagi-Sugeno rule is based on a linear combination
of the fuzzy variables [13]:

�� = ���1 + ���2 + �� (10)

In the penultimate layer, equation 10 is inserted into
the nodes [12]:

Ο�
4 = �� ��� = �� �(���1 + ���2 + ��) (11)

At this point, it should be noted that an additional
linear combination is required in the respective rule
for each additional target vector [15]. Analogous to
the premise parameters, the conclusion parameters
{ �� , �� , �� } are also adapted during the ANFIS
learning process using an optimization algorithm.
Using equation 6 and equation 11, a possible rule of
the system can be defined as follows [12]:

�� �1 �� ��1 ∧ �2 �� ��1 ���� � �� �1�1 + �1�2 + �1 (12)

In the fifth and final layer, the target vector of ANFIS
is determined using a single node. The latter results
from the summation of all signals from equation 11
and represents a sharp value instead of a fuzzy value
[12, 14]. Equation 13 applies here [12]:

Ο�
5 =

�=1

4

�� ���� , � = 1 (13)

Figure 3 shows an example of the ANFIS process or
fuzzy reasoning (fuzzy inference) for the first and
fourth rule.
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Fig. 3. Fuzzy reasoning of the ANFIS, adapted from
[12]

2.3 Linguistic Modifiers
Linguistic modifiers can be used to change the
semantics of a linguistic term from a fuzzy set �� . An
additional operator � serves as the basis, which is
integrated into the parameterization of a membership
function ��� in order to increase flexibility [16]. The
powered linguistic modifiers investigated in this
paper are mathematically defined as follows [17]:

��
�� ∙ =

≤ ��� ∙ , � > 1
≥ ��� ∙ , � < 1 (14)

If the condition � > 1 applies, ��
�� is referred to as a

concentration or weak modifier. The inverse case is
referred to as dilation or a strong modifier [10, 17].
Table 1 lists examples of linguistic modifiers in
relation to the value of �.

Table 1. Overview of linguistic modifiers, adapted
from [17]

Linguistic
modifiers

�-value Dilation/Concentration

Slightly 0,25 Dilation
More or less 0,5 Dilation
Minus 0,75 Dilation
- 1 -
More 1,5 Concentration
Much more 1,75 Concentration
Very 2 Concentration
Absolutely 4 Concentration

2.4 Grid Partitioning Method
The ANFIS fuzzy inference process shown in Figure
3 is based on a divide-and-conquer method, which
divides the � -dimensional input space into specific
areas. This corresponds to the premise part of a fuzzy
rule. The result of the fuzzy inference is integrated in
the specific areas using the conclusion part of the
fuzzy rule in the form of the function � described in
equation 10 [14, 18]. Each area in the input space

therefore represents exactly one fuzzy rule. The
structure-oriented grid partitioning method is based
on hyper cuboids that are segmented in a grid
structure [15]. Equation 15 can be used to calculate
the number of specific grids or fuzzy rules [19].

������ = �������
����������� (15)

Where ����������� stands for the number of
dimensions, which is equivalent to the number of
input vectors in the ANFIS. The parameter �������
describes the number of splits in the input space [19].
The number of fuzzy sets, membership functions or
linguistic terms per fuzzy variable can also be used
for this purpose. Figure 4 shows the grid partitioning
method for two input vectors with three triangular
membership functions each. According to equation
15, nine fuzzy rules or hyper cuboids result from the
grid structure.

Fig. 4. Grid partitioning method for dividing the
input space, adapted from [14]

2.5 XAI metrics and interpretability
of fuzzy systems

The problem that neural networks and systems based
on artificial intelligence often exhibit black-box
behavior demonstrates the need for the application of
XAI. According to the Defense Advanced Research
Projects Agency (DARPA) of the United States XAI
is intended to enable interpretability and increase
confidence in AI models in order to achieve effective
handling of such models [20]. The causality,
transferability and fairness of the systems must also
be guaranteed [21]. Despite the lack of a universally
valid definition of XAI, the authors of [22] strive to
improve transparency, which should result from
explanations of a specific decision (local
explainability) or the functionalities of the entire
model (global explainability). Compared to global
explanations, local explanations lead to a higher
trustworthiness in AI-based systems due to their
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individual and specific explanations [23]. Globally
interpretable models are also referred to as ante-hoc
systems and can be regarded as a kind of glass-box.
Post-hoc systems, on the other hand, focus on local
explanations [24]. Here, the interpretation is only
made after a model has been trained [25].

Another measure of XAI is the effectiveness of an
explanation. According to Gunning and Aha [20],
psychological human-in-the-loop experiments are
required to measure effectiveness, as automatic
determination is not yet possible. The following
potential points of reference are suggested, but
further research is required at this point. User
satisfaction is indicated in the form of an assessment
of the clarity and usefulness of an explanation. In the
mental model section, the extent to which local and
global explanations contribute to understanding and
the strengths and weaknesses of the system are
assessed. In addition, the focus is on predictions of
the behavior of the model and the intervention of the
user. In terms of performance, the aim is to answer
whether an explanation contributes to an improved
decision for a subsequent action by a user and
whether the task is fulfilled. The trust assessment
comprises the current and future confidence in the
model in the context of the TAI. Correctability tests
how easy it is to recognize and correct errors in the
model [20].

A suitable matrix for evaluating the
interpretability of a fuzzy system is introduced in
Table 2. Aspects of complexity-based and semantic-
based interpretability are set in relation to the division
of the input space and the rule base and presented
using a quadrant [26].

Table 2. Quadrant for evaluating the interpretability
of a fuzzy system, adapted from [26]

Segmentation of
input space

Rule base

Q1 Q2
Complexity-
based
interpretabili
ty

Number of
membership
functions
Number of input
vectors

Number
of rules
Number
of conditions

Q3 Q4
Semantic-
based
interpretabili
ty

Completeness
Normalization
Distinguishability
Complementarity

Consistency
of rules
Rules fired at
the same time

All evaluation metrics that are not self-explanatory
by definition are explained in more detail below. The
number of conditions depends on the number of

conjunctions (AND operations) in the premise of a
fuzzy rule. A limit value of five to nine different
conditions is set, as a person is not able to process
more conceptual units. This parameter correlates
strongly with the number of input vectors.
Completeness, as listed in the third quadrant, is given
if each value of a set can be linguistically represented
with at least one fuzzy set of the fuzzy variable.
Normalization is achieved with normal membership
functions. Distinguishability refers to the fact that
each membership function should have a clear
linguistic meaning and thus no identical fuzzy sets
occur within a fuzzy variable [26]. In order for each
membership function of the fuzzy sets to be
meaningful for the user, they should also have a
convex form [15]. The complementarity parameter of
a fuzzy variable evaluates whether the sum of the
memberships of each value of a set is equal to 1. If
this is true, this will yield the highest semantic
interpretability [26]. The consistency of rules
contained in the fourth quadrant comprises several
aspects. On the one hand, rules with identical
premises but different conclusions must be excluded,
as these correspond to a complete contradiction [15,
26]. On the other hand, no rule should occur twice in
order to avoid redundancies. Partial contradictions
caused by overlapping rules or membership functions
are permitted and are usually automatically generated
by the complementarity of the fuzzy variable aimed
for in the third quadrant [15]. The evaluation matrix
is completed with the rules fired at the same time.
The aim is to reduce the latter for values from a set of
a fuzzy variable. The more selective the rules are, the
clearer the linguistic interpretations of the individual
fuzzy sets remain. Therefore, this parameter strongly
dependent on the selected method for partitioning the
input space (see section 2.4) [26].

3 Experimental Setup
In this paper, a 2D laser cutting machine in gantry
design, serves as the object of investigation for
monitoring the condition of the rack and pinion
contact. Its cross-section is shown as an example in
Figure 5.

As can be seen from the coordinate system, the Tool
Center Point (TCP) has three degrees of freedom in
the form of three traversing axes. The y and z
movements are based on a linear direct drive, while
the movement in the x direction is carried out using a
rack and pinion drive with two feed axes (X1 and X2
axes). The pinion attached to the output shaft of the
single-stage planetary gear engages with the rack and
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is rotated by a servo motor. One revolution
corresponds to a fixed number of meshes. In case of a
worn pinion, increased vibrations or significant
changes in the motor current can occur with each
meshing. To identify defective pinions, the
acceleration of the two feed axes is measured using
MEMS sensors while the motor current is recorded
by the controller.

Fig. 5. Machine cross-section of the laser cutting
machine

4 Data preprocessing

4.1 Creation of target vectors
The recorded input data as described in section 3
(acceleration of the feed axes and motor current) are
based on measurements carried out in the normal
state of the machine, i.e. without wear of the pinion
and at seven constant traversing speeds per feed axis.
In order to be able to draw conclusions about the
wear of the pinion, manipulated data is generated
synthetically from the original data with the aid of
machine-specific knowledge [27].

For this purpose, the data measured in the time
domain were converted to a frequency spectrum
using a fast Fourier transformation. Due to the fact
that an increased amplitude can be observed at the
gear mesh frequency, various scaling factors were
multiplied to this frequency using a triangular
function. Table 3 lists the pinion damage levels
generated by the manipulated data as well as their
corresponding abbreviations and scaling factors (SF).
A linguistic term is assigned to each degree of
damage [27].

Table 3. Overview of the pinion damage levels,
adapted from [27]

Degree of damage Abbr. SF Linguistic
term

No degree of
damage
(Original data)

Ndod 1 Normal

Slight degree of
damage

Sdod 1.5 Slightly
increased

Medium degree of
damage

Mdod 2 Medium
increased

Heavy degree of
damage

Hdod 4 Heavily
increased

In the next step, bandpass filtering was performed as
a function of the traversing speed. The proportional
relationship between the gear mesh frequency and the
traversing speed of the feed axes meant that both the
bandwidth and the center frequency of the bandpass
could be adapted to the respective gear mesh
frequency. This eliminated irrelevant frequency
components from the signals. Afterwards, using an
inverse fast Fourier transformation, the signals were
transformed back to the time domain, whereupon
they were filtered using a moving mean square [27].

In a final step, the two inputs motor current and
acceleration of the feed axes are normalized. The
latter are integrated into ANFIS as unitless input
vectors �1 (norm. current amplitude) and �2 (norm.
acceleration amplitude) [27]. Figure 6 illustrates the
effects of data preprocessing using a scatter plot. The
damage levels of the pinion are shown in relation to
the input vectors.

Fig. 6. Scatter plot of the pinion's degree of damage
as a function of the input vectors

In contrast to the input vectors, the target vectors ��
and �� (see section 2.1) cannot be derived directly
from measurements with the real test setup. Instead,
the target vectors are based on expert knowledge of
the wear of the pinion. Theoretically, as evident from
Figure 2, only a forward pass of the data by the
ANFIS without least square estimate (LSE) is
required to create the target vectors. There is no
backward pass and, therefore, no training of the
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ANFIS. This approach requires initial membership
functions (layer 1) and the conclusion parameters for
each fuzzy rule (layer 4) as described in section 2.2.
To create the membership functions, the samples of
the individual damage levels listed in Figure 6 are
first converted into frequency distributions for each
input vector. The fuzzy sets are then assigned to each
degree of damage on the basis of expert knowledge.
The linguistic terms listed in Table 3 are assigned to
Gaussian membership functions [27]. The results for
both input vectors are shown in Figure 7 and Figure
8.

Fig. 7. Initial membership functions of the first input
vector, adapted from [27]

Fig. 8. Initial membership functions of the second
input vector, adapted from [27]

As can be seen in Figure 7 and Figure 8, the linguistic
term “Medium increased” or the medium degree of
damage is neglected at this point. This can be
explained by the low differentiability compared to the
slight degree of damage [27]. It can also be seen that
the other membership functions are initialized to the
left or right in a comparatively large value range with
the strongest membership. This fulfills the
completeness and complementarity of semantic-based
interpretability described in Table 2.

In addition to the membership functions, the
conclusion parameters were also determined on the
basis of expert knowledge. Experts were asked to

describe different degrees of damage to the pinion
using sliders. These were coupled with the
conclusions of Mamdani fuzzy rules. The � - and � -
parameters in the Takagi-Sugeno fuzzy rules
presented are implemented with 0. Due to the use of
the grid partitioning method explained in section 2.4,
nine rules result from two input vectors and three
membership functions per input vector according to
equation 15. For each rule (9 questions), the � -
parameters for �� and �� were created and integrated
into the fourth layer of ANFIS. At this point and for
all further evaluations, assertion � applies [27]:

�: "�ℎ� ������ �� ���� ���"

This will be taken up again in section 6 in order to
evaluate the effectiveness of explanations. For each
sample, conclusions about the wear of the pinion can
already be drawn at this stage of development
because, as shown in equation 5, the unsureness �
results from a subtraction of the target vectors. This
reflects the initial state (M1).

4.2 Computational complexity and
data set

The computational complexity of an ANFIS can also
be analyzed using one sample. In Table 4, this is
expressed by the number of Multiply-Accumulate
Operations (MACs) as a function of the number of
integrated membership functions (MF). The profilers
from Meta Research and Microsoft Deepspeed are
used to determine the number of MACs, which show
consistent results.

Table 4. Computational complexity of ANFIS
depending on the number of MF

Number of MF Number of MACs
2 32
3 72
4 128
5 200
6 288
7 392
8 512

The formula for computational complexity ��(���)
of ANFIS shown in equation 16 can be derived from
the numerical sequence in Table 4.
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��(���) = 8���2 (16)

Depending on the architecture and image size, a
convolutional neural network requires approx. 435 to
3.09×105 MACs to process a pixel [28]. This shows
the computing efficiency of ANFIS. It is important to
note that the results of the analyses should not be
regarded as absolute values. The profilers only serve
as an approximate estimate of the computational
complexity, as they, for example, neglect the
computational costs for an exponential function
within a membership function.

The division of the data for training the ANFIS is
based on a ratio of 60:20:20 in the sequence: training
data set, validation data set and test data set. This is
intended to achieve a high degree of generalization of
the ANFIS models. The training data set is used to
determine the premise and conclusion parameters.
The validation dataset is used to tune the
hyperparameters and the test dataset as a final
evaluation of the performance of the ANFIS. Table 5
provides an overview of the data set.

Table 5. Overview of the data set

Training
set

Validation
set

Test
set

Total samples 208.050 69.350 69.350
Samples
per
input vector

104.025 34.675 34.675

5 Proposed Methodology

5.1 Derivation of further models
To derive further models M2 and M4, the target
vectors (������ ) from M1 are first manipulated using
two different functions. For M2, a continuous S-
shaped function is applied to slightly stretch the value
range. For M4, an S-shaped function with an
embedded discontinuity is employed to evaluate the
behavior of ANFIS under a strong manipulation of
the value range. In both cases, the value range of the
functions is constrained to [0,1], in accordance with
the value range of �� and �� (see section 2.1). The S-
function is based on equation 17:

����� =
1

1 +
������

1 − ������

−� , � > 0
(17)

The slope of the S-curve in the function sections can
be modeled using the factor �. This was set to 1.5 in
order to generate a small change in the value range of
the target vectors. In contrast, values of 0.1 or 3, for
example, lead to a large change in the value range,
therefore 1.5 is selected as a robust compromise. The
S-function with integrated discontinuity can be
expressed using equation 18.

����� =

0,5

1 +
������

1 − ������

−1.5 , ������ ≤ 0,5

0,5 +
0,5

1 +
������

1 − ������

−1.5 , ������ > 0,5
(18)

Figure 9 shows the function curves of all models
including the initial state.

Fig. 9. Various function curves for manipulating the
target vectors/deriving the models

With regard to the value range of the distributions of
the target vectors, a stretching is achieved by M2.
With M4, the discontinuity causes the elimination of
all samples between 0.25 and 0.75. Figure 10
illustrates this using the distribution of �� in the
training data set. Figure 11 shows similar tendencies
in the distribution of �� in the training data set.
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Fig. 10. Comparison of the distributions of �� in the
training data set for models M1-M4

Fig. 11. Comparison of the distributions of �� in the
training data set for models M1-M4

As shown in Figure 9, M2 is based on a manipulation
of the target vectors, but the same membership
functions are used for training this ANFIS as for the
initial state M1. M3, on the other hand, does not
manipulate the target vectors, as the focus here is
solely on the difference between the original data
without wear of the pinion and the heavy degree of
damage. Accordingly, ANFIS is trained with two
membership functions per input vector. For M4, in
addition to the manipulation of the target vectors and
the integration of the membership function with the
linguistic term “Medium increased”, an additional
synthetic degree of damage with the linguistic term
“Moderately increased” is created as a fifth
membership function. Due to this fact, the powered
linguistic modifiers explained in section 2.3 are used
for each fuzzy set. The idea is that the training creates
new linguistic terms that shift the boundaries of the
damage levels and thus require an interpretation in

terms of XAI. An overview of the different models
including the initial state is given in Table 6.

5.2 Training of the models
The training of the ANFIS is based on a model in the
open-source program library PyTorch. The data of
the trained ANFIS are transferred to the MATLAB
platform and processed there. A hybrid learning
method consisting of an LSE to determine the
conclusion parameters and an Adam optimization
algorithm to determine the premise parameters is
used in this paper. The boundary conditions (BC) for
training of M2-M4 are listed in Table 7. A grid
search of boundary conditions four and five is used to
evaluate the optimal hyperparameters and thus
provide the trained ANFIS for evaluating the
effectiveness of explanations.

Table 6. Overview of the model features

M Man.
of ������

Number
of MF

Linguistic terms

1 Initial
state,
no man.

3 Normal,
Slightly
increased,
Heavily increased

2 Man. with
equation
17 and
� = 1.5

3 Normal,
Slightly
increased,
Heavily increased

3 No man. 2 Normal,
Heavily increased

4 Man. with
equation
18

5 Normal,
Slightly increased,
Medium
increased,
Moderately
increased,
Heavily increased

Table 7. Overview of the boundary conditions for
ANFIS training

BC Parameter/Hyper-
parameter

Value
range/Definition

1 Number of epochs 50
2 Data Shuffling

after each epoch
-

3 Hyperparameter
of the Adam
optimization
algorithm

Learning rate: 10-3
Betas: (0.9, 0.999)
Eps: 10-8
Weight decay: 0

4 Iterations
per epoch

[1,2,4,8,14,28,56]
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5 Learning rate [1,10-1,10-2,10-3,10-4,
10-5, 10-6]

6 Target vectors 0 < �� ≤ �� ≤ 1

5.3 Weighted evaluation framework
In a final step, a weighted evaluation framework is
presented to evaluate the effectiveness of
explanations in relation to XAI and TAI parameters
for the initial state (M1) and the trained ANFIS (M2-
M4). The evaluation framework contains the
parameters described in section 2.5 (model-agnostic)
and the parameters belonging to semantic-based
interpretability in Table 2 (model-specific). The
ranking used here is VDI Guideline 2225 with a score
of 0-4. The weights can be freely selected both for
each parameter (marked bold) and for each sub-
parameter, but must always add up to 100% in each
case. Possible strategies for determining the weights
include the use of the Analytic Hierarchy Process
(AHP) or the Delphi method. Additionally, the
weights can be selected based on the specific
objectives or the use case of the AI model. After
assigning scores to the individual evaluation metrics
and deriving the resulting ranking of the AI models, a
sensitivity analysis can be applied. This analysis is
crucial for identifying the robustness of the model
selection process and for understanding which
evaluation criteria have the greatest impact on the
final decision. An example of this is the one-at-a-time
(OAT) approach, which allows for the systematic
assessment of how variations in each metric
independently influence the overall ranking. Table 8
shows the evaluation framework.

6 Results and Analysis
M2 and M3 show good trainability, expressed by a
low Mean Absolute Percentage Error (MAPE) in the
test data set of the target vectors �� and �� of 1.95%
and 3.18% respectively. The integrated discontinuity
in M4 can be mapped less precisely. Here the MAPE
is 10.68%. This is primarily due to the heavily
manipulated value range when compared to the initial
state M1. In addition, only the Gaussian membership
function is used in this paper. For a reduction of the
model error, triangular or trapezoidal membership
functions with more trainable premise parameters
would be a promising option. Furthermore, instead of
the Adam optimization algorithm, a metaheuristic
approach such as particle swarm optimization (PSO)
could be used to train the premise parameters. For the
optimization of M4 as well as M2 and M3, an
extension of the grid search from the parameters
mentioned in section 5.2 as well as an extension to

the parameters of the optimization algorithm is also
conceivable.

6.1 Model-specific evaluation
In terms of local explainability as described in section
2.5, the outputs of the first layer of the ANFIS can be
used to examine the model-specific evaluation
metrics contained in Table 8 for the segmentation of
the input space. Figure 12 and Figure 13 show the
membership functions of the initial state and the
trained ANFIS for the first and second input vector,
respectively.

Table 8. Weighted evaluation framework to
determine the effectiveness of explanations, adapted
from [20, 26]

Evaluation metric Weights Score
Model-agnostic evaluation (MAE)

User satisfaction X%
Clarity of the explanation X% 0-4
Utility of the explanation X% 0-4
Sum User satisfaction 100% 0-4
Mental model X%
Understanding individual
decisions

X% 0-4

Understanding the overall
model

X% 0-4

Ability of the model to make
precise predictions

X% 0-4

Sum Mental model 100% 0-4
Performance and trust
assessment

X%

User’s ability to act through
explanations

X% 0-4

Future trust in the model X% 0-4
Sum Performance and trust
assessment

100% 0-4

Correctability X%
Error detection through
explanations

X% 0-4

Troubleshooting through
explanations

X% 0-4

Sum Correctability 100% 0-4
Model-specific evaluation (MSE)

Segmentation of input
space

X%

Completeness X% 0-4
Normalization X% 0-4
Distinguishability X% 0-4
Complementarity X% 0-4
Sum Segmentation of input
space

100% 0-4

Rule base X%
Consistency of rules X% 0-4
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Rules fired at the same time X% 0-4
Sum Rule base 100% 0-4
Total result (MAE+MSE) 100% 0-4

Fig. 12. Comparison of the membership functions of
models M1-M4 for the first input vector

Fig. 13. Comparison of the membership functions of
models M1-M4 for the second input vector

As can be seen in Figure 12 and Figure 13, both
completeness and normalization are guaranteed for
both input vectors and all models. In terms of
distinguishability, it can be concluded that the
membership functions of the linguistic terms
“Medium increased” and “Moderately increased” are
almost congruent for the first input vector and M4.
This could be due to the fact that originally only four
degrees of damage were modelled (see section 4.1)
and ANFIS therefore does not recognize any new
information in the data. A significant change in a
linguistic modifier in M4 can only be seen in the
second membership function (marked in red) in the
second input vector. Due to an � -value of approx.
0.75, this is a dilation (see Table 1). However, this
does not improve the semantic-based interpretability.
It is even the case that the midpoint of this
membership function with the new linguistic term
“(Minus) Slightly increased” lies above the midpoint
of the membership function with the linguistic term

“Medium increased”. This contradiction leads to a
low distinguishability of the individual fuzzy sets.

In order to evaluate the complementarity of the
models, the accumulated memberships in the input
vectors or fuzzy variables are calculated as described
in section 2.5. Figure 14 and Figure 15 show the
complementarities of the input vectors.

Fig. 14. Comparison of the complementarity of
models M1-M4 for the first input vector

Fig. 15. Comparison of the complementarity of
models M1-M4 for the second input vector

As can be seen from the curves of the accumulated
memberships, M1 and M2 differ only marginally.
Due to the fact that the accumulated memberships of
M1 and M2 are in a larger range close to the value 1
compared to the other models, this results in better
complementarity. The high accumulated
memberships of M4 can be attributed to the low
distinguishability of the individual fuzzy sets. This
shows the strong correlation of these evaluation
metrics. The second input vector shows similar
tendencies, but here M1 and M2 differ more strongly
from M3. With regard to the model-specific
evaluation metrics listed in Table 8 for the
segmentation of the input space, it can be concluded
that M1 and M2 exhibit slightly better semantic-
based interpretability than M3 and significantly better
interpretability than M4.
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In order to evaluate the rules fired at the same
time contained in Table 8, the outputs of the third
layer of ANFIS are considered in terms of local
explainability. As detailed in section 2.2, the
normalized firing strengths are included in this layer.
In view of this, the maximum firing strength of the
rules in the input space are examined as evaluation
metric. A low number of rules fired at the same time
is therefore characterized by a range that is close to
the value 1. Figure 16 illustrates the results.

Fig. 16. Comparison of the maximum firing strengths
of the rules of models M1-M4 as a function of the
input vectors

As can be seen in Figure 16, M3 comprises the
largest range in which there is a firing strength of 1.
This is due to both the lowest number of membership
functions and their small overlap area. Similar results
can be seen for M1 and M2, where hardly any
differences can be observed, as in the previous
evaluations. A clear demarcation in comparison to the
other models can be seen in M4. Here there is no area
in which a rule has a firing strength of 1. Accordingly,
the highest semantic interpretability is given by M3
for this evaluation metric. Figure 16 also shows the
method shown in Figure 4 for dividing the input
space. According to equation 15, nine hyper cuboids
(rules) are mapped for M1 and M2 and four hyper
cuboids for M3.

With regard to the consistency of the rules (see
Table 8), no identical premises can occur in
combination with different conclusions. This is due to
the defined linguistic terms for each fuzzy set and the
grid partitioning method. Accordingly, complete
contradictions are excluded. Furthermore, each rule
has a clear semantic meaning, which avoids
redundancies. In view of this, the rules for each
model are free of contradictions. This completes both
the model-specific evaluation metrics and the
evaluation of semantic-based interpretability.

6.2 Model-agnostic evaluation
As the TAI plays a central role in this paper alongside
the XAI, two model-agnostic evaluation metrics are
examined in more detail below. These are the ability
of the models to make precise predictions and the
future trust in the models. The evaluation is based on
the outputs of the fifth layer of ANFIS. There, the
target vectors �� and �� as well as the unsureness �
to be derived from the support logic explained in
section 2.1 are determined.

In order to evaluate the aforementioned model-
agnostic parameters, a forward pass of the ANFIS
without LSE is performed for both the initial state
(M1) and the trained models (M2-M4). Every
possible combination of input vectors in the
respective value ranges is taken into account as an
input. In addition, light blue areas can be seen in
some places in Figures 17-19, which indicate that the
sixth boundary condition contained in Table 7 is
violated after training the models. Furthermore, all
samples contained in Figure 6 are displayed
transparently in the background for various models.
This serves as one way to check the future trust in a
trained ANFIS. The heat maps in Figure 17 illustrate
the results of the target vector ��.

Fig. 17. Comparison of the models M1-M4 with
respect to the target vector �� as a function of the
input vectors (assertion � is “definitely true”)

As shown in Figure 17, M1 and M2 do not violate the
sixth boundary condition. The difference between the
two models is that M2 predicts higher and lower truth
values with regard to wear of the pinion in the
boundary areas of the input vectors, i.e. around the
minimum and maximum values. This result can be
attributed to the S-function shown in Figure 9, as this
increases the value range of the target vector, as
shown in Figure 10. On the other hand, the minimum
differences of the membership functions that depend
on this become clear here.

M3 and M4 show the highest truth values for
wear of the pinion in certain areas, but in the light
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blue colored areas it is not guaranteed that ��
remains in the value range of [0,1]. In addition,
samples can be seen in these areas that could
theoretically occur as inputs to the model in real
operation. With regard to the wear of the pinion, its
precise condition would therefore not be predictable
with these models. This reduces the ability of the
models to make predictions about possible states and
consequently the trust in the models in terms of TAI.

In a further evaluation, the counter-evidence to
assertion � is established. This is equivalent to 1- ��
and stands for the truth value that assertion � is
“definitely false”. Accordingly, there would be no
wear of the pinion. Figure 18 illustrates the results.

Fig. 18. Comparison of the models M1-M4 with
respect to the target vector �� as a function of the
input vectors (assertion � is “definitely false”)

In contrast to the analysis of the target vector �� , in
M2 this time an area occurs in which the sixth
boundary condition from Table 7 is violated.
However, this is not associated with any loss of trust
at this point, as there are no samples contained in the
training in this area and there is also a certain
distance to them. In comparison to M1, it can be
predicted with M2 both in a larger value range as
well as with higher truth values that there is definitely
no wear of the pinion in low value ranges of the input
space. Analogous to Figure 17, M3 in Figure 18
again shows areas in which the sixth boundary
condition is violated and also contains possible
samples of real operation. This is also the case with
M4, although at this point there are hardly any areas
in which precise statements can be made about the
wear of the pinion. This makes reliable future
predictions impossible. This model also clearly
shows that the target vector �� has a higher error
after training than the target vector ��. This tendency
is generally evident in all trained models.

To complete the evaluation of the model-agnostic
evaluation metrics, the unsurenesses of the trained
ANFIS are shown in Figure 19.

Fig. 19. Comparison of models M1-M4 with regard
to the unsureness � as a function of the input vectors

The sixth boundary condition explained in Table 7
also applies to the value range of the unsureness. The
results for M3 and M4 are similar to the previous
evaluations. For this reason, they will not be
discussed in more detail here.

The results of M2 should be emphasized, as the
tendencies of the target vectors �� and �� have a
positive effect on a low unsureness in the boundary
areas of the input space. Compared to M1,
conclusions with a higher truth or a lower unsureness
with regard to the state of the pinion can be drawn in
these areas. The increase of unsureness in all other
areas would be justifiable, as no precise statements
on the wear of the pinion are required here. The
maintenance team should be informed about the
condition of the laser cutting machine at this point at
the latest. The first two models would therefore
guarantee a high level of reliability for future
predictions on the wear of the pinion with regard to
the XAI and TAI as well as a high level of semantic
interpretability in terms of the model-specific
evaluation metrics.

6.3 Evaluation by the data scientists
In a final analysis, the models are evaluated by three
data scientists familiar with ANFIS functionality
using the weighted evaluation framework presented
in Table 8. Figure 20 illustrates the average overall
results.
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Fig. 20. Scores assigned by the data scientists from
the models M1-M4 based on the evaluation
framework

Fig. 21. Assigned weights of the data scientists in
relation to the parameters of the evaluation
framework

As can be seen from Figure 20, all data scientists rate
the effectiveness of the explanations of the individual
models in the same order. The differences in the
scores are primarily due to the different weights
selected as shown in Figure 21. M3 and M4 have a
score of 0 in some categories of the model-agnostic
evaluation metrics contained in Table 8. This
excludes their further use, despite a mean value of
2.46 and 1.64 points respectively. According to VDI
Guideline 2225, M1 and M2 have a median score
between good and very good.

7 Conclusions
The focus of this paper was the evaluation of ANFIS
in the context of XAI and TAI in relation to four
different models (M1-M4) for the condition
monitoring of a rack and pinion contact. A new

methodology in the form of a weighted evaluation
framework was developed for this purpose. This
offers AI developers and users the opportunity to
evaluate and quantify the effectiveness of a model's
explanations both model-specifically and model-
agnostically.

The approach presented here also shows two ways
of predicting the wear of a rack and pinion contact.
Firstly, with machine-specific knowledge about a
research object and the initial membership functions
and � -parameters derived from it. No training of
ANFIS is required. Secondly, the manipulated data
and the training of the ANFIS were used to show how
condition monitoring can be optimized and how
changes to the individual parameters of an ANFIS
affect explainability and trustworthiness. For both
approaches, the developed weighted evaluation
framework can be applied and evaluated by experts,
for example to assess an industrial implementation.
This can be decisive in reducing maintenance and
service costs and increasing the availability of a
machine The model-agnostic metrics of the
evaluation framework are in principle transferable to
all AI models. The model-specific metrics are useful
for AI models and use cases with integrated fuzzy
systems or fuzzy logic.

Since no AI model using a method other than
ANFIS is presented in this paper, the model-agnostic
evaluation metrics can only be weighed up relatively
between the different models. In view of this, no
general conclusion can be drawn on the overall
explainability of the ANFIS in relation to different
training methods such as neural networks. However,
due to the comprehensible and step-by-step
calculation of the individual layers and their
trustworthy representations, the global and local
explainability of ANFIS is guaranteed.

Another possible research objective would
therefore be to create different AI models for the
same use case, evaluate them in relation to the model-
agnostic evaluation metrics and compare them with
each other. Furthermore, the influence of different
forms of membership functions and different
hyperparameters of the optimization algorithm on the
training of the ANFIS could be analyzed.
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