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Abstract: Fault sensing in wind turbine (WT) generator bearings is essential for ensuring reliability and holding
down maintenance costs. Feeding raw sensor data to machine learning (ML) model often overlooks the enveloping
interdependencies between system elements. This study proposes a new hybrid method that combines the domain
knowledge via knowledge graphs (KGs) and the traditional feature-based data. Incorporation of contextual
relationships through construction of graph embedding methods, such as Node2Vec, can capture meaningful
information, such as the relationships among key parameters (e.g. wind speed, rotor Revolutions Per Minute (RPM),
and temperature) in the enriched feature representations. These node embeddings, when augmented with the original
data, can be used to allow the model to learn and generalize better. As shown in results achieved on experimental
data, the augmented ML model (with KG) is much better at predicting with the help of accuracy and error measure
compared to traditional ML methods. Paired t-test analysis proves the statistical validity of this improvement.
Moreover, graph-based feature importance increases the interpretability of the model and helps to uncover the
structurally significant variables that are otherwise ignored by the common methods. The approach provides an
excellent, knowledge-guided manner through which intelligent fault detection can be executed on WT systems.
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I. INTRODUCTION

Wind energy has emerged as a thriving renewable energy
source, with maintenance playing a crucial role in wind
turbine (WT) performance [1] and cost-effectiveness. Ana-
lyzing failure modes, causes, and crucial component iden-
tification techniques is part of WT maintenance [2]. Power
system reliability may be adversely affected by wind
power’s unpredictable nature, which calls for a variety of
evaluation techniques [3]. Significant differences exist in
failure rates and downtimes among WT subassemblies,
according to reliability data gathered from several data-
bases; in general, offshore WTs have greater failure rates
than onshore ones [4]. Reducing lifecycle costs and increas-
ing power generation efficiency require improved compo-
nent reliability [5]. There is a significant, nonlinear
correlation between WT reliability and annual energy
production as well as operation and maintenance costs,
underscoring the significance of determining the best reli-
ability enhancements to reduce the levelized cost of energy
[4]. The health of gas turbine and WT engines depends
heavily on bearings, and when they fail, there is a substan-
tial downtime and maintenance expense [6]. Uneven oper-
ating stress and climatic circumstances present special
problems for WT bearings, requiring improvements in
surface engineering, design, and lubrication [7]. Prognos-
tics and health management algorithms have been
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developed for WT engines in order to identify early signs
of critical bearing failure. These methods determine the
remaining usable life by combining material-level fatigue
models with vibration transducer sensor data [8]. Through
the use of model-based estimates in the absence of diag-
nostic indicators and monitored features like vibration and
oil debris at later stages, the combination of health moni-
toring data and model-based techniques offers a compre-
hensive prognostic capability throughout a bearing’s
life [9].

The application of machine learning (ML) techniques
to improve WT predictive maintenance has shown great
promise. Numerous strategies have been investigated, such
as hybrid models that combine ML algorithms and statisti-
cal process control [10] and data-centric techniques. With
decision tree and XGBoost models reaching over 90%
accuracy, these techniques have proven to be highly accu-
rate in problem diagnosis and maintenance prediction [11].
Support vector machines and convolutional neural net-
works have been used to estimate long-cycle maintenance
times [12]. Autoencoders outperform other algorithms in
detecting operational anomalies, and recent developments
include the creation of entire frameworks, including anom-
aly detection and prognostics. Furthermore, Long Short-
Term Memory (LSTM) neural networks have demonstrated
potential in forecasting the essential components’ remain-
ing useful lives [13]. These ML-based strategies help wind
farm operations run more efficiently overall by reducing
downtime and optimizing maintenance schedules. Conven-
tional ML models are effective at recognizing patterns, but
they ignore the inherent relationships between their input
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data [13] and instead treat them as separate independent
variables. Temperature, vibration, and rotor speed are some
of the parameters that affect each other under operating
force and climatic conditions in the WT system, particularly
in its generator bearings. This limitation limits the interpret-
ability and accuracy of ML-based defect identification.
Knowledge graphs (KGs) are a useful tool for leveraging
subject expertise and using semantic relationships to explic-
itly model complex interdependence [14]. When KG-based
embeddings and sensor data are combined, ML models’
contextual awareness is improved, leading to more power-
ful but explicable predictive capabilities. In order to im-
prove accuracy and insight in identifying problems in WT
generator bearings, this study presents the creation of a
hybrid fault detection model that combines KGs and ML.

To address existing limitations, this research creates a
new hybrid framework that combines domain-specific
knowledge structures contained in KGs with traditional
feature data in order to improve WT generator fault detec-
tion. This hybrid framework targets existing model limita-
tions by establishing better connections between system
parameters with more effectiveness.

The primary objective of this paper is as follows:

1. To create an advanced ML framework that unites
Node2Vec node embeddings from KG techniques
with classical sensor data for precise WT generator
bearing fault detection.

2. To assess the performance elevation of KG + ML
methodology relative to standard ML approaches by
using statistical significance testing along with quanti-
tative measurement methods.

The remainder of this paper is structured as follows:
Section II presents the literature review on WT mainte-
nance. Section III illustrates how the KG was integrated
with ML model using node embedding technique.
Section IV discusses the experimental results and perfor-
mance evaluation of the hybrid model. Finally, Section V
concludes the study and outlines directions for future
research.

Il. LITERATURE REVIEW

Efficient renewable energy production by WTs demands
advanced automatic failure detection systems that maintain
system quality along with operational effectiveness. Gen-
erator bearings in WT experience high rates of failure
because they face ongoing mechanical forces, unstable
loads, and environmental conditions [1]. The detection of
early faults in these bearings requires immediate attention
because it prevents major system failures while reducing
maintenance expenses and system downtime. Fault detec-
tion through traditional methods depends on sensor
readings from vibration, temperature, and acoustic mea-
surements that conventional ML algorithms examine. The
detection techniques employ Support Vector Machine
(SVM) along with K-Nearest Neighbours (KNN) and DT
algorithms, and Random Forest (RF) models as their main
execution tools. [15] developed a system by applying SVM
to vibration signal time-domain statistical features in order
to detect faults in WT gearboxes and bearings. The study
presented by [16] showcased RF classifiers as effective
tools for abnormal pattern detection in rotating machinery.
The performance of existing approaches is acceptable, but
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they offer restricted interpretability when analyzing inter-
dependencies among parameters in WT systems. The recent
developments in artificial intelligence, along with semantic
technologies, have brought KGs as an advanced framework
to structure domain knowledge representation. KGs enable
semantic networks that establish associations between com-
ponents, parameters, and failure modes, thereby making
context-based choices possible. [17] showed how KG
enables effective applications in industrial systems, espe-
cially for equipment maintenance and health monitoring.
Many industrial sectors, including healthcare [18], e-com-
merce [19], and cybersecurity [20], have adopted KGs to
enhance ML models together with domain knowledge and
explainability features.

The use of KGs as a WT fault detection approach
shows minimal current application despite their advantages.
The integration of KGs with ML models creates an effective
challenge for practical applications. Embedding techniques
transform KGs into low-dimensional vector spaces accord-
ing to recent academic research. Node2Vec [21] serves as a
scalable approach that maps graph nodes into latent spaces
through random walk computations while maintaining node
structural patterns. The embeddings become compatible
with sensor-based features, which allows ML models to
gain knowledge about statistical patterns and semantic
relationships simultaneously. Researchers have conducted
limited studies regarding the application of graph-based
techniques for predictive maintenance in renewable energy
systems. The authors [22] presented a hybrid graph neural
network (GNN) model, which integrated time-series data
and structural component interactions for WT fault predic-
tion systems. The researchers discovered that including
turbine subsystem relational data increased the precision
rate of fault detection. Their methodology needed extensive
domain expertise during graph building, while the compu-
tations remained too complex. While GNN-based ap-
proaches are outstanding among the best ranking models,
the investigated integration employing Node2Vec is lighter
and more flexible. Such an approach is employed within
this research to build a domain-specific KG that depicts
dependencies within important WT parameters like rotor
speed, bearing temperature, wind speed, and generator
torque, among others, and to incorporate this graph in
feature vectors. These embedded vectors are then incorpo-
rated with normal sensor data for training ML models like
RFs to obtain enhanced performance during fault detection.
Also, disadvantages of the combined approaches, which
have been incorporated in this study, include better model
interpretability. Since knowledge captured in the KG would
have been derived based on expert knowledge in the
respective field, the practitioner would have an understand-
ing of why the model came up with certain predictions in
areas such as WT maintenance. Further, employing KGs
can improve data augmentation, allow handling of missing
values better, and the need for great deal of labeled data
diminishes as well. In conclusion, while the traditional set
of ML models has been successfully applied to the WT fault
detection problem, the incorporation of KBR approach is a
step further that allows the representation of system com-
plexity. The approach of combining KG-based embeddings
with the traditional ML features that were discussed in this
study can allow for developing more accurate and explain-
able models for the early fault diagnosis in WT generator
bearings.
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lll. PROPOSED FAULT DETECTION
FRAMEWORK

A. KNOWLEDGE GRAPH

KG presents structured information through nodes and
edges for representing entities as nodes and their connec-
tions or relations as edges [23]. Real-world entities become
nodes in the graph structure, whereas edges depict the
relations between them. KG implements semantic triples
as a data structure for machine-readable representation of
factual information through subject, predicate, and object
relations. The relationship between turbines and compo-
nents emerges through the triple entry (wind speed, affects,
and generator bearing temperature). The power of KGs
stems from their capability to bring together diverse het-
erogeneous data sources into one unified model, which
enhances search intelligence and discovery capability as
well as reasoning abilities [24]. The wide range of applica-
tions includes natural language processing as well as rec-
ommender systems and information retrieval. The graph
structure of data storage enables KGs to accept multiple
flexible queries for pattern detection using analytics tools
such as centrality clustering and path analysis. The visual
format, along with interconnected structure of graph data-
bases, makes them user-friendly for studying complex
datasets together with knowledge domains [25]. Data stor-
age systems gain semantic abilities through KGs because
these systems allow machines to understand both contents
and patterns between data points.

The mathematical definition of graph is a structure
made of vertices and edges.
Where,

e V: a set of vertices;
* E: a set of edges;
e V={vl, v2, v3, v4, v5, v6} (entities or nodes);

« E={(vl, v5), (v1, v3), (v6, v3), (v4, v5)} (edges or
relations).

Fig. 1 illustrates a KG, which represents entities
(shown as nodes) and their relationships (shown as edges).
Each node corresponds to a real-world concept
(e.g., Person, Country, and City), and each directed edge
defines a specific relationship between entities (e.g., born
in, located in, and works for).

!03

Fig. 1. Visual representation of KG.

B. COUPLING KG AND ML

The proposed hybrid fault detection framework, as illus-
trated in Fig. 2, shows how the proposed KG + ML pipeline
operates for detecting WT faults. Sensor data procurement
leads to the construction of a KG that displays system
component associations and dependencies. Extracted node
centrality measures from this KG that get combined with
regular sensor data features to form improved data. The ML
model uses an enriched data set that results from this
process in order to undergo training and testing. A trained
model creates predictive outcomes before standard perfor-
mance criteria measure their accuracy. The feedback loop
from evaluation enables permanent advancements to be
made in the model’s performance. The framework im-
proves both predictive ability as well as interpretability
through its integration of domain knowledge through the
KG to provide a strong and explainable solution for bearing
fault detection in WTs. The proposed framework combines
conventional Supervisory Control and Data Acquisition
(SCADA)-based data processing with semantic knowledge
embedding using KG to enhance the performance of ML
models in detecting generator bearing faults. ML applica-
tions benefit from KGs through their capability to enhance
raw data with meaning-based structures, together with
improved feature-building abilities, which enable models
to predict with superior information [26]. Stand-alone ML
models become more powerful when coupled with KGs
because the combination improves interpretability and en-
hances data integration and performance, particularly in
recommendation systems and predictive maintenance and
supply chain optimization environments. KGs acquire their
status as vital components of next-generation intelligent
systems through their flexible query capabilities, which
emerge from their graph-based structure. The study demon-
strates domain-specific learning benefits when KG merges
with ML because the performance metrics showed
enhanced improvement.

Fig. 2 shows the illustration of the end-to-end process
of proposed hybrid framework of fault detection of WT
generator bearings, which has been arranged into two
significant parts:

1. Data Preparation and KG Construction: The first stage
of it is the gathering of the SCADA sensor data for the
features like rotor speed, bearing temperature, and
wind speed. The data are then pre-processed and
cleaned to maintain time synchronicity, uniformity,
and quality. To determine valuable interdependencies
between features, correlation analysis was carried out.
This knowledge, together with the knowledge acquired
by professionals in the realm, is utilized to create a KG
in which nodes represent the important features of
SCADA (e.g., Wind Speed, Gen_RPM). And edges
represent the functional or operational dependencies
among the features.

2. ML Integration and model training: After the KG
construction, Node2Vec algorithm was used to pro-
duce low-dimensional node embeddings. These
embeddings contain structural and relational character-
istics of the graph. The derived graph-based vectors are
then merged with the basic SCADA feature data to
provide an augmented feature data. This augmented
dataset was used to train a ML model (e.g., XGBoost,
RF etc.) to predict faults. Standard measures are used to
assess model performance, e.g. mean absolute error
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Fig. 2. Proposed hybrid fault detection framework combining SCADA-based feature data with knowledge graph embeddings.

(MAE), root mean square error (RMSE), and R 2. The
output is not only shown in the results of fault predic-
tion but also graph-based interpretability information,
which provides insights into structurally important
parameters usually ignored by conventional models.

C. DATA COLLECTION

The research dataset comes from SCADA systems, which
EDP (2017) provided. The dataset contains operational
data, which were gathered from four horizontal-axis WTs
installed along the western coastline of Africa. A two-year
record of data exists from 2016 through 2017 with 10-
minute averaged measurements that show complete turbine
operations throughout the period. The total number of
parameters measured amounts to 76, which provides
detailed information about turbine performance as well
as health status. The SCADA readings accompany meteo-
rological data points that match the same timestamp, which
helps explain environmental factors affecting turbine oper-
ation. Supervised ML applications rely heavily on failure
logs, which contain timestamps together with descriptions
about failed components as well as pertinent comments
about their failed state. For this case, Turbine Number 7
(“T07”) was adopted because its failure log indicates a
generator bearing fault, which is an area of interest in this

research. The total numbers recorded for TO7 are 52445 in
the year 2016 and 52294 in the year 2017. With such
instances being available for training as well as testing
the fault detection model, their utilization in the analysis is
appropriate. A subset of relevant features was selected from
the full SCADA dataset (as shown in Fig. 3) for model
development. These features, along with the target
variable indicating fault or normal status, are summarized
in Table L.

D. EXPLORATORY DATA ANALYSIS

Fig. 4 shows how five key operational parameters of a WT
affect generator bearing temperature through box plots
analysis, including Gen_Bearing_Temp. Gen_RPM,
Gen_Phase_Temp, Nac_Temp, WindSpeed, and Amb_
Temp. The analysis shows a linear positive relationship
between the generator phase heat and the bearing tempera-
ture, thus indicating direct thermal connections between
these two operational elements. As Gen_RPM increases
together with WindSpeed, the bearing temperatures elevate
because higher mechanical workload occurs during energy
conversion [27]. The nacelle temperature impact on bearing
temperatures is moderate since nacelle temperature eleva-
tion leads to higher temperatures but shows wider variation
in changes. The connection between ambient temperature
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Gen_RPM Gen_Phase_Temp Nac_Temp WindSpeed Amb_Temp Gen_Bear_Temp
1248.8 63 27 3.5 16 39
819.4 57 26 3.1 15 38
1249.5 59 26 4.8 15 36
1250 61 26 4.3 15 37
1254 61 26 4.9 15 37
1096.8 58 26 4.7 15 37
699.8 52 26 2.9 14 34
67.5 34 25 1.8 14 28
210 34 25 2.9 14 27
1250.8 43 24 4.8 15 28
1249 52 22 3.9 15 31
1248.6 54 22 4.2 14 32
575.6 54 22 3.2 14 33
253.5 51 22 3.5 14 33
54.9 36 23 1.4 15 29
154.3 34 24 1.9 15 28
109.7 34 24 1.3 16 28
125.3 34 24 1.8 16 28

Fig. 3. Sample view of the input dataset featuring key variables.

Table l. Selected features and target for developing the

model [27].

Variable Description Units
Features

Gen_RPM Generator shaft/bearing rotational  rpm

speed

SCADA dataset gives the average  °C
temperature inside generator in

stator windings, Phases 1, 2, and 3.

Since the temperatures are nearly

the same, Gen_Phase_Temp is an
average temperature of the three

Gen_Phase_Temp

temperatures
Wind_Speed Ambient wind speed m/s
Amb_Temp Air ambient temperature °C
Nac_Temp Nacelle temperature °C
Target

Gen_Bear_Temp Temperature in generator bearing °C

1 (Driven End)

and bearing temperature appears weaker according to the
results presented by Amb_Temp data points. The analysis
demonstrates that thermal and mechanical stresses in WTs
create a relationship where Gen_Phase_Temp proves to be
the primary element for forecasting Gen_Bearing_Temp.
This study used correlation analysis to show how
different SCADA indicators work together and which
depend on one another to produce generator bearing faults.
A graphical representation shows how strongly each pair of
chosen features affects the other. Fig. 5 illustrates the
correlation relationship between input features and target.
The measured signals display significant associations with
one another. Example: a) wind speed and generator rota-
tional speed, b) wind speed and generator phase tempera-
ture, and c) generator phase temperature and bearing
temperature. The matrix shows that the chosen features
demonstrate their strong connection to the end measure-
ment variable (target). The pairs of measurements need

additional testing for their relationship with our results. The
training set shows how target values relate to each other.
The correlation map determines the connections between
parameters that form the relationships of the KG. Going
beyond standard feature vectors, the model will capture
context-aware interactions that are frequently overlooked
by typical ML techniques by including information from
the correlation map into the KG.

E. KG CONSTRUCTION AND
VISUALIZATION

KG is a structured representation of domain knowledge,
where entities (such as turbine components or environmen-
tal conditions) are connected by relationships that describe
their interactions or dependencies. In the proposed research,
the KG is being built to capture both semantic and func-
tional links between the most important SCADA parame-
ters impacting the health of the generator bearing. The
nodes relate to operational parameters, including the
wind speed, generator RPM, nacelle temperature, ambient
temperature, and generator phase temperature. The edge
determination is done in a hybrid style where (i) statistical
correlation (e.g. Pearson correlation coefficients) is used to
pin out pairs of parameters that have a significant interaction
and (ii) domain expert knowledge is used to verify and
augment such relationships on the basis of known mechan-
ical and thermal behavior of the various components of the
WT structure. As an example, both wind speed and genera-
tor RPM are associated because the two are directly depen-
dent on each other physically, whereas the nacelle
temperature is associated with generator phase temperature
because of the thermal influence on the latter. These links
are further polished with failure logs and past trends. The
combination of data-driven semantics and expert-defined
knowledge guarantees that the KG will have the right
statistics as well as operational dependencies. The resulting
structure of KG is shown in Fig. 6 where the nodes involve
SCADA features and the edges indicate either functional or
statistically defined interdependencies. Each edge is labeled
with the relationship type (“‘affects,” “correlates with,”, etc.)
based on expert-defined heuristics. By encoding these
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interdependencies, the KG serves as a contextual layer that
complements raw sensor data. To integrate this knowledge
into the ML pipeline, the graph is transformed into low-
dimensional vector representations using KG embedding
techniques. These embeddings preserve the relational struc-
ture and allow the ML model to reason about the system
more holistically, leading to improved fault detection accu-
racy and interpretability.

The study utilizes SCADA sensor data representing the
operational states of a WT generator.

* Entities include: Wind Speed, Generator RPM, Nacelle
Temperature, Ambient Temperature, Generator Bear-
ing Temperature, and Generator Phase Temperature.

 Entity Relations: E.g.,

= Wind Speed, Generator RPM, Nacelle Temperature,
Ambient Temperature, and Generator Phase Tem-
perature <> Gen bearing temperature (all affects).

= Generator RPM < Generator Phase Temperature
(Direct correlation through mechanical and elec-
trical load).

= Nacelle Temperature <> Generator Phase Temper-
ature (Environmental influence on internal
temperature).

= Wind Speed < Generator RPM (Direct correlation
through blade speed).

= Wind Speed < Nacelle Temperature (Affects
operational heat and cooling).

= Ambient Temperature < Nacelle Temperature &
Generator Phase Temperature (Affects cooling
efficiency and risk of condensation).

F. GRAPH EMBEDDING AND AUGMENTED
DATASET

The next stage is to translate the KG, which is used to model
the interdependencies among SCADA parameters, into a
numerical structure that ML algorithms can comprehend.
This is accomplished by a procedure known as graph
embedding, in which every node—which stands for a
feature or parameter—is mapped to a low-dimensional
vector that encapsulates the node’s relational and structural
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Wind Turbine Condition Monitoring Graph
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context within the graph. A rich feature space for model
training is created by combining these embeddings with the
original SCADA data to create an enhanced dataset.

Through this integration, the model is able to deduce
links, patterns, and impacts that are recorded in the domain
knowledge network in addition to learning from the raw
sensor values. Consequently, the ML model gains strength,
interpretability, and the ability to recognize tiny indications
of bearing failure.

1) NODE2VEC: EMBEDDING KNOWLEDGE GRAPHS.
To generate embeddings from the constructed KG, this
study employs Node2Vec architecture as shown in Fig. 7, a

state-of-the-art graph embedding algorithm. Node2Vec is
particularly effective because it strikes a balance between
preserving both homophily (similar nodes) and structural
equivalence (nodes playing similar roles) [28].

How Node2Vec Works:

1. Biased Random Walks:
Node2Vec simulates a series of random walks across
the graph starting from each node. Unlike standard
random walks, Node2Vec introduces two parameters—
p (return parameter) and q (in-out parameter)—which
control the breadth-first (BFS) and depth-first (DFS)
search behavior:
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Fig. 8. 3D scatter plot of Node2Vec embeddings for each
SCADA parameter node in the knowledge graph. The three
axes (dimension 1, 2, and 3) represent latent vector space
dimensions learned through biased random walks. Proximity
between points (e.g., Gen_Phase_Temp and Gen_Bear_Temp)
indicates  topological and functional similarity. These
embeddings were combined with original SCADA features to
build the augmented input space for ML modeling.

O High p, low q — encourages exploring nearby nodes
(local context).

O Low p, high q — encourages exploring distant nodes
(global context).

2. Context Generation:
These walks produce sequences of nodes that are
treated like “sentences” in natural language processing.

3. Embedding with Skip-Gram Model:
The sequences are then fed into a Skip-Gram model
(like Word2Vec) to learn vector representations. The
idea is that nodes that appear in similar walks (contexts)
should have similar embeddings.

4. Output:
Each node (i.e., each SCADA parameter) is assigned a
d-dimensional vector that encodes its structural posi-
tion and relational role in the graph.

2) VISUALIZATION OF NODE EMBEDDINGS. To inter-
pret the semantic and structural insights captured by the
Node2Vec embedding process, a 3D scatter plot of the
generated node embeddings has been illustrated in Fig. 8.
This plot represents a visual distribution of the selected
SCADA parameters in a reduced three-dimensional space,
with each axis corresponding to one of the embedding
dimensions. Each point in the 3D space corresponds to a
node in the KG, i.e., a sensor parameter such as Ambient
Temperature (Amb_Temp), Wind Speed, Generator RPM
(Gen_RPM), or Generator Bearing Temperature (Gen_
Bear_Temp). The spatial proximity between the nodes
reflects the contextual similarity learned by Node2Vec
during biased random walks on the graph. Clusters of nodes
(e.g., Gen_Bear_Temp and Gen_Phase_Temp) indicate
strong relational or topological similarity, suggesting
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they may influence each other in operational scenarios or
share similar roles in fault propagation. Conversely, param-
eters like Nac_Temp are more distantly positioned, indicat-
ing weaker or indirect relationships with other nodes in the
context of generator bearing failure.

G. ML MODEL TRAINING ON AUGMENTED
DATASET

Once the SCADA parameters and their graph-based
embeddings are generated using Node2Vec, the next
step involves creating an augmented dataset by
concatenating the original feature values with the corre-
sponding node embeddings. This fusion of sensor data
and semantic information leads to a richer representation
of the system, enabling the ML model to learn not just
from raw sensor readings but also from the latent inter-
dependencies and contextual knowledge captured via
the KG.

Structure of the augmented dataset

Each instance in the augmented dataset now includes:

* Original time-series features: e.g., wind speed, ambient
temperature, generator RPM, etc.

* Embedding dimensions: learned 3D node embeddings
representing each parameter’s relationship in the graph.

A sample of the augmented dataset is shown in Fig. 9,
where embedding vectors (outlined in red) are appended to
each time-series observation (outlined in green). This en-
riched data structure allows the model to leverage domain
relationships and contextual cues alongside numerical
trends.

The augmented dataset was used to train an XGboost
ML model, and then its performance was compared with
non-embedded dataset across different metrics like MAE,
mean square error (MSE), RMSE, R-Square, and Fit Time.
The results for the same are presented and discussed in next
section.

IV. RESULTS AND DISCUSSION
A. PERFORMANCE COMPARISON:

To evaluate the performance of the ML model trained on the
augmented dataset (KG + ML) versus the baseline model
trained on raw sensor data alone (ML), multiple evaluation
metrics were used, including:

¢ Mean absolute error (MAE)

* Mean squared error (MSE)

* Root mean squared error (RMSE)
* R-Squared (R?)

¢ Fit Time (in seconds)

The results of performance metrics, as shown in Fig. 10
between ML and KG+ML models, prove how the
incorporation of KG into ML processes delivers sub-
stantial advantages. The KG+ML model demonstrates
superior accuracy during prediction by combining
quick convergence with lower final error compared
to the single ML model based on RMSE assessments.
Analysis through MAE curves demonstrates that the
KG+ML model consistently produced smaller average
errors, which signifies exact predictions during the
whole training process. The R* plots demonstrate
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Gen_RPM_e Temp_emb Gen_Phase_Te
Gen_Phase Amb_Te [5en_RPM_embeddi Gen_RPM_emb mbedding_d edding_dim mp_embedding
Gen_RPM _Temp Nac_Temp WindSpeed mp hg_dim_0 edding_dim_1 im_2 0 _dim_1
1248.8 63 27 3.5 16 -0.048141465 0.5709345 1.1536372 -0.4673964 0.6059686
819.4 57 26 3.1 15 0.21568629 0.6281967 0.9705209 -0.0966062 0.6100145
1249.5 59 26 4.8 15 -0.23036249 0.570518 1.1282568 -0.1810809 0.5420576
1250 61 26 4.3 15 0.0578884 0.58512104  1.104469 -0.2998705 0.5596455
1254 61 26 4.9 15 -0.61678946  0.55569553 1.1254501 -0.2998705 0.5596455
1096.8 58 26 4.7 15 -0.47856432 0.51193905 1.4985508 -0.1611332 0.52877545
699.8 52 26 2.9 14 0.66876334 0.7056081 1.0092738 0.22160302 0.625703
67.5 34 25 1.8 14 1.5734377 1.1480689 0.6146175 1.2538534 0.9630708
210 34 25 2.9 14 1.4261111 1.0234348 0.79061055 1.2538534 0.9630708
1250.8 43 24 4.8 15 -0.1516464 0.6419291 0.75681037 0.4787253 0.72337615
1249 52 22 3.9 15 0.05905903 0.60976976 1.0312954 0.22160302 0.625703
1248.6 54 22 4.2 14 0.12070411 0.6489828 0.8303031 0.05422229 0.64367074
575.6 54 22 3.2 14 0.24982376 0.6546344 0.94850445 0.05422229 0.64367074
253.5 51 22 3.5 14 0.8725806  0.74692273 1.0554084 0.29262936 0.65073043
54.9 36 23 1.4 15 1.3530428 1.1048628 0.4025003  0.652248 0.8798977
154.3 34 24 1.9 15 1.3858318 1.0956601 0.47990522 1.2538534 0.9630708
109.7 34 24 1.3 16 1.456332 1.1295046 0.42693785 1.2538534 0.9630708
125.3 34 24 1.8 16 1.6080827 1.1536758 0.59574395 1.2538534 0.9630708
6.9 32 24 1.7 16 1.7260495 1.3019882 0.41289696 1.2964369 1.0711997
0 31 28 17 20 0.991633 0.8618143  0.720057 0.80959433 0.92387754

Fig. 9. A sample of the augmented dataset showing combined original SCADA features (outlined in green) and Node2Vec embeddings
(outlined in red) used for model training.
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Fig. 10. Training and validation performance comparison of ML and KG + ML models across RMSE, MAE, and R? metrics.

that the KG+ML approach reaches perfect explanatory
power quickly before the ML model does. The KG+
ML model exceeds the ML model by showing better
generalization ability throughout its initial stages of
operation. The learning process and data representation
benefit from the semantic structure and contextual
relationships of the KG while guiding the acquisition
of better data representations. The KG+ML model

provides better results than standard ML approaches
in all evaluation indicators, which proves its superior
efficiency and reliability. Real-world applications
stand to gain from performing domain modeling
with data-driven models as an integrated system for
better performance. KG proves to be an important tool
for enhancing both learning process performance and
educational results.
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Performance Comparison: KG+ML vs ML

N KG+ML

Metric Values

MSE

2.23

RMSE R-Squared Fit Time

Fig. 11. Performance comparison between ML and KG + ML models across various metrics.

As shown in Fig. 11, the KG + ML model significantly
outperforms the traditional ML model across all accuracy
metrics:

These results clearly highlight the value addition of
KG-based embeddings in enhancing model understanding
of contextual dependencies among SCADA parameters.
The KG + ML model achieves lower errors, better general-
ization (as evident from the high R? score), and faster
training times. With XGBoost, we tested the efficacy of
other common ML models like RF and SVM with both
ML and KG+ ML settings. Although XGBoost outper-
formed all other models on every measure overall, all
models bore substantial gains upon the application of
KG embeddings. This proves that the performance gains
recorded can be attributed to the KG integration but not
to the model-specific benefits. The MAE, RMSE, and
R? scores of the various models are listed in detail in
Appendix A.

B. STATISTICAL ANALYSIS AND RESULTS

A paired sample t-test examined the performance evaluation
between KG + ML and conventional ML by analyzing five
key measures, including MAE, MSE, RMSE, R? score, and
Fit Time. The assessment metrics focused on accuracy mea-
sures and efficiency assessment aspects of the predictions.
Hypothesis Formulation

These are the hypotheses that define the required test:
Let’s define:

* x;: performance of KG + ML
* y;: performance of ML
e d; =x; —y;: paired difference

Null Hypothesis (H,): There is no significant difference
between KG + ML and ML standalone performance across
different metrics.

Ho:”d =0

Where u, is the mean of the paired difference (d; = x; — y;).
Alternate Hypothesis (H): There is a significant differ-
ence in the performance of the KG+ ML and ML
models. Hy:py #0

Paired t-test calculation
Here’s a detailed breakdown of the statistical significance
testing between the KG + ML model and the ML model
across five performance metrics (MAE, MSE, RMSE, R,
and Fit Time):
Step 1: Compute differences
d;=0.167-0.991 =0.824
d>=0.336—1.676 =—1.340
d;=0.580—-1.294=-0.714
dys=0.997-0.989 = +0.008
ds=1.020-2.225=-1.205

Step 2: Mean and standard deviation of differences

—0.824 — 1.340 — 0.714 — 0.008 — 1.205
5

d=

=—4.075 — 0815

1.112696
Sa=\— = Vv0.278174 = 0.5274

Step 3: t-statistic

= -3.454

1=

el

Degrees of freedom =4 (Using a t-distribution table)
p-value = 0.026 (two-tailed)

Since the p-value is less than 0.05, we reject the null
hypothesis at the 5% significance level. This indicates that
the difference in performance between the KG + ML and
ML models is statistically significant and not due to random
chance.
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C. INTERPRETABILITY COMPARISONS OF
KG + ML OVER ML

Table II presents the interpretability of feature importance
scores generated by traditional ML methods. Traditional
ML calculates feature importance by examining feature
contributions to error reduction, yet this method captures
only basic statistical relationships [29]. The technique fails
to reveal the complete structural relationships and underly-
ing causations, which exist between different variables.
Features in the KG maintain interconnected entity relation-
ships, which allow for the calculation of centrality metrics
[30] through measures of degree centrality, in-degree, out-
degree, and closeness centrality as shown in Table III.
System structure metrics show a feature’s degree of influ-
ence through the network to identify its position as either
fault cause, intermediary, or final fault outcome. The cen-
trality analysis demonstrates that Wind Speed, together
with Rotor RPM, stands out as key system component,
while their ML importance scores are only moderate.
Traditional ML techniques fail to detect the type of struc-
tural understanding, which this method provides. A com-
bination of statistical learning and graph-based reasoning
through the KG+ ML approach delivers an enhanced
framework, which effectively predicts faults and establishes
clear explanations for what data points matter to the WT
system.

This analysis shows the KG+ ML approach gives
better interpretability through its KG-based centrality mea-
sures compared to XGBoost-based traditional ML model-
ing methods. The XGBoost model identifies
Gen_Phase_Temp as its most influential feature with a
score of 8.47 and Nac_Temp follows with a score of
2.23, while Amb_Temp receives a score of 0.80. Each
feature rating reveals its predictive strength, which depends
mostly on data variability and split performance. Through
its KG structure, the KG applies three measures of graph
centrality—degree centrality and in/out-degree and close-
ness centrality—to determine the contextual and relational
value of features based on domain expertise. The two
features, Gen_Phase_Temp and Nac_Temp, demonstrate
high degree centrality ratings (0.8) because they connect to
a large number of interactions that occur throughout the

Table Il. ML feature importance (XGBoost)

Feature Feature importance

turbine system. Gen_Phase_Temp functions as an essential
feature in tracking system-level dynamics since it receives
influence through three distinct upstream features, as shown
by its in-degree score of 3. The ML model attributes low
importance to Amb_Temp and WindSpeed but these vari-
ables demonstrate three out-degree links in the KG. The KG
indicates that these factors serve as important initial nodes
influencing multiple follow-up factors, which traditional
predictive models could miss because they mainly detect
direct target correlations. By integrating both KG + ML
techniques, the approach reaches superior prediction results
while delivering more meaningful domain-based explana-
tions. This methodology features relational dependencies
and causal pathways to enable stakeholders better under-
standing of system behavior and feature interactions, spe-
cifically needed when detecting faults in safety-critical
applications like WTs. The experimental findings demon-
strate the significant potential of integrating KG embed-
dings into ML workflows. The graph-based approach
captures complex inter-variable dependencies, enabling
the model to learn richer representations compared to
conventional ML that treats each feature independently.
The Node2Vec algorithm, used for graph embeddings,
facilitated the transformation of nodes (SCADA parame-
ters) into low-dimensional vectors that reflect their struc-
tural and contextual similarities in the KG. These
embeddings were then appended to the original dataset,
forming an augmented dataset that improved model accu-
racy, reduced training error, and decreased computational
time. This implies that structural domain knowledge, when
encoded into embeddings, complements sensor data effec-
tively and contributes to more robust and interpretable ML
models in WT monitoring system. Furthermore, the t-test
supports the claim that KG + ML significantly outper-
forms ML.

V. CONCLUSION

This work introduces a novel method that combines KG
with conventional ML techniques in order to improve
predictive performance for WT anomaly detection. The
enhanced dataset produced by utilizing the domain knowl-
edge recorded in a KG was more informative and richer in
semantics than the raw sensor data by itself. The outcomes
show that the KG + ML strategy outperforms solo ML
techniques in a number of performance parameters, such

Gen_Phase_Temp 8.47 as Fit Time, MAE, MSE, RMSE, and R?. Notably, the KG
Nac_Temp 2.23 + ML model enhanced model fitting efficiency and drasti-
Amb_Temp 0.800 cally reduced prediction error (MAE: 0.167 vs. 0.991;
Gen_RPM 0.598 RMSE: 0.58 vs. 1.294). Furthermore, a statistical study
WindSpeed 0.238 employing a paired t-test validated that the perfprmance
gains were not the result of random fluctuation and
Table lll. Contextual feature importance from graph
Node Degree centrality In-degree Out-degree Closeness centrality
Gen_Phase_Temp 0.8 3 1 0.64
Nac_Temp 0.8 2 2 0.40
Amb_Temp 0.6 0 3 0.00
WindSpeed 0.6 0 3 0.00
Gen_RPM 0.6 1 2 0.20
Gen_bearing_temp 1.0 5 0 1.00
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established the significance (p =0.026) of these improve-
ments. Importantly, the interpretability of the model was
enhanced through centrality-based feature relevance analy-
sis, offering insights into causal and structural relationships
that standard feature importance techniques may miss. By
incorporating contextual linkages that traditional ML alone
was unable to grasp, the augmented dataset acted as a
crucial bridge. This dataset’s extended feature space was
demonstrated by a sample, which also revealed new insights
from domain-specific limitations, operational dependen-
cies, and turbine topology. In summary, this research
underscores the potential of KG-enhanced learning pipe-
lines in industrial monitoring systems. By embedding
expert knowledge into the training process, we bridge
the gap between data-driven models and real-world system
understanding, leading to more reliable and interpretable
results. Future work may explore real-time deployment,
integration with digital twins, and application across other
critical infrastructure systems.
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Appendix A

Performance comparison of ML. and KG+ML models
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Model Configuration MAE MSE RMSE R?

XGBoost ML 0.991 1.68 1.294 0.989
XGBoost KG + ML 0.167 0.34 0.580 0.999
Random Forest ML 1.102 1.78 1.382 0.981
Random Forest KG + ML 0.221 0.56 0.642 0.993
SVM ML 1.234 1.98 1.412 0.975
SVM KG + ML 0.283 0.65 0.691 0.989
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