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Abstract: - Fault sensing in wind turbine
generators bearing is essential for ensuring
reliability and holding down maintenance
costs. Feeding raw sensor data to machine
learning (ML) model often overlook the
enveloping interdependencies between
system elements. This study proposes a
new hybrid method that combines the
domain knowledge via Knowledge Graphs
(KGs) and the traditional feature-based
data. Incorporation of contextual
relationships through construction of graph
embedding methods as Node2Vec can
capture meaningful information, such as
the relationships among key parameters
(e.g. wind speed, rotor RPM, and
temperature) in the enriched feature

representations. These Node embeddings
when Augmented with the original data,
these embeddings can be used to allow the
model to learn and generalize better. As
shown in results achieved on experimental
data, the augmented ML model (with KG)
is much better at predicting with the help
of accuracy and error measure compared to
traditional ML methods. Paired t-test
analysis proves the statistical validity of
this improvement. Moreover, graph-based
feature importance increases the
interpretability of the model and helps to
uncover the structurally significant
variables that are otherwise ignored by the
common methods. The approach provides
an excellent, knowledge-guided manner
through which intelligent fault detection
can be executed on wind turbine systems.
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1. Introduction: Wind energy has emerged
as a thriving renewable energy source,
with maintenance playing a crucial role in
wind turbine (WT) performance [1] and
cost-effectiveness. Analyzing failure
modes, causes, and crucial component
identification techniques is part of WT
maintenance [2] . Power system reliability
may be adversely affected by wind power's
unpredictable nature, which calls for a
variety of evaluation techniques [3] .
Significant differences exist in failure rates
and downtimes among WT subassemblies,
according to reliability data gathered from
several databases; in general, offshore
WTs have greater failure rates than
onshore ones [4] . Reducing lifecycle costs
and increasing power generation efficiency
require improved component reliability [5].
There is a significant, nonlinear correlation
between WT reliability and annual energy
production as well as operation and
maintenance costs, underscoring the



significance of determining the best
reliability enhancements to reduce the
levelized cost of energy [4] . The health of
gas turbine and wind turbine engines
depends heavily on bearings, and when
they fail, there is a substantial downtime
and maintenance expense [6] . Uneven
operating stress and climatic circumstances
present special problems for wind turbine
bearings, requiring improvements in
surface engineering, design, and
lubrication [7] . Prognostics and health
management (PHM) algorithms have been
developed for wind turbine engines in
order to identify early signs of critical
bearing failure These methods determine
the remaining usable life by combining
material-level fatigue models with
vibration transducer sensor data [8] .
Through the use of model-based estimates
in the absence of diagnostic indicators and
monitored features like vibration and oil
debris at later stages, the combination of
health monitoring data and model-based
techniques offers a comprehensive
prognostic capability throughout a
bearing's life [9].

The application of ML techniques to
improve wind turbine predictive
maintenance has showed great promise.
Numerous strategies have been
investigated, such as hybrid models that
combine ML algorithms and statistical
process control [10] and data-centric
techniques. With decision tree and
XGBoost models reaching over 90%
accuracy, these techniques have proven to
be highly accurate in problem diagnosis
and maintenance prediction [11] . Support
vector machines and convolutional neural
networks have been used to estimate long-
cycle maintenance times [12] .
Autoencoders outperform other algorithms
in detecting operational anomalies, and
recent developments include the creation
of entire frameworks including anomaly

detection and prognostics. Furthermore,
LSTM neural networks have demonstrated
potential in forecasting the essential
components' remaining useful lives [13] .
These ML-based strategies help wind farm
operations run more efficiently overall by
reducing downtime and optimizing
maintenance schedules. Conventional ML
models are effective at recognizing
patterns, but they ignore the inherent
relationships between their input data [13]
and instead treat them as separate
independent variables. Temperature,
vibration, and rotor speed are some of the
parameters that affect each other under
operating force and climatic conditions in
the wind turbine system, particularly in its
generator bearings. This limitation limits
the interpretability and accuracy of ML-
based defect identification. KGs are a
useful tool for leveraging subject expertise
and using semantic relationships to
explicitly model complex
interdependence [14] . When KG-based
embeddings and sensor data are combined,
ML models' contextual awareness is
improved, leading to more powerful but
explicable predicting capabilities. In order
to improve accuracy and insight in
identifying problems in wind turbine
generator bearings, this study presents the
creation of a hybrid fault detection model
that combines KGs and ML.

To address existing limitations this
research creates a new hybrid framework
which combines domain-specific
knowledge structures contained in KGs
with traditional feature data in order to
improve wind turbine generator fault
detection. This hybrid framework targets
existing model limitations by establishing
better connections between system
parameters with more effectiveness.

The primary objective of this paper are as
follows:



1. To create an advanced ML
framework which unites Node2Vec
node embeddings from KG
techniques with classical sensor
data for precise wind turbine
generator bearing fault detection.

2. To assess the performance
elevation of KG+ML methodology
relative to standard ML approaches
by using statistical significance
testing along with quantitative
measurement methods.

The remainder of this paper is structured
as follows: Section 2 presents the literature
review on wind turbine maintenance.
Section 3. Illustrate how the KG was
integrated with ML model using node
embedding technique. Section 4 discusses
the experimental results and performance
evaluation of the hybrid model. Finally,
Section 5 concludes the study and outlines
directions for future research.

2. Literature Review
Efficient renewable energy production by
wind turbines (WT) demands advanced
automatic failure detection systems which
maintain system quality along with
operational effectiveness. Generator
bearings in WT experience high rates of
failure because they face ongoing
mechanical forces and unstable loads and
environmental conditions[1]. The detection
of early faults in these bearings requires
immediate attention because it prevents
major system failures while reducing
maintenance expenses and system
downtime. Fault detection throughs
traditional method depends on sensor
readings from vibration and temperature
and acoustic measurements that
conventional ML algorithms examine. The
detection techniques employ SVM along
with KNN and DT algorithms and RF
models as their main execution tools. [15]
developed a system by applying SVM to

vibration signal time-domain statistical
features in order to detect faults in WT
gearboxes and bearings. The study
presented by [16]showcased RF classifiers
as effective tools for abnormal pattern
detection in rotating machinery. The
performance of existing approaches is
acceptable but they offer restricted
interpretability when analyzing
interdependencies among parameters in
WT systems. The recent developments in
artificial intelligence along with semantic
technologies have brought KGs as an
advanced framework to structure domain
knowledge representation. KGs enable
semantic networks that establish
associations between components and
parameters and failure modes thereby
making context-based choices possible.
[17] showed how KG enable effective
applications in industrial systems
especially for equipment maintenance and
health monitoring. Many industrial sectors
including healthcare[18], e-commerce [19]
and cybersecurity [20] have adopted KGs
to enhance ML models together with
domain knowledge and explainability
features.

The use of KGs as a WT fault detection
approach shows minimal current
application despite their advantages. The
integration of KGs with ML models
creates an effective challenge for practical
applications. Embedding techniques
transform KGs into low-dimensional
vector spaces according to recent academic
research. _Node2Vec [21] serves as a
scalable approach that maps graph nodes
into latent spaces through random walk
computations while maintaining node
structural patterns. The embeddings
become compatible with sensor-based
features which allows ML models to gain
knowledge about statistical patterns and
semantic relationships simultaneously.
Researchers have conducted limited



studies regarding the application of graph-
based techniques for predictive
maintenance in renewable energy systems.
The authors [22] presented a hybrid GNN
(Graph Neural Network) model which
integrated time-series data and structural
component interactions for WT fault
prediction systems. The researchers
discovered that including turbine
subsystem relational data increased the
precision rate of fault detection. Their
methodology needed extensive domain
expertise during graph building while the
computations remained too complex.
While GNN-based approaches are
outstanding among the best ranking
models, the investigated integration
employing Node2Vec is lighter and more
flexible. Such an approach is employed
within this research to build a domain-
specific KG that depicts dependencies
within important WT parameters like rotor
speed, bearing temperature, wind speed,
and generator torque among others and
incorporating this graph in feature vectors.
These embedded vectors are then
incorporated with normal sensor data for
training ML models like Random Forests
to obtain enhanced performance during
fault detection. Also, disadvantages of the
combined approaches which has been
incorporated in this study include better
model interpretability. Since knowledge
captured in the KG would have been
derived based on expert knowledge in the
respective field, the practitioner would
have an understanding of why the model
came up with certain predictions in areas
such as WT maintenance. Further,
employing KGs can improve data
augmentation, allow handling of missing
values better, and the need for great deal of
labeled data diminishes as well. In
conclusion, while the traditional set of ML
models has been successfully applied to
the WT fault detection problem, the

incorporation of KBR approach is a step
further that allows the representation of
system complexity. The approach of
combining KG-based embeddings with the
traditional ML features that were discussed
in this study, can allow for developing
more accurate, and explainable models for
the early fault diagnosis in WT generator
bearings.

3. Proposed Fault Detection
Framework

3.1 Knowledge Graph

KG presents structured information
through nodes and edges for representing
entities as nodes and their connections or
relation as edges [23] . Real-world entities
become nodes in the graph structure
whereas edges depict their relations
between them. KG implement semantic
triples as a data structure for machine-
readable representation of factual
information through subject, predicate and
object relations. The relationship between
turbines and components emerges through
the triple entry (Wind speed, affects,
Generator bearing Temperature). The
power of KGs stems from their capability
to bring together diverse heterogeneous
data sources into one unified model which
enhances search intelligence and discovery
capability as well as reasoning abilities[24].
The wide range of applications includes
natural language processing as well as
recommender systems and information
retrieval. The graph structure of data
storage enables KGs to accept multiple
flexible queries for pattern detection using
analytics tools such as centrality clustering
and path analysis. The visual format along
with interconnected structure of graph
databases makes them user-friendly for
studying complex datasets together with
knowledge domains [25] . Data storage
systems gain semantic abilities through
KGs because these systems allow



machines to understand both contents and
patterns between data points.

The mathematical definition of graph is a
structure made of vertices and edges.

Where,

 V: a set of vertices
 E: a set of edges
 V= {v1, v2, v3, v4, v5, v6}

(Entities or Nodes)
 E= {(v1, v5), (v1, v3), (v6, v3), (v4,

v5)} (edges or relations)

This Figure 1 illustrates a KG, which
represents entities (shown as nodes) and
their relationships (shown as edges). Each
node corresponds to a real-world concept
(e.g., Person, Country, City), and each
directed edge defines a specific
relationship between entities (e.g., born in,
located in, works for).

Figure 1 Visual Representation of KG

3.2 Coupling KG and ML

The Proposed hybrid fault detection
framework as illustrated in Figure 2 shows
how the proposed KG+ML pipeline
operates for detecting WT faults. Sensor
data procurement leads to the construction
of a KG that displays system component
associations and dependencies. Extracted

node centrality measures from this KG that
get combined with regular sensor data
features to form improved data. The
machine learning model uses an enriched
data set that results from this process in
order to undergo training and testing. A
trained model creates predictive outcomes
before standard performance criteria
measure their accuracy. The feedback loop
from evaluation enables permanent
advancements to be made in the model's
performance. The framework improves
both predictive ability as well as
interpretability through its integration of
domain knowledge through the KG to
provide a strong and explainable solution
for bearing fault detection in WTs. The
proposed framework combines
conventional SCADA-based data
processing with semantic knowledge
embedding using KG to enhance the
performance of ML models in detecting
generator bearing faults. ML applications
benefit from KGs through their capability
to enhance raw data with meaning-based
structures together with improved feature-
building abilities which enable models to
predict with superior information [26] .
Stand-alone ML models become more
powerful when coupled with KGs because
the combination improves interpretability
and enhances data integration and
performance particularly in
recommendation systems and predictive
maintenance and supply chain
optimization environments. KGs acquire
their status as vital components of next-
generation intelligent systems through
their flexible query capabilities which
emerge from their graph-based structure.
The study demonstrates domain-specific
learning benefits when KG merges with
ML because the performance metrics
showed enhanced improvement.



Figure 2 Proposed hybrid fault detection
framework combining SCADA-based
feature data with Knowledge Graph

embeddings.

This figure 2 shows the illustration of the
end-to-end process of proposed hybrid
framework of fault detection of wind
turbine generator bearings which has been
arranged into two significant parts:

1. Data Preparation and KG
Construction: The first stage of it is
the gathering of the SCADA sensor
data for the features like rotor
speed, bearing temperature, and
wind speed. The data is, then, pre-
processed and cleaned to maintain
time synchronicity, uniformity and
quality. To determine valuable
interdependencies between features,
correlation analysis was carried out.
This knowledge, together with the
knowledge acquired by
professionals in the realm, is
utilized to create a KG in which:
Nodes represents the important
features of SCADA (e.g., Wind
Speed, Gen_RPM). And edges
represent the functional or
operational dependencies among
the features.

2. ML Integration and model training:
After the KG construction,
Node2Vec algorithm was used to
produce low dimensional node
embeddings. These embeddings
contain structural and relational
characteristics of the graph. The
derived graph-based vectors are
then merged with the basic
SCADA feature data to provide an
augmented features data. This
augmented dataset was used to
train a machine learning model
(e.g., XGBoost, Random Forest
etc.) to predict faults. Standard
measures are used to assess model
performance, e.g. MAE, RMSE
and R 2. The output is not only
shown in the results of fault
prediction but also graph-based
interpretability information which
provides insights on structurally
important parameters usually
ignored by conventional models.

3.3 Data Collection
The research dataset comes from
Supervisory Control and Data Acquisition
(SCADA) systems which EDP (2017)
provided. The dataset contains operational
data which were gathered from four
horizontal-axis WTs installed along the
western coastline of Africa. A two-year
record of data exists from 2016 through
2017 with 10-minute averaged
measurements that show complete turbine
operations throughout the period. The total
number of parameters measured amounts
to 76 which provide detailed information
about turbine performance as well as
health status. The SCADA readings
accompany meteorological data points that
match the same timestamp which helps
explain environmental factors affecting
turbine operation. Supervised ML
applications rely heavily on failure logs
which contain timestamps together with



descriptions about failed components as
well as pertinent comments about their
failed state. For this case, Turbine Number
7 (“T07”) was adopted because its failure
log indicates a generator bearing fault,
which is an area of interest in this research.
The total numbers recorded for T07 are
52445 in year 2016 and 52294 for the year
of 2017. With such instances being
available for training as well as testing the
fault detection model, their utilization in
the analysis is appropriate. A subset of
relevant features was selected from the full
SCADA dataset (as shown in figure 3) for
model development. These features, along
with the target variable indicating fault or
normal status, are summarized in Table 1.

Table 1 Selected features and target for
developing the model[27] .

Variable Description Unit
s

Features

Gen_RPM Generator
shaft/bearing
rotational speed

rpm

Gen_Phase_Te
mp

SCADA dataset
gives the
average
temperature
inside generator
in stator
windings Phase
1, 2 and 3. Since
the temperatures
are nearly the
same,
Gen_Phase_Te
mp is an average
temperature of
the three
temperatures

°C

Wind_Speed Ambient wind m/s

speed

Amb_Temp Air ambient
temperature

°C

Nac_Temp Nacelle
temperature

°C

Target

Gen_Bear_Tem
p

Temperature in
generator
bearing 1
(Driven End)

°C

Figure 3 Sample View of the Input
Dataset Featuring Key Variables

3.4 Exploratory Data Analysis

The Figure 4 shows how five key
operational parameters of a wind turbine
affect generator bearing temperature
through box plots analysis including
Gen_Bearing_Temp. Gen_RPM,
Gen_Phase_Temp, Nac_Temp,
WindSpeed and Amb_Temp. The analysis
shows a linear positive relationship
between the generator phase heat and the
bearing temperature thus indicating direct
thermal connections between these two
operational elements. As Gen_RPM
increases together with WindSpeed the
bearing temperatures elevate because
higher mechanical workload occurs during
energy conversion [27] . The nacelle
temperature impact on bearing
temperatures is moderate since nacelle



temperature elevation leads to higher
temperatures but shows wider variation in
changes. The connection between ambient
temperature and bearing temperature
appears weaker according to the results
presented by Amb_Temp data points. The
analysis demonstrates that thermal and
mechanical stresses in wind turbines create
a relationship where Gen_Phase_Temp
proves to be the primary element for
forecasting Gen_Bearing_Temp.

Figure 4 Box plots showing the
distribution of Gen_Bearing_Temp
(Generator Bearing Temperature) with
respect to key wind turbine parameters

This study used correlation analysis to
show how different SCADA indicators
work together and which depend on one
another to produce generator bearing faults.
A graphical representation shows how
strongly each pair of chosen features
affects each other. Figure 5 illustrates the
correlation relationship between input
features and target. The measured signals
display significant associations with one
another. example a) wind speed and
generator rotational speed, b) wind speed
and generator phase temperature, and c)
generator phase temperature and bearing
temperature. The matrix shows that the
chosen features demonstrate their strong
connection to the end measurement
variable (target). The pairs of
measurements need additional testing for

their relationship with our results. The
training set shows how target values relate
to each other. The correlation map
determines the connections between
parameters that form the relationships of
the KG. Going beyond standard feature
vectors, the model will capture context-
aware interactions that are frequently
overlooked by typical ML techniques by
including information from the correlation
map into the KG.

Figure 5 Pearson correlation matrix of the
input features.

3.5 KG construction and
Visualization

KG is a structured representation of
domain knowledge, where entities (such as
turbine components or environmental
conditions) are connected by relationships
that describe their interactions or
dependencies. In the proposed research,
the KG is being built to capture both
semantic and functional links between the
most important SCADA parameters
impacting the health of the generator
bearing. The nodes relate to operational
parameters including the wind speed,
generator RPM, nacelle temperature,
ambient temperature and generator phase
temperature. The edge determination is
done in a hybrid style where (i) statistical
correlation (e.g. Pearson correlation



coefficients), is used to pin out pairs of
parameters that have a significant
interaction and (ii) domain expert
knowledge is used to verify and augment
such relationships on the basis of known
mechanical and thermal behaviour of the
various components of the wind turbine
structure. As an example, both wind speed
and generator RPM are associated because
the two are directly dependent on each
other physically, whereas the nacelle
temperature is associated with generator
phase temperature because of the thermal
influence on the latter. These links are
further polished with failure logs and past
trends. The combination of data-driven
semantics and expert-defined knowledge
guarantees that the KG will have the right
statistics as well as operational
dependencies. The resulting structure of
KG is shown in figure 6 where the nodes
involve SCADA features and the edges
indicate either functional or statistically-
defined interdependencies. Each edge is
labeled with the relationship type
("affects", "correlates with", etc.) based on
expert-defined heuristics. By encoding
these interdependencies, the KG serves as
a contextual layer that complements raw
sensor data. To integrate this knowledge
into the ML pipeline, the graph is
transformed into low-dimensional vector
representations using KG embedding
techniques. These embeddings preserve
the relational structure and allow the ML
model to reason about the system more
holistically, leading to improved fault
detection accuracy and interpretability.

Figure 6 Knowledge Graph representation
used for wind turbine condition monitoring.

Each node corresponds to a SCADA
parameter: Gen_RPM, Gen_Phase_Temp,

Gen_Bear_Temp, WindSpeed,
Amb_Temp, and Nac_Temp. Directed
edges represent known functional or

statistical relationships between features.
Edge labels describe the nature of each

dependency, e.g., "affects",
"environmental influence", "risk of

condensation", or "direct correlation".
These relations were derived using a
combination of expert knowledge and

correlation analysis.

The study utilizes SCADA sensor data
representing the operational states of a WT
generator.

• Entities include: Wind Speed,
Generator RPM, Nacelle
Temperature, Ambient
Temperature, Generator Bearing
Temperature and Generator Phase
Temperature.

• Entity Relations: E.g.,

 Wind Speed, Generator
RPM, Nacelle Temperature,
Ambient Temperature,
Generator Phase
Temperature ↔ Gen
bearing temperature (all
affects)



 Generator RPM ↔
Generator Phase
Temperature (Direct
correlation through
mechanical and electrical
load)

 Nacelle Temperature ↔
Generator Phase
Temperature
(Environmental influence
on internal temperature)

 Wind Speed ↔ Generator
RPM (Direct correlation
through blade speed)

 Wind Speed ↔ Nacelle
Temperature (Affects
operational heat and
cooling)

 Ambient Temperature ↔
Nacelle Temperature &
Generator Phase
Temperature (Affects
cooling efficiency and risk
of condensation)

3.6 Graph Embedding and
Augmented Dataset

The next stage is to translate the KG,
which is used to model the
interdependencies among SCADA
parameters, into a numerical structure that
ML algorithms can comprehend. This is
accomplished by a procedure known as
graph embedding, in which every node—
which stands for a feature or parameter—is
mapped to a low-dimensional vector that
encapsulates the node's relational and
structural context within the graph. A rich
feature space for model training is created
by combining these embeddings with the
original SCADA data to create an
enhanced dataset.

Through this integration, the model is able
to deduce links, patterns, and impacts that

are recorded in the domain knowledge
network in addition to learning from the
raw sensor values. Consequently, the ML
model gains strength, interpretability, and
the ability to recognize tiny indications of
bearing failure.

3.6.1 Node2Vec: Embedding
Knowledge Graphs

To generate embeddings from the
constructed KG, this study employs
Node2Vec architecture as shown in Figure
7, a state-of-the-art graph embedding
algorithm. Node2Vec is particularly
effective because it strikes a balance
between preserving both homophily
(similar nodes) and structural equivalence
(nodes playing similar roles)[28].

How Node2Vec Works:

1. Biased Random Walks:
Node2Vec simulates a series of
random walks across the graph
starting from each node. Unlike
standard random walks, Node2Vec
introduces two parameters—p
(return parameter) and q (in-out
parameter)—which control the
breadth-first (BFS) and depth-first
(DFS) search behavior:

o High p, low q →
encourages exploring
nearby nodes (local
context).

o Low p, high q →
encourages exploring
distant nodes (global
context).

2. Context Generation:
These walks produce sequences of
nodes that are treated like
"sentences" in natural language
processing.



3. Embedding with Skip-Gram Model:
The sequences are then fed into a
Skip-Gram model (like Word2Vec)
to learn vector representations. The
idea is that nodes that appear in
similar walks (contexts) should
have similar embeddings.

4. Output:
Each node (i.e., each SCADA
parameter) is assigned a d-
dimensional vector that encodes its
structural position and relational
role in the graph.

Figure 7 Node2Vec Architecture
(Towards Data Science, 2022)

3.6.2 Visualization of Node
Embeddings

To interpret the semantic and structural
insights captured by the Node2Vec
embedding process, a 3D scatter plot of the
generated node embeddings has been
illustrated in Figure 8. This plot represents
a visual distribution of the selected
SCADA parameters in a reduced three-
dimensional space, with each axis
corresponding to one of the embedding
dimensions. Each point in the 3D space
corresponds to a node in the KG, i.e., a
sensor parameter such as Ambient
Temperature (Amb_Temp), Wind Speed,
Generator RPM (Gen_RPM), or Generator
Bearing Temperature (Gen_Bear_Temp).
The spatial proximity between the nodes
reflects the contextual similarity learned
by Node2Vec during biased random walks
on the graph. Clusters of nodes (e.g.,

Gen_Bear_Temp and Gen_Phase_Temp)
indicate strong relational or topological
similarity, suggesting they may influence
each other in operational scenarios or share
similar roles in fault propagation.
Conversely, parameter like Nac_Temp are
more distantly positioned, indicating
weaker or indirect relationships with other
nodes in the context of generator bearing
failure.

Figure 8 3D scatter plot of Node2Vec
embeddings for each SCADA parameter
node in the Knowledge Graph. The three
axes (Dimension 1, 2, and 3) represent
latent vector space dimensions learned
through biased random walks. Proximity
between points (e.g., Gen_Phase_Temp

and Gen_Bear_Temp) indicates
topological and functional similarity.
These embeddings were combined with
original SCADA features to build the

augmented input space for ML modeling.

3.7 ML model training on
Augmented Dataset

Once the SCADA parameters and their
graph-based embeddings are generated
using Node2Vec, the next step involves
creating an augmented dataset by
concatenating the original feature values
with the corresponding node embeddings.



This fusion of sensor data and semantic
information leads to a richer representation
of the system, enabling the ML model to
learn not just from raw sensor readings but
also from the latent interdependencies and
contextual knowledge captured via the KG.

Structure of the Augmented Dataset

Each instance in the augmented dataset
now includes:

 Original time-series features: e.g.,
wind speed, ambient temperature,
generator RPM, etc.

 Embedding dimensions: learned
3D node embeddings representing
each parameter’s relationship in the
graph.

A sample of the augmented dataset is
shown in Figure 9, where embedding
vectors (outlined in red) are appended to
each time-series observation (outlined in
green). This enriched data structure allows
the model to leverage domain relationships
and contextual cues alongside numerical
trends.

Figure 9 A sample of the augmented
dataset showing combined original
SCADA features (outlined in green) and
Node2Vec embeddings (outlined in red)
used for model training.

The Augmented dataset was used to train a
XGboost ML model and then its
performance was compared with non-
embedded dataset with across different

metrics like Mean absolute error (MAE),
Mean square error (MSE), Root means
square error (RMSE), R-Square and Fit
Time. The results for the same presented
and discussed in next section.

4. Results and Discussion

4.1 Performance Comparison:

To evaluate the performance of the ML
model trained on the augmented dataset
(KG + ML) versus the baseline model
trained on raw sensor data alone (ML),
multiple evaluation metrics were used,
including:

 Mean Absolute Error (MAE)

 Mean Squared Error (MSE)

 Root Mean Squared Error (RMSE)

 R-Squared (R²)

 Fit Time (in seconds)

The Results of performance metrics as
shown in Figure 10 between ML and
KG+ML models proves how the
incorporation of KG into ML processes
delivers substantial advantages. The
KG+ML model demonstrates superior
accuracy during prediction by
combining quick convergence with
lower final error compared to the
single ML model based on RMSE
assessments. Analysis through MAE
curves demonstrates that the KG+ML
model consistently produced smaller
average errors which signifies exacter
predictions during the whole training
process. The R² plots demonstrate that
the KG+ML approach reaches perfect
explanatory power quickly before the
ML model does. The KG+ML model
exceeds the ML model by showing
better generalization ability throughout
its initial stages of operation. The
learning process and data



representation benefits from the
semantic structure and contextual
relationships of the KG while guiding
the acquisition of better data
representations. The KG+ML model
provides better results than standard
ML approaches in all evaluation
indicators which proves its superior
efficiency and reliability. Real-world
applications stand to gain from
performing domain modelling with
data-driven models as an integrated
system for better performance. KG
prove to be an important tool for
enhancing both learning process
performance and educational results.

Figure 10 Training and validation
performance comparison of ML and
KG+ML models across RMSE, MAE, and
R² metrics.

As shown in Figure 11, the KG+ML
model significantly outperforms the
traditional ML model across all accuracy
metrics:

Figure 11 Performance comparison
between ML and KG + ML models across
various metrics

These results clearly highlight the value
addition of KG-based embeddings in
enhancing model understanding of
contextual dependencies among SCADA
parameters. The KG+ML model achieves
lower errors, better generalization (as
evident from the high R² score), and faster
training times. With XGBoost, we tested
the efficacy of other common machine
learning models like Random Forest (RF)
and Support Vector Machine (SVM) with
both ML and KG+ML settings. Although
XGBoost outperformed all other models
on every measure overall, all models bore
substantial gains upon the application of
Knowledge Graph embeddings. This
proves that the performance gains recorded
can be attributed to the KG integration but
not to the model-specific benefits. The
MAE, RMSE and R 2 scores of the various
models are listed in detail in Appendix A

4.2 Statistical Analysis and Results

A paired sample t-test examined the
performance evaluation between KG+ML
and conventional ML by analyzing five
key measures including Mean Absolute
Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), R²
score, and Fit Time. The assessment
metrics focused on accuracy measures and
efficiency assessment aspects of the
predictions.



Hypothesis Formulation

These are the hypotheses which define the
required test:

Let’s define:

• xi: performance of KG+ML

• yi: performance of ML

• di=xi−yi: paired difference

Null Hypothesis ( �� ): There is no
significant difference between KG+ML
and ML standalone performance across
different metrics.

�� : �� = 0

Where �� is the mean of the paired
difference (di=xi−yi)

Alternate Hypothesis (��): There is a
significant difference in the performance
of the KG+ML and ML models.�1: �� ≠ 0

Paired t-test calculation

Here's a detailed breakdown of the
statistical significance testing between the
KG+ML model and the ML model across
five performance metrics (MAE, MSE,
RMSE, R², Fit Time):

Step 1: Compute differences

d1 = 0.167-0.991= 0.824

d2 = 0.336-1.676 = -1.340

d3 = 0.580-1.294 = -0.714

d4 = 0.997- 0.989 = +0.008

d5 = 1.020- 2.225 = -1.205

Step 2: Mean and standard deviation
of differences

��= −0.824−1.340−0.714−0.008−1.205
5

=
−4.075

5
= − 0.815

�� =
1

� − 1
�=1

�

(�� − �)��� ^2�

Sd=
1.112696

4
= 0.278174 =

0.5274

Step 3: t-statistic

� = ��
��

�
= -3.454

Degrees of freedom = 4 (Using a t-
distribution table)

p-value ≈ 0.026 (two-tailed)

Since the p-value is less than 0.05, we
reject the null hypothesis at the 5%
significance level. This indicates that the
difference in performance between the
KG+ML and ML models is statistically
significant and not due to random chance.

4.3 Interpretability Comparisons of
KG+ML over ML

To compare the interpretability capabilities
between graph-based centrality measures
produced by KG analysis and traditional
ML feature importance scores as shown in
Table 2. Traditional ML calculates feature
importance by examining feature
contributions to error reduction yet this
method captures only basic statistical
relationships [29] . The technique fails to
reveal the complete structural relationships
and underlying causations which exist
between different variables. Features in the
KG maintain interconnected entity
relationships which allows for the
calculation of centrality metrics
[30]through measures of degree centrality,
in-degree, out-degree and closeness
centrality as shown in Table 3. System
structure metrics show a feature's degree
of influence through the network to
identify its position as either fault cause or



intermediary or final fault outcome. The
centrality analysis demonstrates that Wind
Speed together with Rotor RPM stands out
as key system components while their ML
importance scores are only moderate.
Traditional ML techniques fail to detect
the type of structural understanding which
this method provides. A combination of
statistical learning and graph-based
reasoning through the KG+ML approach
delivers an enhanced framework which
effectively predicts faults and establishes
clear explanations for what data points
matter to the WT system.

Table 2 ML Feature Importance (XGBoost)

Feature Feature Importance
Gen_Phase_Temp 8.47
Nac_Temp 2.23
Amb_Temp 0.800
Gen_RPM 0.598
WindSpeed 0.238

Table 3 Contextual Feature Importance
from Graph

Node Degre
e
Centr
ality

In-
Deg
ree

Out-
Deg
ree

Close
ness
Centr
ality

Gen_Phase
_Temp

0.8 3 1 0.64

Nac_Temp 0.8 2 2 0.40
Amb_Temp 0.6 0 3 0.00
WindSpeed 0.6 0 3 0.00
Gen_RPM 0.6 1 2 0.20
Gen_bearin
g_temp

1.0 5 0 1.00

This analysis shows the KG+ML approach
gives better interpretability through its
KG-based centrality measures compared to
XGBoost-based traditional ML modelling
methods. The XGBoost model identifies
Gen_Phase_Temp as its most influential
feature with a score of 8.47 and Nac_Temp
follows with a score of 2.23 while
Amb_Temp receives a score of 0.80. Each

feature rating reveals its predictive
strength which depends mostly on data
variability and split performance. Through
its KG structure the KG applies three
measures of graph centrality – degree
centrality and in/out-degree and closeness
centrality – to determine the contextual
and relational value of features based on
domain expertise. The two features
Gen_Phase_Temp and Nac_Temp
demonstrate high degree centrality ratings
(0.8) because they connect to a large
number of interactions that occur
throughout the turbine system.
Gen_Phase_Temp functions as an essential
feature in tracking system-level dynamics
since it receives influence through three
distinct upstream features as shown by its
in-degree score of 3. The ML model
attributes low importance to Amb_Temp
and WindSpeed but these variables
demonstrate three out-degree links in the
KG. The KG indicates that these factors
serve as important initial nodes influencing
multiple follow-up factors which
traditional predictive models could miss
because they mainly detect direct target
correlations. By integrating both KG+ML
techniques the approach reaches superior
prediction results while delivering more
meaningful domain-based explanations.
This methodology features relational
dependencies and causal pathways to
enable stakeholders better understanding
of system behaviour and feature
interactions specifically needed when
detecting faults in safety-critical
applications like WTs. The experimental
findings demonstrate the significant
potential of integrating KG embeddings
into ML workflows. The graph-based
approach captures complex inter-variable
dependencies, enabling the model to learn
richer representations compared to
conventional ML that treats each feature
independently. The Node2Vec algorithm,
used for graph embeddings, facilitated the
transformation of nodes (SCADA
parameters) into low-dimensional vectors
that reflect their structural and contextual



similarities in the KG. These embeddings
were then appended to the original dataset,
forming an augmented dataset that
improved model accuracy, reduced
training error, and decreased
computational time. This implies that
structural domain knowledge, when
encoded into embeddings, complements
sensor data effectively and contributes to
more robust and interpretable ML models
in WT monitoring system. Furthermore,
the t-test supports the claim that KG+ML
significantly outperforms ML.

6. Conclusion

This work introduces a novel method that
combines KG with conventional ML
techniques, in order to improve predictive
performance for WT anomaly detection.
The enhanced dataset produced by
utilising the domain knowledge recorded
in a KG was more informative and richer
in semantics than the raw sensor data by
itself. The outcomes show that the
KG+ML strategy outperforms solo ML
techniques in a number of performance
parameters, such as Fit Time, MAE, MSE,
RMSE, and R². Notably, the KG+ML
model enhanced model fitting efficiency
and drastically reduced prediction error
(MAE: 0.167 vs. 0.991; RMSE: 0.58 vs.
1.294). Furthermore, a statistical study
employing a paired t-test validated that the
performance gains were not the result of
random fluctuation and established the
significance (p = 0.026) of these
improvements. Importantly, the
interpretability of the model was enhanced
through centrality-based feature relevance
analysis, offering insights into causal and
structural relationships that standard
feature importance techniques may miss.
By incorporating contextual linkages that
traditional ML alone was unable to grasp,
the augmented dataset acted as a crucial
bridge. This dataset's extended feature
space was demonstrated by a sample,
which also revealed new insights from
domain-specific limitations, operational

dependencies, and turbine topology. In
summary, this research underscores the
potential of KG-enhanced learning
pipelines in industrial monitoring systems.
By embedding expert knowledge into the
training process, we bridge the gap
between data-driven models and real-
world system understanding, leading to
more reliable and interpretable results.
Future work may explore real-time
deployment, integration with digital twins,
and application across other critical
infrastructure systems.
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AppendixA

Model Configuration MAE MSE RMSE R²

XGBoost ML 0.991 1.68 1.294 0.989

XGBoost KG + ML 0.167 0.34 0.580 0.999

Random
Forest

ML 1.102 1.78 1.382 0.981

Random
Forest

KG + ML 0.221 0.56 0.642 0.993

SVM ML 1.234 1.98 1.412 0.975

SVM KG + ML 0.283 0.65 0.691 0.989
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