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Wind turbines are continuously exposed to harsh environmental and operational 

conditions throughout their lifetime, leading to the gradual degradation of their 

components. If left unaddressed, these degraded components can adversely affect 

turbine performance and significantly increase the likelihood of failure. As 

degradation progresses, the risk of failure escalates, making it essential to implement 

appropriate risk control measures. 

One effective risk control method involves performing inspection and monitoring 

activities that provide valuable insights into the condition of the structure, enabling 

the formulation of appropriate maintenance strategies based on accurate assessments.  

Supervisory Control and Data Acquisition (SCADA) systems offer low-resolution 

condition-monitoring data that can be used for fault detection, diagnosis, 

quantification, prognosis, and maintenance planning. One commonly used method 

involves predicting power generation using SCADA data and comparing it against 

measured power generation. Significant discrepancies between predicted and 

measured values can indicate sub-optimal operation, natural aging, or unnatural 

faults. 

Various predictive models, including parametric and non-parametric (statistical) 

approaches, have been proposed for estimating power generation. However, the 

imperfect nature of these models introduces uncertainties in the predicted power 

output. Additionally, SCADA monitoring data is prone to uncertainties arising from 

various sources. The presence of uncertainties from these two sources – imperfect 

predictive models and imperfect SCADA data – introduces uncertainty in the 

predicted power generation. This uncertainty complicates the process of determining 

whether discrepancies between measured and predicted values are significant enough 

to warrant maintenance actions. 

Depending on the nature of uncertainty – aleatory, arising from inherent randomness, 

or epistemic, stemming from incomplete knowledge or limited data – different 

analytical approaches, like Probabilistic and Possibilistic, can be applied for effective 

management. Both, Probabilistic and Possibilistic, Approaches offer distinct 

advantages and limitations. The Possibilistic Approach, rooted in fuzzy set theory, is 



particularly well-suited for addressing epistemic uncertainties, especially those 

caused by imprecision or sparse statistical information. This makes it especially 

relevant for applications such as wind turbines, where it is often challenging to 

construct accurate probability distribution functions for environmental parameters 

due to limited sensor data from hard-to-access locations. 

This research focuses on developing a methodology for identifying sub-optimal 

operation in wind turbines by comparing Grid Produced Power (Measured Produced 

Power) with Predicted Produced Power. To achieve this, the paper introduces a 

Possibilistic Approach for power prediction that accounts for uncertainties stemming 

from both model imperfections and measurement errors in SCADA data. The 

methodology combines machine learning models, used to establish predictive 

relationships between environmental inputs and power output, with a Possibilistic 

Framework that represents uncertainty through possibility distribution functions 

based on fuzzy logic and interval analysis. A real-world case study using operational 

SCADA data demonstrates the approach, with XGBoost selected as the final 

predictive model due to its strong accuracy and computational efficiency. 
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1. Introduction 
Throughout its operational lifespan, a wind 

turbine is consistently exposed to harsh 

operational and environmental conditions, 

such as wind velocity, humidity, 

temperature, precipitation, and icing. These 

factors trigger various degradation 

mechanisms, including corrosion, erosion, 

fatigue, and deformation, which can 

deteriorate critical components and 

significantly compromise the integrity of 

associated structures. If these degraded 

components are not attended to, their 

performance will diminish and the 

likelihood of their failure will increase. 

Thus, as degradation progresses, the risk of 

failure rises, necessitating the need for 

implementing appropriate risk control 

measures involving effective and efficient 

asset integrity management program. 

However, financial, social (“not-in-my-

backyard” syndrome), environmental (e.g., 

meteorological conditions), and 

geographical (e.g., topological features) 

factors often necessitate placing wind 

turbines in remote and difficult to access 

locations. This remoteness significantly 

increases the costs of asset integrity 

management, with maintenance expenses 

estimated to account for a substantial portion 

(10–25%) of the total annual operational 

cost [1]. Hence, there is a need for 

developing effective, efficient and 

economically viable asset integrity 

management program for wind turbines. 

One effective risk control approach involves 

deploying a robust asset integrity 

management strategy, which includes 

monitoring, inspection, and maintenance of 

structures at suitable intervals. Inspection 



and monitoring activities provide valuable 

insights into the structural condition, 

enabling the application of targeted 

maintenance strategies throughout the 

turbine’s lifecycle.  

Currently, maintenance management 

(inspection and maintenance) plans are 

developed using two primary approaches: 

 Traditional Approach: Relies on 

understanding the failure profile of 

components – such as failure causes, 

mechanisms, modes, and rates – to 

manually develop maintenance plans 

based on historical data and 

experience. 

 Condition-Based Approach: 

Analyses data collected through 

condition monitoring systems for 

fault detection, diagnosis, 
quantification, and prognosis. This 

information is used to create 

dynamic maintenance plans that 

respond to real-time or near-real-

time changes in equipment condition. 

The Traditional Approach relies on 

examining structural, environmental, and 

operational attributes to formulate corrective 

or preventive maintenance strategies. 

Preventive maintenance is typically time-

based; for instance, maintenance activities 

for wind turbines are often scheduled at 

intervals of 3 to 6 months, depending on the 

turbine's age and condition [1]. However, 

time-based inspection and maintenance 

plans can be costly to implement. To address 

this, methodologies rooted in formalized risk 

analysis, such as Risk-Based Inspection and 

Maintenance or Reliability-Centered 

Maintenance, have been developed. These 

methods involve understanding the failure 

profile and conducting risk analysis and 

evaluation to establish maintenance plans 

that are more efficient and effective than 

time-based or incident-driven approaches 

[2]. 

The Condition-Based Approach enhances 

maintenance management plans established 

by the Traditional Approach by utilizing 

real-time condition attributes to continually 

refine the equipment’s risk assessment 

through fault detection. This method 

involves analysing data collected from 

intermittent or continuous monitoring using 

sensors for fault detection, diagnosis, 

prognosis, and advisory generation. By 

assessing the equipment’s actual health 

status, the Condition-Based Approach 

enables the development of maintenance 

plans that are dynamically tailored to the 

actual condition of the equipment. 

In a wind turbine Supervisory Control and 

Data Acquisition (SCADA) system, 

numerous sensors continuously monitor 

various meteorological and operational 

parameters, with data transmitted, processed, 

and stored in SCADA supervisory 

computers. The parameters monitored 

include: 

1. Position: Blade pitch angle, nacelle 

direction. 

2. Temperature: Nose cone, gearbox 

bearing, gearbox oil, hydraulic 

system oil, generator bearing, 

generator stator windings, generator 

split ring chamber, transformer, 

busbar section, inverter, controllers, 

VCP control boards. 

3. RPM: Rotor speed, generator speed. 

4. Hydraulic Characteristics: Pressure, 

reservoir level, flow rate. 

5. Environmental Characteristics: 

Wind speed, wind direction, ambient 

temperature, humidity. 



6. Electrical Characteristics: Active 

power, reactive power, voltage, 

current, phase displacement, 

frequency. 

Additionally, data streams from nearby 

weather stations are often recorded to 

provide further insights into environmental 

conditions affecting turbine performance. 

Despite its numerous advantages, the 

adoption of the Condition-Based Approach 

remains limited and requires further research 

and development. This is largely due to 

several challenges associated with [3]: 

1. Quality and Quantity of Collected 

Data: Ensuring sufficient, accurate, 

and comprehensive data is critical for 

effective analysis, and limitations in 

data availability and reliability can 

hinder performance. 

2. Handling Imperfect Data: Faulty 

sensors may produce spurious, 

inconsistent, inaccurate, uncertain, or 

irrational data, complicating the 

analysis and potentially leading to 

erroneous conclusions. 

3. Data Interpretation: Accurately 

diagnosing faults, quantifying 

damage, and forecasting future 

conditions requires sophisticated 

analytical techniques, which can be 

challenging to implement effectively. 

4. Updating Maintenance Plans: 

Continuously adjusting maintenance 

plans based on new insights from 

real-time monitoring is complex and 

resource-intensive. 

5. Managing Unreliable Analysis: 

Poor-quality data or flawed 

analytical models can result in false 

alarms (false positives) or undetected 

faults (false negatives), undermining 

the credibility of the system. 

Addressing these challenges is essential for 

enhancing the reliability, accuracy, and 

efficiency of Condition-Based Maintenance 

systems. 

2 Motivation and Aim of the 

Research 

2.1 Motivation for the Research 
A drawback of the Condition-Based 

Approach is its dependence on monitoring 

data to assess the condition of wind turbine 

components. Monitoring through sensors 

generates massive amounts of data, which 

may be imperfect, inconsistent, or 

challenging to interpret accurately. These 

imperfections can undermine the reliability 

of subsequent analysis and interpretation, 

causing decision-makers to doubt the 

validity of the results. Consequently, there is 

reluctance to incorporate these findings into 

future maintenance planning. As a result, 

valuable data is often underutilized, leading 

to maintenance and inspection decisions 

being made without fully considering all 

relevant information. This underscores the 

need to develop systems that can effectively 

process and utilize monitoring data to 

enhance decision-making, while also 

transparently acknowledging the limitations 

and uncertainties inherent in the analysis. 

 

 



 

FIGURE 1. Flowchart showing the proposed fault detection methodology. 

 

A commonly used Condition-Based 

Approach for evaluating wind turbine 

performance is by using SCADA data that 

involves analysing power generation as a 

function of various variables, particularly 

wind speed. A substantial discrepancy 

between predicted power generation and the 

actual measured power generation can 

indicate sub-optimal performance, which 

warrants further investigation. 

Fig. 1 presents a flowchart illustrating a 

methodology for detecting sub-optimal 

power production. In this approach, the 

Predicted Produced Power can be estimated 

using key environmental and operational 

variables. If the Grid Produced Power 

(Measured Produced Power) is significantly 

lower than the predicted value, it suggests 

that the wind turbine may be operating 

below its optimal efficiency. 

While SCADA data provides a useful basis 

for this analysis, the methodology has 

notable weaknesses arising from challenges 

associated with accurately predicting power 

generation under varying environmental and 

operational conditions. These weaknesses 

include: 

1. Lack of Reliable SCADA Data: The 

accuracy of the analysis depends 

heavily on the quality and 

consistency of the SCADA data 

collected. Poor or inconsistent data 

can significantly impact the 

reliability of the predictions. 

2. Inadequate Models for Predicted 

Power Calculation: Developing 

reliable models that accurately 

calculate Predicted Produced Power 

while accounting for variations and 

imperfections in the collected data 

remains challenging. Imperfect 

models can give erroneous and 

misleading values of Predicted 

Produced Power. 



3. Defining Significant Difference: 

Determining what constitutes a 

“significant difference” between 

predicted and measured power is 

complicated by the inherent 

uncertainties in the Predicted 

Produced Power. Without clear 

criteria for significance, it becomes 

difficult to reliably identify sub-

optimal performance. 

Addressing these weaknesses requires 

enhancing data quality, developing more 

advanced predictive models, and 

establishing robust criteria for evaluating 

discrepancies. Additionally, it is crucial to 

quantify uncertainties and integrate them 

into the decision-making process. Improving 

these aspects will result in more accurate 

performance assessments and more reliable, 

well-informed maintenance decisions. 

2.2 Aim of the Research 
Aim of the ongoing research is to develop a 

methodology for detecting sub-optimal 

operation of wind turbines by comparing 

Grid Produced Power (Measured Produced 

Power) with Predicted Produced Power. A 

key aspect of this research involves 

developing a systematic approach to account 

for uncertainties in the Predicted Produced 

Power, which arise from imperfections in 

SCADA data and limitations of predictive 

models. 

2.3 Scientific Novelty and 

Importance of the Research 
This paper presents a methodology for 

predicting wind turbine power output using 

SCADA data, incorporating a Possibilistic 

Approach to account for uncertainties 

arising from both model imperfections and 

measurement errors. The method integrates 

machine learning models, specifically 

XGBoost, to establish relationships between 

environmental inputs and power output, 

alongside a Fuzzy logic-based possibilistic 

framework that quantifies uncertainty 

through possibility distribution functions 

and interval analysis.  

The Possibilistic Approach was chosen due 

to its key advantages over the Probabilistic 

Approach. First, it is well-suited for 

addressing epistemic uncertainties, 

particularly those arising from imprecise 

data or limited statistical information. This is 

especially relevant in contexts such as wind 

turbines, where constructing accurate 

probability distribution functions for 

environmental parameters is difficult due to 

sparse sensor data from remote or hard-to-

reach locations. Second, the possibility 

measure tends to be more conservative than 

the probability measure, making it a 

valuable tool for supporting decision-

making frameworks that emphasize zero-

tolerance for errors. 

The approach is demonstrated using publicly 

available data from an operational wind 

turbine, effectively capturing the influence 

of real-world data imperfections on 

prediction accuracy. 

3 Application of SCADA Data 

for Fault Detection 

3.1 Applications of SCADA Data 

for Predictive Maintenance 
While SCADA systems are primarily 

designed for control and automation, they 

are closely connected to condition 

monitoring systems that focus on diagnostic 

and predictive analysis. Wind turbine 

SCADA systems collect extensive 

operational data, including parameters such 

as temperature, vibration, pressure, flow 

rate, and electrical metrics (e.g., current and 

voltage). This data can be effectively 

utilized for fault detection, encompassing 

various types of faults such as: 



 Component degradation, 

 Sensor failures, 

 Operation beyond safe limits, and 

 Grid-related issues. 

Some faults can be directly identified 

through SCADA data. For example, sensor 

failures are often evident through irrational 

or out-of-range readings. However, other 

faults, such as gradual gear wear or 

structural degradation, may only be detected 

indirectly through changes in performance 

metrics or subtle deviations from expected 

behaviour [4]. 

The duration between fault initiation and 

potential failure can vary significantly: 

 Short-duration faults (e.g., generator 

earth faults) may develop within 

seconds. 

 Long-duration faults (e.g., gradual 

gear wear) can take weeks or months 

to manifest fully. 

Due to the typically low-resolution nature of 

SCADA data, it is most effective for 

identifying faults with longer time spans. 

Recognizing this potential, many modern 

SCADA systems now incorporate real-time 

data analysis capabilities, using statistical 

and artificial intelligence (AI) techniques to 

enhance fault detection and diagnosis. While 

certain faults, such as sensor failures, can be 

directly detected, others may only be 

identified through indirect indicators or by 

applying advanced analytical techniques 

[4,5,6,7]. 

3.2 Analysing Wind Turbine 

Performance Using SCADA Data 
The Power Curve of a wind turbine 

represents the unique relationship between 

the power generated and the environmental 

and operational conditions under which the 

turbine operates. It serves as a critical tool 

for evaluating and comparing turbine 

performance under various scenarios. 

The power generated by a wind turbine is 

influenced by: 

 Technical Attributes: Such as rotor 

radius, blade geometry, and drive 

train efficiency. 

 Environmental Attributes: Including 

wind speed, air density, temperature, 

and turbulence intensity. 

 Operational Attributes: Such as pitch 

angle, nacelle orientation, and the 

angle between the wind direction and 

nacelle. 

These factors collectively determine the 

efficiency of power generation and are 

essential for developing accurate predictive 

models [4]. 

In a simplified power balance model, wind 

power is first converted into rotor power, 

which is then transformed into electrical 

power. The efficiency of converting wind 

power to rotor power depends on several 

factors, including wind speed, air density, 

blade geometry, and rotor size. Ideally, all 

the rotor power should be converted to 

electrical power through the drive train 

system, however, in practice, some energy is 

inevitably lost due to factors such as friction, 

vibration, and heat dissipation. 

The overall energy balance, accounting for 

these losses, can be represented in a 

simplified way as [4]: 

𝑃𝑅𝑜𝑡𝑜𝑟 = 𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 + 𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙 (1a) 

𝑃𝑅𝑜𝑡𝑜𝑟 − 𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙 (1b) 

Where: 

 𝑃𝑅𝑜𝑡𝑜𝑟   = Rotor power 

 𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙  = Electrical power 



 𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛  = Vibration power 

 𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙  = Thermal power 

Therefore, a significant discrepancy between 

the predicted rotor power (𝑃𝑅𝑜𝑡𝑜𝑟, calculated 

using models) and the measured electrical 

power (𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) indicates suboptimal 

performance. This discrepancy is often 

attributed to inefficient operation or 

increased energy losses resulting from 

factors such as vibration, friction, and heat 

generation or dissipation. Therefore, 

detecting significant deviations between 

Predicted Produced Power and Grid 

Produced Power can be effectively utilized 

for the following purposes [8]: 

 Suboptimal Operation Detection: 

o Suboptimal performance, often 

caused by inefficient control 

mechanisms can be identified 

using the power curve. 

o Comparing power generation 

across a localized group of wind 

turbines can help identify 

individual units that are 

performing below expected 

standards, thereby facilitating 

targeted maintenance and 

optimization efforts. 

 Fault Detection: 

o Although pinpointing the exact 

cause may be challenging, a 

substantial discrepancy between 

predicted and measured power 

generation can serve as an 

indicator of underlying faults, 

prompting further investigation. 

Analysing deviations between predicted and 

actual power outputs provides valuable 

insights into the health and efficiency of 

wind turbine components, enabling early 

detection of faults and opportunities for 

performance improvement. 

3.3 Uncertainties in Data 
According to Bell [9], measurement 

uncertainty can be defined as the doubt that 

exists about the result of any measurement. 

This doubt arises because despite all 

precautions, measurements are inevitably 

affected by various imperfections and 

uncertainties. Uncertainties in SCADA 

measurements can arise from multiple 

sources, resulting in different types and 

classifications. These uncertainties can be: 

 Tangible (Quantifiable): Such 

uncertainties can be measured and 

expressed numerically. 

 Intangible (Non-Quantifiable): 

These are difficult to measure 

precisely and may only be 

qualitatively assessed. 

 Random: Arising from unpredictable 

variations in measurement 

conditions. 

 Systematic: Resulting from 

consistent biases or errors in 

measurement processes. 

To ensure completeness and accuracy, 

measurements should be reported along with 

their associated uncertainties. A tangible 

uncertainty can be quantified using two key 

metrics: the interval, which represents the 

width of the margin of doubt or dispersion 

around the mean, and the confidence level, 

which indicates the probability that the 

“true” value falls within that margin. 

However, since measurement uncertainties 

are influenced by various factors, it is often 

challenging to account for all sources of 

uncertainty comprehensively [9]. 



Due to the complexities associated with 

categorizing uncertainties, various 

classification schemes have been proposed. 

However, there is no universally accepted 

framework, leading to inconsistencies and 

confusion. However, they are often 

categorized into two broad types [4,10]: 

 Aleatoric Uncertainty: Aleatoric 

uncertainty arises from inherent 

randomness or natural variability 

within the measured parameter. It is 

generally quantifiable through 

repeated measurements and can be 

expressed using statistical measures 

such as mean and standard deviation, 

along with intervals and confidence 

levels. For example, variations in 

wind speed due to natural turbulence 

are a common source of aleatoric 

uncertainty. 

 Epistemic Uncertainty: Epistemic 

uncertainty results from a lack of 

knowledge, incomplete data, or an 

imperfect understanding of the 

measurement process. Unlike 

aleatoric uncertainty, it affects all 

measured values consistently, 

making repeated measurements 

ineffective at reducing this type of 

uncertainty. It is often challenging to 

quantify precisely but can be 

evaluated using expert opinions, 

manufacturer specifications, 

historical data, or subjective 

judgment. Epistemic uncertainty can 

be further divided into the following 

subcategories: 

1. Bias: A consistent, 

systematic deviation from the 

true value, often introduced 

by faulty calibration or 

measurement techniques. 

2. Inaccuracy: The average 

difference between the 

measured value and the true 

value, indicating a general 

error in measurement. 

3. Imprecision: The spread or 

range within which measured 

values lie, indicating a lack of 

exactness. 

4. Ignorance: Arising from 

insufficient data or limited 

knowledge regarding 

measurement precision. 

5. Incompleteness: Occurring 

when relevant data is missing 

or unavailable. 

6. Credibility: Related to the 

reliability or trustworthiness 

of the measurement process, 

including factors such as 

calibration, installation, and 

operational competence. 

Understanding and managing these 

uncertainties is essential for accurate fault 

detection, diagnosis, and predictive 

maintenance using SCADA systems. 

Recognizing the different types of 

uncertainties can help in formulating 

strategies for handling them during analysis. 

Evaluating their potential impacts can 

significantly enhance the reliability of 

condition monitoring and diagnostic 

processes.  

Since epistemic uncertainty arises from 

knowledge gaps or incomplete data, it is 

typically evaluated using: 

a. Manufacturer’s Specifications: 

Guidelines and tolerances provided 

by equipment manufacturers. 



b. Past Experience: Historical data and 

previously observed patterns. 

c. Expert Opinion: Insights from 

skilled practitioners familiar with the 

measurement process. 

d. Subjective Judgment: Personal 

assessment based on experience and 

intuition when objective data is 

insufficient. 

3.4 Data Quality in SCADA System 
Uncertainties are particularly problematic 

for wind turbines due to the substantial 

variations in environmental conditions. Most 

errors arise from two primary sources: 

1. Imperfections Caused by Sensors: 

These imperfections occur for 

various reasons, including 

fluctuations in parametric values, 

instrument limitations (such as bias, 

noise, or drift), incorrect calibration, 

measurement location errors, and 

overall instrument degradation. They 

can be further categorized as: 

 Inherent Imperfections: In 

response to the changing 

environmental conditions sensors 

report values based on their 

response time, sampling rate, 

resolution, sensitivity, and 

statistical analysis. Each of these 

characteristics introduces unique 

uncertainties. 

 Acquired Imperfections: During 

operation, sensors are exposed to 

various environmental stressors 

such as impacts, wind force, 

temperature fluctuations, 

humidity, condensation, frosting 

or icing, vibrations, and the 

accumulation of oil, dirt, or salt. 

These factors contribute to 

gradual sensor degradation. 

2. Imperfections Caused by SCADA 

System: SCADA systems typically 

record data at 1 to 10-minute 

intervals, meaning the recorded value 

is not an instantaneous measurement 

but rather a statistical estimate 

derived from predefined algorithms. 

This limitation can introduce errors, 

especially when rapid changes occur 

within those intervals. 

To improve the reliability and accuracy of 

the SCADA data used for analysis, several 

corrective measures have been 

recommended [4,6]: 

 Use of High-Quality Sensors: High-

quality sensors should be robustly 

designed to withstand harsh 

environmental conditions and 

provide superior performance in 

terms of accuracy, precision, 

reliability, repeatability, and 

reproducibility. Sensors with 

improved structural integrity are less 

likely to degrade under adverse 

conditions. 

 Use of Multiple Data Streams: 

Employing multiple and varied data 

streams enhances fault detection by 

cross-referencing results, thereby 

increasing detection probability. For 

example, using both vibration 

monitoring and debris analysis 

improves the reliability of detecting 

bearing faults. While redundancy 

offers benefits, the use of various 

sensors at different locations also 

improves detection probability. 

However, this approach may result in 

data overload, where the volume of 

collected data becomes too large to 

process efficiently. Additionally, the 



“law of diminishing returns” 

indicates that deploying multiple 

sensors for the same task may not 

yield significant new information. 

 Use of Advanced Data Analytics 

Techniques: Various methodologies 

have been developed to manage 

different types of uncertainties. 

Aleatoric uncertainty, arising from 

natural variability, is often addressed 

through Probabilistic Approaches 

such as statistical analysis and 

probability theory. Conversely, 

Epistemic uncertainty, resulting from 

knowledge gaps or incomplete data, 

is more effectively managed through 

Possibilistic Approaches, including 

fuzzy logic, expert systems, and 

Bayesian networks. 

Implementing these corrective measures can 

significantly enhance data quality and 

reliability, thereby improving the accuracy 

of fault detection, diagnostics, and 

prognostics in wind turbine condition 

monitoring systems. 

4 Possibilistic Approach for 

Handling Epistemic Uncertainties 

4.1 Representation by Possibility 

Distribution Function 
In this work, aleatoric uncertainties have not 

been dealt with because values of a 

parameter varies with time, hence, it is not 

possible to measure the same parameter 

multiple times to enable the statistical 

evaluation of the uncertainties.  

One effective method for addressing 

epistemic uncertainties is through the use of 

the Possibilistic Approach. This approach 

represents data as membership functions 

rather than precise numerical values. A 

Fuzzy variable 𝑋 is described by a Fuzzy 

Membership Function. This membership 

function can also be interpreted as a 

Possibility Distribution Function. Fig. 2a 

illustrates how a Possibility Distribution 

Function, Π(𝑥), represents the variable 𝑋 

through the degree of compatibility or truth 

associated with different values. 

The Possibility Distribution Function, Π(𝑥), 
maps the values of the input variable 𝑋 to a 

range between 0 and 1, where [11,12]: 

 𝛼(𝑥) = 0 : The value is completely 

incompatible or impossible. 

 𝛼(𝑥) = 1 : The value is fully 

compatible or completely true. 

 0 < 𝛼(𝑥) < 1 : The value is partially 

compatible, indicating varying 

degrees of possibility. 

Unlike Probability Density Functions 

(PDFs), Possibility Distribution Functions 

do not assign preference to any specific 

value within the fuzzy interval. This feature 

is advantageous in situations when dealing 

with incomplete, sparse, or vague data, 

where conventional statistical methods may 

struggle to provide reliable results. 

 

 



 

FIGURE 2. Illustration of a fuzzy subset [13, 14]. 

 

A feature of the Possibilistic Approach is the 

use of 𝛼𝑐𝑢𝑡𝑠 to represent Possibility 

Distribution Function. An 𝛼𝑐𝑢𝑡 of a 

Possibility Distribution Function 𝑋, denoted 

by 𝑋𝛼, is a crisp set containing all elements 

of 𝑋 whose membership value is greater 

than or equal to a specified threshold 𝛼. 

Mathematically, this can be expressed as 

[11,12]: 

𝑋𝛼 = [𝑥, 𝑥]𝛼 = {𝑥 ∈ 𝑋|𝑥 ≤ 𝑥 ≤ 𝑥} 

𝛼 ∈ [0,1] 

(2) 

Where: 

 𝑥 = Lowest real number value of the 

interval 

 𝑥 = Highest real number value of the 

interval 

The value of 𝛼 can be in the range [0,1]. As 

𝛼 increases, the interval [𝑥, 𝑥] becomes 

narrower, representing values with higher 

likelihood. Conversely, as the interval 

becomes narrower, the certainty that the true 

value lies within that interval decreases. 

The 𝛼𝑐𝑢𝑡 representation allows for the 

extension of various properties of crisp sets 

to Fuzzy sets. By incrementally changing the 

value of 𝛼, a nested family of sets is 

generated Fig. 2b. These sets form a 

hierarchy where higher 𝛼-levels correspond 

to smaller intervals with higher degrees of 

possibility. 

This concept is particularly useful because it 

allows traditional interval analysis 

techniques to be applied to Fuzzy sets. 

When performing arithmetic operations on 

Fuzzy variables, the interval bounds 

generated by the 𝛼𝑐𝑢𝑡𝑠 can be manipulated 

using established rules for interval 

arithmetic. 

Properties of crisp sets that can be extended 

to Fuzzy sets through the use of 𝛼𝑐𝑢𝑡𝑠 are 

referred to as cutworthy properties. Such 

properties include operations like union, 

intersection, and complement, which can be 

adapted to work with fuzzy sets through the 

𝛼𝑐𝑢𝑡 approach [11].  



The use of 𝛼𝑐𝑢𝑡𝑠 offers a practical means 

of applying interval analysis techniques to 

Fuzzy sets, enhancing the ability to model 

and process uncertain or imperfect SCADA 

data. This methodology is particularly useful 

for complex systems like wind turbines, 

where data imperfections are common. The 

advantages include: 

 Handling Imperfections: By 

representing data as Possibility 

Distribution Functions rather than 

precise points, the approach can 

effectively handle vague, 

inconsistent, or incomplete 

information. 

 Compatibility with Interval Analysis: 

The use of 𝛼𝑐𝑢𝑡𝑠 allows well-

established interval analysis 

techniques to be applied to fuzzy 

data. 

 Scalability: By varying the 𝛼-level, it 

is possible to explore different levels 

of certainty and possibility, 

providing a flexible framework for 

uncertainty analysis. 

Despite its numerous advantages, the 

Possibilistic Approach has several 

limitations that can affect its practical 

application, especially in scenarios requiring 

precise and economically efficient decision-

making. Some of the key weaknesses 

include [11,12,15]: 

 Imprecise Results: The reliance on 

Possibility Distribution Functions 

instead of precise numerical values 

can result in vague or overly 

conservative recommendations. 

When data is not well-defined or 

incomplete, the model may produce 

results that are too broad to be 

actionable or economically feasible. 

This lack of precision can limit the 

approach’s effectiveness in providing 

clear guidance for maintenance or 

operational adjustments. 

 Loss of Information During 

Conversion: One significant 

drawback of the Possibilistic 

Approach is the potential loss of 

information when converting 

inspection or monitoring data to 

Possibility Distribution Functions. 

During this transformation, certain 

nuances or details within the original 

data set may be overlooked or 

oversimplified, leading to less 

accurate or meaningful results. This 

loss of detail can negatively impact 

the quality of the assessment and 

reduce the overall reliability of the 

analysis. 

 Violation of Consistency in 

Arithmetic Operations: The 

propagation of Possibility 

Distribution Functions through 

arithmetic operations can lead to 

inconsistencies. Unlike probability 

theory, which adheres to strict 

mathematical rules during data 

manipulation, Possibility Theory 

may produce results that are 

inconsistent or counterintuitive when 

complex calculations are performed. 

This violation of consistency can 

compromise the credibility and 

robustness of the analysis, 

particularly when handling large 

datasets or intricate systems. 

 Lack of Standardization: Unlike 

probabilistic methods that are 

governed by well-established 

mathematical frameworks and 

guidelines, the Possibilistic 

Approach lacks universally accepted 

standards for implementation. This 

lack of formalization can result in 

subjective and inconsistent 

application, especially when 



determining Possibility Distribution 

Functions or evaluating possibility 

distribution functions. The absence 

of standardized methodologies 

makes it difficult to compare results 

across different studies or systems, 

reducing the approach’s 

generalizability. 

4.2 Transforming Probability 

Distributions to Approximate 

Possibility Distributions 
According to the Consistency Principle, a 

probability distribution function 𝑃(𝑥) can be 

transformed to a number of possibility 

distributions Π(𝑥), provided Π(𝑥) ≥ 𝑃(𝑥). 
Out of all the possibility distributions the 

one which is maximally specific, i.e. the 

possibility distribution that most closely 

preserves the amount of information of the 

probability distribution, is the Optimal 

Possibility Distribution Function. 

Developing and utilizing the optimal 

possibility distribution can be a complex and 

computationally intensive task. To address 

this challenge, simplified forms of 

possibility distribution functions have been 

introduced. Common examples include the 

triangular, trapezoidal, truncated pseudo-

triangular and the Gaussian distribution. 

These simplified models provide a practical 

means of approximating the original 

distribution while maintaining essential 

characteristics [15,17,18].  

Fig. 3 illustrates the general shapes of these 

simplified distribution functions, which are 

typically derived by transforming existing 

probability distributions into their 

corresponding possibility distributions. 

A possibility distribution function obtained 

through such a transformation can be 

described using four key parameters: 

 

 

FIGURE 3. Graphical illustration of the 

normal probability distribution, the 

transformed optimal possibility distribution 

and the truncated pseudo-triangular 

possibility distribution [15,16,17].  

𝐹𝑜𝑟 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 = 0.99: 
𝜀 = 0.12, 𝑥𝑐 = 𝑥𝑚, 𝑥𝑛 = 𝑥𝑐 ± 2.58𝜎 

 𝑥𝑐: the core value representing the 

peak of the possibility distribution, 

 𝜀: the minimal possibility level 

considered significant, 

 𝑥𝜀: the nominal limit beyond which 

the possibility rapidly diminishes 

(equal to ε), 

 𝑥𝑛: the threshold beyond which the 

possibility value becomes negligible. 

For unimodal distributions, the value of 𝑥𝑐 
aligns with the mode (the most probable 

value, which coincides with the mean in a 

symmetric normal distribution) of the 

original Probability Density Function (PDF), 

denoted as 𝑥𝑚. Therefore: 

𝑥𝑐 = 𝑥𝑚 (3) 

The determination of 𝑥𝑛 depends on whether 

the underlying distribution is bounded or 

unbounded: 



 For bounded distributions  – such as 

the triangular or uniform distribution 

– 𝑥𝑛 represents the finite support of 

the distribution, i.e., the maximum 

value within which the distribution is 

defined. 

 For unbounded distributions, such as 

the normal or lognormal 

distributions, it is not feasible to 

consider the entire domain due to 

their infinite tails. In these cases, 𝑥𝑛 

must be carefully selected to 

represent a sufficiently wide yet 

practical interval of the distribution. 

Since unbounded distributions theoretically 

extend to infinity, it is neither practical nor 

necessary to represent the entire domain in 

the corresponding possibility distribution. A 

widely used method for approximating 

possibility distribution parameters from an 

unbounded probability distribution, such as 

the normal distribution, involves 

transforming it into a Triangular Possibility 

Distribution Function, Π(𝑥), where [15]: 

𝑎 = 𝑥𝑐 − 𝑘𝜎 (4a) 

𝑏 = 𝑥𝑐 + 𝑘𝜎 (4b) 

𝜎 = Std. dev. of the original prob. dist. 

By defining a confidence interval to capture 

a substantial portion of the total probability 

mass, a significant interval – determined by 

a confidence level – is selected to effectively 

approximate the distribution's behaviour. 

For instance, selecting a 99% confidence 

level provides an interval that encompasses 
almost the entire area under the normal 

curve, thereby retaining the most relevant 

portion of the distribution. Under this 

condition, 𝑘 = 2.58. Using these bounds, a 

Triangular Possibility Distribution Function, 

Π(𝑥) can be constructed as:  

Π(𝑥) =

{
 
 

 
 
0  𝑖𝑓  𝑥 ≤ 𝑎 𝑜𝑟 𝑥 ≥ 𝑏
𝑥 − 𝑎

𝑥𝑐 − 𝑎
 𝑖𝑓 𝑎 < 𝑥 < 𝑥𝑐

𝑏 − 𝑥

𝑏 − 𝑥𝑐
𝑖𝑓 𝑥𝑐 < 𝑥 < 𝑏

1 𝑖𝑓 𝑥 = 𝑥𝑐                   

 (5) 

This triangular function is a simplified 

representation that captures the core (mode), 

support (bounded interval), and spread 

(confidence-based width) of the original 

distribution. The result is a computationally 

efficient and interpretable possibility 

distribution. 

However, this simplification comes with 

certain trade-offs. The transformation from a 

normal Probability Distribution Function 

(PDF) to a Triangular Possibility 

Distribution Function inherently leads to a 

loss of information. This occurs because the 

triangular function essentially approximates 

the original distribution as having Uniform 

Possibility Density within its core, 

disregarding the variations in probability 

that are present in the normal distribution's 

bell shape. Consequently, although this 

transformation is practical, it lacks the 

fidelity of the original distribution and may 

misrepresent the actual uncertainty in more 

sensitive analyses. 

5 Methods 

5.1 SCADA Data Description 
To evaluate the feasibility of the proposed 

methodology, SCADA data provided by the 

energy company EDP (2016) has been 

utilized. This dataset comprises data 

collected from four horizontal-axis wind 

turbines located off the western coast of 

Africa. The data spans a two-year period 

(2016 and 2017) with measurements 

recorded at 10-minute averaging intervals. 

The datasets include values for 76 different 

parameters, covering various aspects of 



turbine operation and performance. 

Additionally, an associated dataset 

containing meteorological conditions 

recorded at the same time intervals is 

provided, along with failure logs detailing 

timestamps, damaged components, and 

related remarks [3]. 

For this analysis, Turbine Number 7 (T07) 

has been selected. The variables used in the 

calculation of the power curve are listed in 

Table 1.  

To enable model development and testing, 

the dataset was divided into two independent 

subsets: the 2016 data was used for training, 

while the 2017 data served as the test set to 

evaluate the model’s predictive 

performance.  

The total number of recorded instances for 

this turbine is 52,445 for 2016 and 52,294 

for 2017. During the same time total number 

of recorded instances for metrological data 

is 52698 and 34832 for 2016 and 2017, 

respectively. Since 2016 data was used for 

training, the data row that does not contain 

all the values were dropped. It is expected 

that the small number of dropped rows will 

not make any significant effect on training. 

In 2016 there were three recorded instances 

of failures. Since these failures were for 

short durations and not relevant for the 

analysis: high bearing temperature and high 

transformer temperature, these rows were 

retained. 

Fig. 4 shows the relationships between 

ambient wind speed, generator RPM, and 

grid-produced power have been examined.  

Fig. 4a shows the effect of Ambient Wind 

Speed on Generator RPM. The plot reveals a 

distinct relationship between Ambient Wind 

Speed and Generator RPM, which can be 

divided into three regions: 

1. Low Ambient Wind Speed (Ambient 

Wind Speed < 4 m/s): When 

Ambient Wind Speed is below the 

Cut-In Wind Speed (4 m/s), the 

frequency of Generator RPM 

readings below 300 rpm is high. 

 

 

TABLE 1. Selected variables used for developing the model. 

Variable Short Variable 

Name 

Original SCADA 

Name 

Description Units 

Timestamp   10-minute resolution  

Ambient Temperature Amb_Temp Amb_Temp_Avg Average ambient 

temperature 

ºC 

Ambient Humidity Amb_Humidity Avg_Humidity Average ambient relative 

humidity 

% 

Ambient Pressure Amb_Pressure Avg_Pressure Average ambient pressure millibar 

Ambient Wind Speed Amb_Wind_Speed Amb_WindSpeed_Avg Average windspeed 

within average timebase 

m/s 

Generator RPM Gen_RPM Gen_RPM_Avg Average generator shaft / 

bearing rotational speed 

rpm 

Grid Produced Power 

(Measured Produced 

Power) 

Grid_Prod_Power Grd_Prod_Pwr_Avg Power average kW 

 



 

FIGURE 4. Relationships between Ambient Wind Speed, Generator RPM and Grid Produced 

Power [14]. 

 

2. Transition Region (4 m/s < Ambient 

Wind Speed < 12 m/s): When wind 

speed ranges between 4 m/s and 12 

m/s (Rated Wind Speed) the wind 

turbine adjusts its blade pitch angle 

to reach High RPM Region. Hence, 

there are fewer readings in this 

region. 

3. High Ambient Wind Speed Region 

(12 m/s < Ambient Wind Speed RPM 

< 25 m/s): When wind speed is 

above the Rated Wind Speed (12 

m/s), the Generator RPM increases 

from approximately 1250 rpm to 

1650 rpm. However, once the wind 

speed exceeds 12 m/s, the wind 

turbine stabilizes the Generator RPM 

at around 1650 rpm to ensure 

optimal performance and prevent 

mechanical stress. 



Fig. 4b shows the effect of Ambient Wind 

Speed on Grid Produced Power. The 

relationship between Ambient Wind Speed 

and Grid Produced Power demonstrates the 

following patterns: 

1. Low Ambient Wind Speed 

(Ambient Wind Speed < 4 m/s): 

When Ambient Wind Speed is 

below the Cut-In Wind Speed (4 

m/s), Grid Produced Power is 

generally negative or less than 

275 kW. 

2. Transition Region (4 m/s < 

Ambient Wind Speed < 12 m/s): 

The trend highlights a strong 

positive correlation between 

wind speed and power generation 

until the turbine reaches its rated 

capacity. As Ambient Wind 

Speed increases, Grid Produced 

Power rises, reaching 

approximately Rated Power 

(2000 kW) at the Rated Wind 

Speed (12 m/s).  

3. High Ambient Wind Speed 

Region (12 m/s < Ambient Wind 

Speed RPM < 25 m/s): Between 

the Rated Wind Speed  and Cut-

off Wind Speed the wind turbine 

maintains Rated Power 

generation. 

Fig. 4c shows the effect of Generator RPM 

on Grid Produced Power. This plot shows a 

clear relationship between Generator RPM 

and Grid Produced Power: 

1. Low RPM Region (Generator 

RPM < 1250 rpm): Grid 

Produced Power remains 

negligibly low. 

2. Transition Region (1250 rpm < 

Generator RPM < 1650 rpm): 

Grid Produced Power increases 

linearly, reaching approximately 

750 kW as the Generator RPM 

rises within this range. This 

indicates a direct correlation 

between RPM and power output 

within this interval. 

3. High RPM Region (Generator 

RPM ≈ 1650 rpm): The 

Generator RPM reaches its upper 

operational limit, producing the 

maximum achievable power. 

Beyond this point, the turbine 

maintains a stable RPM to 

prevent mechanical stress and 

ensure efficient power 

generation. 

5.2 Data Pre-processing 
Data pre-processing is a critical step in the 

development of a Machine Learning model, 

aimed at improving data quality and 

ensuring algorithms perform effectively. It 

involves correcting or removing vague, 

inconsistent, irrational, duplicate, or missing 

values that may otherwise compromise 

model accuracy and reliability. 

In the case of wind turbine SCADA data, the 

dataset often includes data points that 

deviate significantly from expected patterns, 

particularly the power curve, and are 

therefore classified as “outliers.” These 

outliers can arise due to various explainable 

factors. For this work, outliers have been 

identified based on the following rules 

[3,14]: 

Outlier Rule 1. Generator RPM = 0 

when Ambient Wind Speed => 4 m/s. 

Although the wind speed is above 

the Cut-In Wind Speed (4 m/s), the 

rotor remains stationary because the 

wind turbine is in a shutdown state. 

This may occur due to various 

reasons, including grid conditions or 

maintenance activities. 



Outlier Rule 2. Grid Produced Power 

<= 0 when Ambient Wind Speed < 4 

and Generator RPM > 0. When the 

rotor RPM is low, the power 

generated is insufficient to meet the 

power consumption required for 

operation. The deficit is compensated 

by drawing power from the grid, 

resulting in negative or zero power 

output. 

Outlier Rule 3. Grid Produced Power 

<= 0 when Ambient Wind Speed => 

4 & Generator RPM > 0. Even 

though the wind speed exceeds the 

Cut-In Wind Speed (4 m/s) and the 

rotor is rotating, power generation 

does not occur because the turbine is 

“free-wheeling” in a shutdown state. 

This condition could be due to grid 

issues, maintenance operations, or 

other shutdown scenarios. 

Apart from the predefined outlier rules, 

additional anomalous data points need to be 

removed. These points are often recorded 

during transitions between normal operation 

and shutdown states or vice versa. This 

shutdown often takes place when the grid is 

saturated. They appear scattered in the 

dataset and can be effectively identified 

using DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise), a 

density-based clustering algorithm known 

for its robustness in handling noise and 

discovering clusters of arbitrary shapes [19]. 

Two specific clustering rules have been 

applied [3,14]: 

DBSCAN Clustering Rule 1. Ambie

nt Wind Speed, Grid Produced 

Power, eps value = 2, min_samples 

value = 10. To identify outliers 

based on the relationship between 

wind speed and grid-produced power 

DBSCAN Clustering Rule 2. Ambie

nt Wind Speed, Generator RPM, eps 

value = 3.45, min_samples value = 

10. To detect anomalies by 

examining the relationship between 

wind speed and generator RPM 

The application of these clustering rules 

helps to effectively isolate and eliminate 

noise points, thereby enhancing the integrity 

of the dataset. 

The impact of the data pre-processing and 

outlier removal is illustrated in Fig. 5, which 

compares the dataset before and after 

cleaning. Eliminating outliers helps isolate 

data points that follow the power curve, 

ensuring that the Machine Learning model 

receives high-quality inputs. This refinement 

enhances the model’s ability to accurately 

capture and represent the power curve, 

leading to more reliable predictions. 

 

 

 

FIGURE 5. Plot of power generated versus 

wind speed using SCADA data. (a) Using 

raw data (b) Using data after removing 

outliers [14]. 



5.3 Flowchart for Predicting 

Produced Power 
To develop an effective predictive model, it 

is essential to understand the process in 

terms of its structure, environment, and 

operational dynamics.  

Electrical power (𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙) produced can 

be given as [4,6]: 

𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = (
1

2
ρ𝐴𝑈3) × 𝐶𝑃(𝜆, 𝛽) × η (6) 

Where: 

 𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = Electrical power 

 𝜌 = Air density, which is dependent 

upon the ambient temperature, 

humidity and pressure 

 𝐴 = Rotor disc area 

 𝑈 = Air velocity 

 𝐶𝑃(𝜆, 𝛽) = Rotor power coefficient, 

it expresses the recoverable fraction 

of wind power and is a function of 𝜆 

(tip speed ratio) and 𝛽 (blade pitch 

angle) 

 𝜂 = Drive train efficiency 

(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟/𝑟𝑜𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟 ), 

(mechanical & electrical) 

The maximum theoretically possible rotor 

power coefficient, 𝐶𝑃,𝑚𝑎𝑥 also called the 

Betz limit, can be determined to be 0.59. 

The actual value of 𝐶𝑃(𝜆, 𝛽) is below the 

Bentz limit and is dependent upon technical 

features of the turbine and environmental 

factors [20].  

 

 

FIGURE 6. Flowchart showing influence of variables on the calculation of produced power 

[14]. 



 

This analysis reveals that Grid Produced 

Power has a strong correlation with Ambient 

Wind Speed, making it a pivotal factor for 

predictive modelling. In contrast, other 

environmental variables such as Ambient 

Temperature, Ambient Humidity, and 

Ambient Pressure exhibit only weak 

correlations with Grid Produced Power. 

Recognizing these differences helps in 

selecting the most relevant inputs for the 

predictive model, thereby enhancing the 

accuracy and reliability of power production 

assessments. 

This insight serves as the foundation for 

developing a simplified flowchart to 

calculate Predicted Produced Power, as 

illustrated in Fig. 6. The flowchart 

highlights the relationships between various 

environmental variables and power 

generation, emphasizing the dominant 

influence of Ambient Wind Speed on power 

output.  

5.4 Selection of Machine Learning 

Algorithms 
In this project, several machine learning 

algorithms were evaluated for developing a 

robust predictive model. The models 

considered include [3, 14]: 

1. Linear 

Models 

: Linear Regression (LR), 

Lasso, Ridge and 

Bayesian Ridge 

Regression 

2. Tree-based 

Models 

: Decision Trees, Random 

Forest (RF) 

3. Boosting 

Models 

: AdaBoost, XGBoost and 

LGBoost 

4. Support Vector Regression (SVR) 

Among these, XGBoost was selected as the 

final model based on its overall performance 

and practical advantages. It demonstrated 

high level of goodness-of-fit (RMSE = 186, 

R2 = 0.93, MAE = 127) indicating a strong 

predictive accuracy. Additionally, XGBoost 

was favoured for its computational 

efficiency and relatively simple 

implementation (Fig. 7). 

6 Uncertainties Due to Model 

6.1 Probability Density Function of 

Modelling Error 
Fig. 8 presents a plot of the error in 

Predicted Power Production as a function of 

the Grid Produced Power. The graph 

illustrates that, across the entire range of 

Grid Produced Power values, the prediction 

errors are generally centred around a mean 

close to zero. 

When the distribution of error values is 

analysed, it closely follows a normal 

distribution with a mean of 7.44 and a 

standard deviation of 147.80. This suggests 

that the prediction model maintains a 

balanced performance, with errors 

symmetrically distributed around the mean. 

 

 

FIGURE 7. Effect of Ambient Wind Speed 

on Predicted Produced Power using 

XGBoost. 

  



 

FIGURE 8. Effect of Grid Produced Power 

on Error in Predicted Produced Power 

(difference between Grid Produced Power 

and Predicted Produced Power) calculated 

using XGBoost. 

6.2 Representation of Modelling 

Error as Possibility Distribution 

Function 
As discussed in Section 4.2, the Normal 

Probability Distribution Function (PDF) that 

characterizes the error in Predicted Power 

Production can be systematically 

transformed into a Triangular Possibility 

Distribution Function (TPDF). This 

transformation provides a simplified yet 

practical representation of uncertainty, 

particularly useful in possibilistic analysis 

where crisp probabilities are replaced by 

degrees of possibility. 

In this context, the error distribution – 

originally modeled as a normal distribution 

with a mean (mode) of 7.44 and a standard 

deviation of 147.80 – has been converted 

into a triangular possibility distribution. This 

possibility function uses the mode of the 

original distribution (7.44) as the mean error 

value due to model. The support of the 

triangle, which defines the full range of 

plausible error values, is calculated using a 

±2.58σ interval around the mode. This 

corresponds to a 99% confidence level, 

ensuring that the majority of the probability 

mass from the original normal distribution is 

captured within the possibility framework. 

Mathematically, the triangular possibility 

distribution is defined by: 

 Mode (peak): 7.44 

 Lower bound (a): 7.44−2.58×147.80 

 Upper bound (b): 7.44+2.58×147.80 

This transformation allows the model to 

account for uncertainty in a more 

interpretable and computationally efficient 

way, while still preserving the essential 

characteristics of the original error 

distribution. 

An advantage of using a Possibility 

Distribution Function to represent 

uncertainty from modeling errors is that the 

possibility measure is inherently more 

conservative than the probability measure, 

making it well-suited for decision-making 

frameworks that prioritize zero-tolerance for 

errors. 

6.3 Possibility of Error Due to 

Model Imperfection 
Fig. 9 illustrates a comparison between the 

actual Grid Produced Power and the 

Predicted Produced Power computed at an 

𝛼𝑐𝑢𝑡=0, over a continuous 24-hour period 

on 10th November, 2017. This 𝛼𝑐𝑢𝑡 level 

represents the maximum uncertainty 

scenario within the Possibilistic Framework, 

incorporating the widest possible intervals 

for model output. 

The plot reveals that the majority of the 

measured power values lie within the outer 

bounds defined by the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 and 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥 estimate The fact that 

observed values remain largely within these 

boundaries shows that the possibilistic 

model effectively captures the range of 

possible outcomes. It demonstrates that the 

model is capable of accounting for potential 

imperfections in the predictive model itself. 

 



 

FIGURE 9. Plot of Grid Produced Power and Predicted Produced Power incorporating 

uncertainties due to model at 𝛼−𝑐𝑢𝑡=0 for a 24 hour duration (10th November, 2016). 

 

7 Uncertainties Due to 

Measurement 

7.1 Representation of Input 

Variables as Possibility Distribution 

Functions 
As outlined in Section 3, SCADA data is 

inherently affected by various imperfections, 

including sensor noise, inconsistencies, 

inaccurate readings, and missing values. 

These imperfections can significantly impact 

the reliability and accuracy of any data-

driven model if not properly addressed. 

Developing a robust predictive model 

therefore requires careful pre-processing and 

error-handling strategies to mitigate the 

influence of such flaws. 

Although a substantial portion of these data 

issues can be identified and corrected during 

the training phase – through methods such as 

data cleaning, normalization, and outlier 

detection – additional sources of error may 

still emerge during the model’s deployment. 

In this study, the model was trained on data 

from 2016 and tested on data from 2017. 

During this test phase, the model may 

encounter previously unseen patterns, shifts 

in turbine behaviour, or subtle 

inconsistencies not captured in the training 

data. As a result, these residual uncertainties 

and imperfections must be carefully 

considered and quantified to ensure that the 

model remains both accurate and resilient 

under real-world conditions. 

In the Possibilistic Approach, instead of 

using fixed numerical values for 

environmental variables such as Ambient 

Temperature, Humidity, Pressure, Wind 

Speed, and Power Coefficient as recorded by 

SCADA, the approach models these 

variables as Triangular Possibility 

Distribution Functions. 

A Possibility Distribution Function for a 

variable is constructed by stacking multiple 

intervals corresponding to different 𝛼-levels. 

The process begins with the bottom layer, 

where 𝛼 = 0. At this level, the interval 

range is defined as: 



[(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
− 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒), (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
+ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒) ] 

In the absence of a detailed study to 

precisely quantify the interval, the estimated 

limit values used for calculations are derived 

from existing literature and practical 

experience. For instance, the response time 

and uncertainty associated with a 

measurement recorded by a cup anemometer 

depend on various factors such as its 

construction (e.g., dimensions, weight) and 

the degree of deterioration over time (e.g., 

friction caused by corrosion). 

Under ideal test conditions, a newly 

calibrated anemometer may exhibit an 

inaccuracy of approximately 2%. However, 

during actual operational conditions, this 

inaccuracy is likely to increase due to factors 

such as corrosion, wear, misalignment, dust 

deposition, and other environmental 

influences [4]. 

Therefore, at 𝛼 = 0 (representing the 

interval within which the expected value is 

considered to “certainly” lie), the estimated 

limits around the measured values have been 

determined based on practical estimates and 

previous experience. These intervals account 

for both the inherent inaccuracies of the 

instruments and the additional uncertainties 

introduced by operational degradation. 

 Ambient Temperature : ±1.0oC 

 Ambient Humidity : ±1.0% 

 Ambient Pressure : ±1.0 milli-

bars 

 Ambient Wind Speed : ±0.5 m/s 

 Power Coefficient : 0.45 ±0.05 

7.2 Calculation of Predicted 

Produced Power Accounting for 

Measurement Errors 
The calculation process within the 

Possibilistic Framework involves 

performing computations over interval 

values at various levels of certainty, 

represented by 𝛼𝑐𝑢𝑡𝑠. For each selected 

value of 𝛼, ranging from 0 to 1, the 

corresponding interval for each input 

variable is determined. The overall 

methodology consists of the following key 

steps 

1. Interval Generation: To initiate the 

analysis, a specific 𝛼 value within 

the range [0,1] is selected. For this 

value, the corresponding 𝛼𝑐𝑢𝑡 of 

each fuzzy number is determined, 

yielding an interval representation 

for each variable. Higher 𝛼 values 

(closer to 1) correspond to narrower 

intervals, reflecting greater certainty. 

Conversely, lower 𝛼 values (closer to 

0) result in wider interval, indicating 

greater uncertainty in the variable’s 

value. 

2. Combination of Input Intervals: To 

thoroughly explore the output range, 

various combinations of input 

interval values are systematically 

analysed. Each combination 

corresponds to a particular set of 

input conditions at a given 𝛼𝑐𝑢𝑡. 
The evaluation of these 

combinations, as detailed in Table 2, 

helps quantify the output's sensitivity 

to input uncertainty and ensures 

comprehensive coverage of all 

plausible input scenarios. 

3. Calculation of Output Intervals: At 

each 𝛼𝑐𝑢𝑡, the output variable – 

Predicted Produced Power in this 

case – is computed by evaluating the 

minimum and maximum values of 

the output function over all possible 

combinations of input intervals. 

These calculations are performed 

using the trained XGBoost model. 

This step ensures that the full range 



of feasible outcomes is considered 

for the selected 𝛼-level, thereby 

capturing the propagation of 

uncertainty through the model. 

4. Stacking of Intervals to Construct the 

Possibility Distribution: The 

intervals computed across all 𝛼𝑐𝑢𝑡𝑠 

are then stacked to form the 

complete Possibility Distribution 

Function (PDF) of the output 

variable. This stacking results in a 

comprehensive depiction of 

uncertainty, ranging from the most 

uncertain scenarios (wide intervals at 

𝛼 = 0), to the most certain 

predictions (narrow intervals at 𝛼 =
1). This stacking process creates a 

comprehensive representation of the 

variable’s uncertainty, providing a 

full spectrum of possibilities from 

the most uncertain (broadest interval) 

to the most certain (narrowest 

interval). 

By utilizing Possibility Distribution 

Functions, the model effectively captures 

and incorporates the uncertainties inherent in 

SCADA-recorded environmental variables. 

The application of intervals enables a more 

adaptable and realistic representation of 

uncertain data – particularly valuable when 

dealing with imprecise, inconsistent, or 

sparse measurements. 

This approach allows the prediction process 

to account for varying degrees of uncertainty 

arising during measurement, enhancing the 

model’s robustness and reliability, even in 

scenarios where precise input data is 

unavailable. Moreover, it ensures that the 

effects of measurement errors, and other 

data imperfections are explicitly considered 

and appropriately managed throughout the 

analysis. 

 

TABLE 2. Possible combinations of interval values used for calculating Predicted Produced 

Power. 

Combination Ambient 

Wind Speed 

Ambient 

Temperature 

Ambient 

Pressure 

Ambient 

Humidity 

Combination_1 Min Min Min Min 

Combination_2 Min Min Min Max 

Combination_3 Min Min Max Min 

Combination_4 Min Min Max Max 

Combination_5 Min Max Min Min 

Combination_6 Min Max Min Max 

Combination_7 Min Max Max Min 

Combination_8 Min Max Max Max 

Combination_9 Max Min Min Min 

Combination_10 Max Min Min Max 

Combination_11 Max Min Max Min 

Combination_12 Max Min Max Max 

Combination_13 Max Max Min Min 

Combination_14 Max Max Min Max 

Combination_15 Max Max Max Min 

Combination_16 Max Max Max Max 

 



 

FIGURE 10. Impact of Measurement Error on Predicted Produced Power for various interval 

combinations listed in Table 2 at 𝛼𝑐𝑢𝑡=0. 

 

FIGURE 11. Effect of Ambient Wind Speed on Predicted Produced Power at 𝛼𝑐𝑢𝑡 = 0. 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 is obtained from Combination_6 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥 is obtained from 

Combination_11. 

 

7.3 Possibility of Errors Due to 

Imperfection of Measurement 
Fig. 10-12 present the results of calculations 

performed using the Possibilistic Approach 

to assess the impact of measurement 

uncertainties on the Predicted Produced 

Power. 

Fig. 10 illustrates the influence of the 

maximum and minimum interval values of 

environmental variables on the predicted 

power output. It is evident that different 

combinations of these input values lead to 

significant variations in the Predicted 

Produced Power. This sensitivity is largely 

attributed to the fact that, as described by 



Equation 6, the Predicted Produced Power 

is proportional to the cube of the Ambient 

Wind Speed. Consequently, Combinations 1 

through 8 yield noticeably lower power 

predictions compared to Combinations 9 

through 16. This difference is primarily due 

to the higher wind speeds used in the latter 

combinations. Within each group 

(Combinations 1–8 and Combinations 9–

16), the variation is relatively small, largely 

because the air density does not vary 

significantly across the combinations. 

Fig. 11 focuses on the effect of Ambient 

Wind Speed on the Predicted Produced 

Power at 𝛼𝑐𝑢𝑡=0. This figure highlights 

the pronounced influence of measurement 

uncertainty on power prediction. The lower 

bound (𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛) of the predicted 

power is derived from Combination 6, while 

the upper bound (𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥) 

corresponds to Combination 11. These 

bounds represent the extremes of the 

predicted values based on plausible 

variations in the wind speed. 

Fig. 12 presents a comparison between the 

actual Grid Produced Power and the 

Predicted Produced Power at 𝛼𝑐𝑢𝑡=0 over 

a 24-hour period (10th November, 2017). 

The plot shows that the measured power 

values generally fall within the outermost 

bounds defined by the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 and 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥 predictions. This suggests 

that the possibilistic model effectively 

captures the range of potential outcomes 

arising from measurement uncertainties in 

the input variables. 

8 Uncertainties Due to 

Combination of Measurement and 

Model 

8.1 Representation of Input 

Variables as Possibility Distribution 

Functions 
In this stage of the analysis, three distinct 

Possibility Distribution Functions (PDFs) 

are employed to represent uncertainty in the 

input variables. These functions model both 

measurement errors and model-related 

imperfections, enabling a comprehensive 

uncertainty analysis in the prediction of 

produced power. The three PDFs used are: 

 

FIGURE 12. Plot of Grid Produced Power and Predicted Produced Power incorporating 

uncertainties due to measurement at 𝛼𝑐𝑢𝑡=0 for a 24 hour duration (10th November, 2016). 

 



 Model_Error: This function 

represents the uncertainty associated 

with model imperfection – 

specifically the error arising from the 

limitations of the predictive model 

itself. It was derived based on the 

error analysis discussed in Section 

6.2. 

 Measurement_Error_Combination_6

: This function captures the lower 

bound of measurement uncertainty, 

representing the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 

scenario for Predicted Produced 

Power. It is derived from 

Combination 6, as detailed in 

Section 7.3. 

 Measurement_Error_Combination_1

1: This function captures the upper 

bound of measurement uncertainty, 

representing the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥 

scenario for Predicted Produced 

Power. It is derived from 

Combination 11, also discussed in 

Section 7.3. 

These possibility distribution functions are 

treated as Fuzzy numbers and are evaluated 

across multiple 𝛼𝑐𝑢𝑡s, which represent 

varying levels of confidence or certainty. 

8.2 Calculation of Predicted 

Produced Power Accounting for 

Modelling and Measurement Errors 
The combined effect of modelling error and 

measurement error on the Predicted 

Produced Power is evaluated using the 

principles of interval arithmetic applied at 

various 𝛼𝑐𝑢𝑡 levels of the fuzzy numbers. 

Each possibility distribution function is 

decomposed into 𝛼𝑐𝑢𝑡, which define 

interval ranges for each 𝛼-level (𝛼 ∈ [0,1]). 
For two fuzzy numbers, 𝐴 and 𝐵, 

represented at a given 𝛼𝑐𝑢𝑡 as: 

𝐴𝛼 = |𝑎, 𝑎|𝛼 and 𝐵𝛼 = |𝑏, 𝑏|𝛼 

the interval arithmetic operations are defined 

as follows: 

Addition: 

𝐴𝛼 + 𝐵𝛼 = [𝑎𝛼 + 𝑏𝛼, 𝑎𝛼 + 𝑏𝛼] (7a) 

Subtraction: 

𝐴𝛼 − 𝐵𝛼 = [𝑎𝛼 − 𝑏𝛼, 𝑎𝛼 − 𝑏𝛼] (7b) 

These operations are used to propagate 

uncertainty through the output variable 

(Predicted Produced Power) by combining 

the Fuzzy input intervals. 

To apply these concepts of interval analysis, 

first a value of 𝛼 is selected. For this value 

of 𝛼 the 𝛼𝑐𝑢𝑡 of each possibility 

distribution function is determined. 

Considering all the values located in the 

𝛼𝑐𝑢𝑡s for every possibility distribution 

function, the minimum and maximum values 

of the output function are calculated. This 

step is repeated for all 𝛼𝑐𝑢𝑡s for 𝛼 ∈ [0,1]. 
The results of all 𝛼𝑐𝑢𝑡s are combined to 

build the fuzzy membership function of the 

output function.  

Using this concept, the steps followed for 

the calculation of the Predicted Produced 

Power using fuzzy arithmetic are: 

1. Initialize with 𝛼 = 0: Select a value 𝛼 

of the membership function starting 

from 𝛼 = 0. 

2. Determine 𝛼𝑐𝑢𝑡s: For each 

Possibility Distribution Function 

(Model_Error, 

Measurement_Error_Combination_6, 

and 

Measurement_Error_Combination_11



), determine the interval 

corresponding to the selected 𝛼𝑐𝑢𝑡. 

3. Calculate 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 and 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥: 

 The lower bound (𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛) 

of Predicted Produced Power is 

calculated by subtracting the 

Model_Error interval from the 

Measurement_Error_Combination_6 

interval. 

 The upper bound (𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥) 

is calculated by adding the 

Model_Error interval to the 

Measurement_Error_Combination_1

1 interval. 

4. Compute Output Interval: Using the 

above combinations, determine the 

minimum and maximum values of 

Predicted Produced Power for the 

given 𝛼. 

5. Repeat for 𝛼 ∈ [0,1]: Repeat Steps 2–

4 for multiple 𝛼𝑐𝑢𝑡 levels (e.g., 𝛼 = 

0, 0.1, ..., 1.0) to span the entire range 

of uncertainty. 

6. Stack 𝛼𝑐𝑢𝑡 Intervals: Combine the 

results of all 𝛼𝑐𝑢𝑡s to reconstruct 

the fuzzy membership function of the 

Predicted Produced Power, 

effectively forming its Possibility 

Distribution Function. 

This method ensures a thorough and 

mathematically consistent handling of 

uncertainty, incorporating both measurement 

variability and model imperfection into the 

final prediction. 

8.3 Possibility of Errors Due to 

Combination of Measurement and 

Model 
Fig. 13 illustrates the effect of Ambient 

Wind Speed on the Predicted Produced 

Power under conditions of maximum 

uncertainty, represented by 𝛼𝑐𝑢𝑡=0. This 

𝛼-level signifies the lowest level of 

certainty, where the input variables are 

allowed to vary within their widest possible 

bounds. The figure clearly highlights the 

pronounced impact of combined 

measurement and model-related 

uncertainties on the predicted power output. 

At this 𝛼-level, the lower bound of the 

prediction range – referred to as 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −
𝑀𝑖𝑛 – is derived by combining the Model 

Error distribution with the Measurement 

Error from Combination 6, which represents 

the most conservative (pessimistic) estimate. 

Conversely, the upper bound, or 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −
𝑀𝑎𝑥, is determined by combining the Model 

Error with the Measurement Error from 

Combination 11, representing the most 

optimistic scenario. Together, these two 

boundaries define the extremes of predicted 

power based on plausible variations in 

ambient wind speed and the associated 

uncertainty in the modelling process. 

Fig. 14 presents a time-series comparison of 

the actual Grid Produced Power and the 

Predicted Produced Power at 𝛼𝑐𝑢𝑡=0 over 

a continuous 24-hour period on 10th 

November 2017. This figure serves as a 

validation of the possibilistic prediction 

approach. It shows that the majority of the 

measured values fall within the envelope 

defined by the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 and 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥 bounds. This indicates that 

the possibilistic model not only 

accommodates uncertainty but does so in a 

way that encompasses real-world 

observations, even under conditions of high 

variability and limited data precision. 



 

FIGURE 13. Effect of Ambient Wind Speed on Predicted Produced Power at 𝛼𝑐𝑢𝑡 = 0. (a) 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 is obtained from Model_Error and Measurement_Error_Combination_6 and (b) 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥 is obtained from Model_Error and Measurement_Error_Combination_11. 

 

FIGURE 14. Plot of Grid Produced Power and Predicted Produced Power incorporating 

combined uncertainties due to measurement and model at 𝛼𝑐𝑢𝑡=0 for a 24 hour duration (10th 

November, 2016). 

 

The fact that observed values remain largely 

within these boundaries provides evidence 

that the possibilistic model effectively 

captures the full range of possible outcomes, 

even under significant uncertainty. More 

specifically, it demonstrates that the model 

is capable of accounting not only for 

uncertainties in environmental input 

variables (such as wind speed and air 

density), but also for potential imperfections 

in the predictive model itself. 

Overall, Fig. 13 and 14 underscore the value 

of the possibilistic modelling approach in 

predictive power generation, particularly in 

operational contexts where uncertainty is 



inevitable and precise measurements are 

difficult to obtain. This method provides a 

comprehensive and realistic representation 

of uncertainty, making it a suitable tool for 

decision-making in wind energy forecasting. 

9 Conclusions 
This paper presents a simple yet robust 

methodology for predicting Produced Power 

from wind energy systems using SCADA 

data, while explicitly accounting for 

uncertainties arising from both modelling 

imperfections and measurement errors. The 

approach integrates two complementary 

components: 

 Machine Learning models: Used to 

construct predictive relationships 

between environmental input 

variables and power output. 

 Possibilistic Framework: Used to 

systematically handle uncertainty 

through the use of possibility 

distribution functions, derived from 

Fuzzy Logic and interval analysis. 

To demonstrate the applicability of this 

methodology, a real-world case study was 

conducted using operational SCADA data. 

The predictive model was trained using 

various machine learning algorithms, with 

XGBoost selected as the final model based 

on its superior performance and 

computational efficiency. 

The effectiveness of the possibilistic 

approach was validated by comparing the 

Predicted Produced Power under conditions 

of uncertainty against the actual Grid 

Produced Power. The analysis showed that 

the observed values remained largely within 

the predicted 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑖𝑛 and 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −𝑀𝑎𝑥 bounds. This result 

provides evidence that the possibilistic 

model reliably captures the full range of 

potential outcomes, even when input data is 

imprecise, incomplete, or subject to 

operational variability. 

More specifically, the methodology 

demonstrates a clear capability to account 

for: 

 Uncertainties in measurement (e.g., 

wind speed and air density) in 

SCADA instrumentation, 

 Structural limitations or assumptions 

in the predictive machine learning 

model itself. 

This ability to model and quantify 

uncertainty in both data and model 

behaviour makes the proposed approach 

especially valuable for power forecasting in 

real-world applications, where ideal 

measurement conditions are rarely met and 

system performance may deviate from 

theoretical expectations. 

In summary, the integration of machine 

learning with possibilistic uncertainty 

modelling offers a practical, adaptable, and 

reliable solution for power prediction tasks 

in the presence of real-world data 

imperfections. 

Data Availability 
The datasets presented in this study can be 

found in online repositories given below: 

https://www.edp.com/en/innovation/data/wi

nd-farm-1-wind-turbine-scada-signals-2016 

https://www.edp.com/en/wind-farm-1-wind-

turbine-scada-signals-2017 
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