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Abstract: Wind turbines are continuously exposed to harsh environmental and operational conditions throughout
their lifetime, leading to the gradual degradation of their components. If left unaddressed, these degraded
components can adversely affect turbine performance and significantly increase the likelihood of failure. As
degradation progresses, the risk of failure escalates, making it essential to implement appropriate risk control
measures. One effective risk control method involves performing inspection and monitoring activities that provide
valuable insights into the condition of the structure, enabling the formulation of appropriate maintenance strategies
based on accurate assessments. Supervisory Control and Data Acquisition (SCADA) systems offer low-resolution
condition monitoring data that can be used for fault detection, diagnosis, quantification, prognosis, and
maintenance planning. One commonly used method involves predicting power generation using SCADA
data and comparing it against measured power generation. Significant discrepancies between predicted and
measured values can indicate suboptimal operation, natural aging, or unnatural faults. Various predictive models,
including parametric and non-parametric (statistical) approaches, have been proposed for estimating power
generation. However, the imperfect nature of these models introduces uncertainties in the predicted power output.
Additionally, SCADA monitoring data is prone to uncertainties arising from various sources. The presence of
uncertainties from these two sources — imperfect predictive models and imperfect SCADA data — introduces
uncertainty in the predicted power generation. This uncertainty complicates the process of determining whether
discrepancies between measured and predicted values are significant enough to warrant maintenance actions.
Depending on the nature of uncertainty — aleatory, arising from inherent randomness, or epistemic, stemming from
incomplete knowledge or limited data — different analytical approaches, like Probabilistic and Possibilistic, can be
applied for effective management. Both, Probabilistic and Possibilistic, Approaches offer distinct advantages and
limitations. The Possibilistic Approach, rooted in fuzzy set theory, is particularly well suited for addressing
epistemic uncertainties, especially those caused by imprecision or sparse statistical information. This makes it
especially relevant for applications such as wind turbines, where it is often challenging to construct accurate
probability distribution functions for environmental parameters due to limited sensor data from hard-to-access
locations. This research focuses on developing a methodology for identifying suboptimal operation in wind
turbines by comparing Grid Produced Power (Measured Produced Power) with Predicted Produced Power. To
achieve this, the paper introduces a Possibilistic Approach for power prediction that accounts for uncertainties
stemming from both model imperfections and measurement errors in SCADA data. The methodology combines
machine learning models, used to establish predictive relationships between environmental inputs and power
output, with a Possibilistic Framework that represents uncertainty through possibility distribution functions based
on fuzzy logic and interval analysis. A real-world case study using operational SCADA data demonstrates the
approach, with XGBoost selected as the final predictive model due to its strong accuracy and computational
efficiency.
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I. INTRODUCTION

Throughout its operational lifespan, a wind turbine is
consistently exposed to harsh operational and environmen-
tal conditions, such as wind velocity, humidity, tempera-
ture, precipitation, and icing. These factors trigger various
degradation mechanisms, including corrosion, erosion,
fatigue, and deformation, which can deteriorate critical
components and significantly compromise the integrity
of associated structures. If these degraded components
are not attended to, their performance will diminish and
the likelihood of their failure will increase. Thus, as degra-
dation progresses, the risk of failure rises, necessitating the
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need for implementing appropriate risk control measures
involving effective and efficient asset integrity management
program.

However, financial, social (“not-in-my-backyard” syn-
drome), environmental (e.g., meteorological conditions),
and geographical (e.g., topological features) factors often
necessitate placing wind turbines in remote and difficult to
access locations. This remoteness significantly increases the
costs of asset integrity management, with maintenance
expenses estimated to account for a substantial portion
(10-25%) of the total annual operational cost [1]. Hence,
there is a need for developing effective, efficient, and
economically viable asset integrity management program
for wind turbines.

One effective risk control approach involves deploying
a robust asset integrity management strategy, which
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includes monitoring, inspection, and maintenance of struc-
tures at suitable intervals. Inspection and monitoring activ-
ities provide valuable insights into the structural condition,
enabling the application of targeted maintenance strategies
throughout the turbine’s life cycle.

Currently, maintenance management (inspection and
maintenance) plans are developed using two primary
approaches:

e Traditional Approach: This approach relies on under-
standing the failure profile of components — such as
failure causes, mechanisms, modes, and rates — to
manually develop maintenance plans based on histori-
cal data and experience.

e Condition-Based Approach: This approach analyzes
data collected through condition monitoring systems
for fault detection, diagnosis, quantification, and prog-
nosis. This information is used to create dynamic
maintenance plans that respond to real-time or near-
real-time changes in equipment condition.

The Traditional Approach relies on examining struc-
tural, environmental, and operational attributes to formulate
corrective or preventive maintenance strategies. Preventive
maintenance is typically time-based; for instance, mainte-
nance activities for wind turbines are often scheduled at
intervals of 3 to 6 months, depending on the turbine’s age
and condition [1]. However, time-based inspection and
maintenance plans can be costly to implement. To address
this, methodologies rooted in formalized risk analysis, such
as Risk-Based Inspection and Maintenance or Reliability-
Centered Maintenance, have been developed. These
methods involve understanding the failure profile and
conducting risk analysis and evaluation to establish main-
tenance plans that are more efficient and effective than time-
based or incident-driven approaches [2].

The Condition-Based Approach enhances maintenance
management plans established by the Traditional Approach
by utilizing real-time condition attributes to continually
refine the equipment’s risk assessment through fault detec-
tion. This method involves analyzing data collected from
intermittent or continuous monitoring using sensors for
fault detection, diagnosis, prognosis, and advisory genera-
tion. By assessing the equipment’s actual health status, the
Condition-Based Approach enables the development of
maintenance plans that are dynamically tailored to the
actual condition of the equipment.

In a wind turbine Supervisory Control and Data Acqui-
sition (SCADA) system, numerous sensors continuously
monitor various meteorological and operational parameters,
with data transmitted, processed, and stored in SCADA
supervisory computers. The parameters monitored include:

1. Position: Blade pitch angle, nacelle direction.

2. Temperature: Nose cone, gearbox bearing, gearbox oil,
hydraulic system oil, generator bearing, generator sta-
tor windings, generator split ring chamber, transformer,
busbar section, inverter, controllers, Virtual control
panel (VCP) control boards.

3. RPM: Rotor speed, generator speed.

4. Hydraulic Characteristics: Pressure, reservoir level,
flow rate.

5. Environmental Characteristics: Wind speed, wind
direction, ambient temperature, humidity.
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6. Electrical Characteristics: Active power, reactive
power, voltage, current, phase displacement,
frequency.

Additionally, data streams from nearby weather sta-
tions are often recorded to provide further insights into
environmental conditions affecting turbine performance.

Despite its numerous advantages, the adoption of the
Condition-Based Approach remains limited and requires
further research and development. This is largely due to
several challenges associated with [3]:

1. Quality and Quantity of Collected Data: Ensuring
sufficient, accurate, and comprehensive data is critical
for effective analysis, and limitations in data availabil-
ity and reliability can hinder performance.

2. Handling Imperfect Data: Faulty sensors may produce
spurious, inconsistent, inaccurate, uncertain, or irratio-
nal data, complicating the analysis and potentially
leading to erroneous conclusions.

3. Data Interpretation: Accurately diagnosing faults,
quantifying damage, and forecasting future conditions
require sophisticated analytical techniques, which can
be challenging to implement effectively.

4. Updating Maintenance Plans: Continuously adjusting
maintenance plans based on new insights from real-
time monitoring is complex and resource-intensive.

5. Managing Unreliable Analysis: Poor-quality data or
flawed analytical models can result in false alarms
(false positives) or undetected faults (false negatives),
undermining the credibility of the system.

Addressing these challenges is essential for enhancing
the reliability, accuracy, and efficiency of Condition-Based
Maintenance systems.

II. MOTIVATION AND AIM OF THE
RESEARCH

A. MOTIVATION FOR THE RESEARCH

A drawback of the Condition-Based Approach is its depen-
dence on monitoring data to assess the condition of wind
turbine components. Monitoring through sensors generates
massive amounts of data, which may be imperfect, incon-
sistent, or challenging to interpret accurately. These im-
perfections can undermine the reliability of subsequent
analysis and interpretation, causing decision-makers to
doubt the validity of the results. Consequently, there is
reluctance to incorporate these findings into future mainte-
nance planning. As a result, valuable data is often under-
utilized, leading to maintenance and inspection decisions
being made without fully considering all relevant informa-
tion. This underscores the need to develop systems that can
effectively process and utilize monitoring data to enhance
decision-making, while also transparently acknowledging
the limitations and uncertainties inherent in the analysis.
A commonly used Condition-Based Approach for
evaluating wind turbine performance is by using SCADA
data that involves analyzing power generation as a function
of various variables, particularly wind speed. A substantial
discrepancy between predicted power generation and the
actual measured power generation can indicate suboptimal
performance, which warrants further investigation.
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Fig. 1. Flowchart showing the proposed fault detection
methodology.

Figure | presents a flowchart illustrating a methodol-
ogy for detecting suboptimal power production. In this
approach, the Predicted Produced Power can be estimated
using key environmental and operational variables. If the
Grid Produced Power (Measured Produced Power) is
significantly lower than the predicted value, it suggests
that the wind turbine may be operating below its optimal
efficiency.

While SCADA data provides a useful basis for this
analysis, the methodology has notable weaknesses arising
from challenges associated with accurately predicting
power generation under varying environmental and opera-
tional conditions. These weaknesses include:

1. Lack of Reliable SCADA Data: The accuracy of the
analysis depends heavily on the quality and consis-
tency of the SCADA data collected. Poor or inconsis-
tent data can significantly impact the reliability of the
predictions.

2. Inadequate Models for Predicted Power Calculation:
Developing reliable models that accurately calculate
Predicted Produced Power while accounting for varia-
tions and imperfections in the collected data remains
challenging. Imperfect models can give erroneous and
misleading values of Predicted Produced Power.

3. Defining Significant Difference: Determining what
constitutes a “significant difference” between predicted
and measured power is complicated by the inherent
uncertainties in the Predicted Produced Power. With-
out clear criteria for significance, it becomes difficult to
reliably identify suboptimal performance.

Addressing these weaknesses requires enhancing data
quality, developing more advanced predictive models, and
establishing robust criteria for evaluating discrepancies.
Additionally, it is crucial to quantify uncertainties and
integrate them into the decision-making process. Improving
these aspects will result in more accurate performance
assessments and more reliable, well-informed maintenance
decisions.

B. AIM OF THE RESEARCH

Aim of the ongoing research is to develop a methodology
for detecting suboptimal operation of wind turbines by
comparing Grid Produced Power (Measured Produced
Power) with Predicted Produced Power. A key aspect of
this research involves developing a systematic approach to
account for uncertainties in the Predicted Produced Power,
which arise from imperfections in SCADA data and limita-
tions of predictive models.

C. SCIENTIFIC NOVELTY AND IMPORTANCE
OF THE RESEARCH

This paper presents a methodology for predicting wind
turbine power output using SCADA data, incorporating a
Possibilistic Approach to account for uncertainties arising
from both model imperfections and measurement errors.
The method integrates machine learning models, specifi-
cally XGBoost, to establish relationships between environ-
mental inputs and power output, alongside a fuzzy
logic-based Possibilistic Framework that quantifies uncer-
tainty through possibility distribution functions and interval
analysis.

The Possibilistic Approach was chosen due to its key
advantages over the Probabilistic Approach. First, it is well
suited for addressing epistemic uncertainties, particularly
those arising from imprecise data or limited statistical
information. This is especially relevant in contexts such
as wind turbines, where constructing accurate probability
distribution functions for environmental parameters is dif-
ficult due to sparse sensor data from remote or hard-to-reach
locations. Second, the possibility measure tends to be more
conservative than the probability measure, making it a
valuable tool for supporting decision-making frameworks
that emphasize zero-tolerance for errors.

The approach is demonstrated using publicly available
data from an operational wind turbine, effectively capturing
the influence of real-world data imperfections on prediction
accuracy.

lll. APPLICATION OF SCADA DATA
FOR FAULT DETECTION

A. APPLICATIONS OF SCADA DATA FOR
PREDICTIVE MAINTENANCE

While SCADA systems are primarily designed for control
and automation, they are closely connected to condition
monitoring systems that focus on diagnostic and predictive
analysis. Wind turbine SCADA systems collect extensive
operational data, including parameters such as temperature,
vibration, pressure, flow rate, and electrical metrics
(e.g., current and voltage). This data can be effectively
utilized for fault detection, encompassing various types of
faults such as:

e Component degradation,

¢ Sensor failures,

e QOperation beyond safe limits, and
 Grid-related issues.

Some faults can be directly identified through SCADA
data. For example, sensor failures are often evident through
irrational or out-of-range readings. However, other faults,
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such as gradual gear wear or structural degradation, may
only be detected indirectly through changes in performance
metrics or subtle deviations from expected behavior [4].

The duration between fault initiation and potential
failure can vary significantly:

e Short-duration faults (e.g., generator earth faults) may
develop within seconds.

» Long-duration faults (e.g., gradual gear wear) can take
weeks or months to manifest fully.

Due to the typically low-resolution nature of SCADA
data, it is most effective for identifying faults with longer
time spans. Recognizing this potential, many modern
SCADA systems now incorporate real-time data analysis
capabilities, using statistical and artificial intelligence (Al)
techniques to enhance fault detection and diagnosis. While
certain faults, such as sensor failures, can be directly
detected, others may only be identified through indirect
indicators or by applying advanced analytical techniques
[4-T7].

B. ANALYSING WIND TURBINE
PERFORMANCE USING SCADA DATA

The power curve of a wind turbine represents the unique
relationship between the power generated and the environ-
mental and operational conditions under which the turbine
operates. It serves as a critical tool for evaluating and
comparing turbine performance under various scenarios.

The power generated by a wind turbine is influ-
enced by:

e Technical Attributes: Such as rotor radius, blade geom-
etry, and drive train efficiency.

e Environmental Attributes: Including wind speed, air
density, temperature, and turbulence intensity.

e Operational Attributes: Such as pitch angle, nacelle
orientation, and the angle between the wind direction
and nacelle.

These factors collectively determine the efficiency of
power generation and are essential for developing accurate
predictive models [4].

In a simplified power balance model, wind power is
first converted into rotor power, which is then transformed
into electrical power. The efficiency of converting wind
power to rotor power depends on several factors, including
wind speed, air density, blade geometry, and rotor size.
Ideally, all the rotor power should be converted to electrical
power through the drive train system; however, in practice,
some energy is inevitably lost due to factors such as friction,
vibration, and heat dissipation.

The overall energy balance, accounting for these
losses, can be represented in a simplified way as [4]:

(1a)

P Rotor = P Electrical t P Vibration T P Thermal

(1b)

where  Pg,,, = Rotor power,  Pgj,ricd = Electrical
power,  Pyipraion = Vibration power, and  Pryema =
Thermal power.

Therefore, a significant discrepancy between the pre-
dicted rotor power (Pg,,,,» calculated using models) and the
measured electrical power (Pgj,qricq) indicates suboptimal
performance. This discrepancy is often attributed to

P Rotor — P Electrical = P Vibration + P Thermal
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inefficient operation or increased energy losses resulting
from factors such as vibration, friction, and heat generation
or dissipation. Therefore, detecting significant deviations
between Predicted Produced Power and Grid Produced
Power can be effectively utilized for the following purposes
[8]:

e Suboptimal Operation Detection:

o Suboptimal performance, often caused by inefficient
control mechanisms, can be identified using the
power curve.

o Comparing power generation across a localized
group of wind turbines can help identify individual
units that are performing below expected standards,
thereby facilitating targeted maintenance and opti-
mization efforts.

e Fault Detection:

o Although pinpointing the exact cause may be chal-
lenging, a substantial discrepancy between predicted
and measured power generation can serve as an
indicator of underlying faults, prompting further
investigation.

Analyzing deviations between predicted and actual
power outputs provides valuable insights into the health
and efficiency of wind turbine components, enabling early
detection of faults and opportunities for performance
improvement.

C. UNCERTAINTIES IN DATA

According to Bell [9], measurement uncertainty can be
defined as the doubt that exists about the result of any
measurement. This doubt arises because despite all precau-
tions, measurements are inevitably affected by various
imperfections and uncertainties. Uncertainties in SCADA
measurements can arise from multiple sources, resulting in
different types and classifications. These uncertainties
can be:

e Tangible (Quantifiable): Such uncertainties can be
measured and expressed numerically.

e Intangible (Non-Quantifiable): These are difficult to
measure precisely and may only be qualitatively
assessed.

* Random: Arising from unpredictable variations in
measurement conditions.

o Systematic: Resulting from consistent biases or errors
in measurement processes.

To ensure completeness and accuracy, measurements
should be reported along with their associated uncertainties.
A tangible uncertainty can be quantified using two key
metrics: the interval, which represents the width of the
margin of doubt or dispersion around the mean, and the
confidence level, which indicates the probability that the
“true” value falls within that margin. However, since
measurement uncertainties are influenced by various fac-
tors, it is often challenging to account for all sources of
uncertainty comprehensively [9].

Due to the complexities associated with categorizing
uncertainties, various classification schemes have been
proposed. However, there is no universally accepted
framework, leading to inconsistencies and confusion.
However, they are often categorized into two broad types
[4,10]:
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e Aleatoric Uncertainty: Aleatoric uncertainty arises
from inherent randomness or natural variability within
the measured parameter. It is generally quantifiable
through repeated measurements and can be expressed
using statistical measures such as mean and standard
deviation, along with intervals and confidence levels.
For example, variations in wind speed due to natural
turbulence are a common source of aleatoric
uncertainty.

e Epistemic Uncertainty: Epistemic uncertainty results
from a lack of knowledge, incomplete data, or an
imperfect understanding of the measurement process.
Unlike aleatoric uncertainty, it affects all measured
values consistently, making repeated measurements
ineffective at reducing this type of uncertainty. It is
often challenging to quantify precisely but can be
evaluated using expert opinions, manufacturer speci-
fications, historical data, or subjective judgment. Epi-
stemic uncertainty can be further divided into the
following subcategories:

1. Bias: A consistent, systematic deviation from the
true value, often introduced by faulty calibration or
measurement techniques.

2. Inaccuracy: The average difference between the
measured value and the true value, indicating a
general error in measurement.

3. Imprecision: The spread or range within which
measured values lie, indicating a lack of exactness.

4. Ignorance: Arising from insufficient data or limited
knowledge regarding measurement precision.

5. Incompleteness: Occurring when relevant data is
missing or unavailable.

6. Credibility: Related to the reliability or trustworthi-
ness of the measurement process, including factors
such as calibration, installation, and operational
competence.

Understanding and managing these uncertainties is
essential for accurate fault detection, diagnosis, and predic-
tive maintenance using SCADA systems. Recognizing
the different types of uncertainties can help in formulating
strategies for handling them during analysis. Evaluating
their potential impacts can significantly enhance the
reliability of condition monitoring and diagnostic
processes.

Since epistemic uncertainty arises from knowledge
gaps or incomplete data, it is typically evaluated using:

a. Manufacturer’s Specifications: Guidelines and toler-
ances provided by equipment manufacturers.

b. Past Experience: Historical data and previously
observed patterns.

c. Expert Opinion: Insights from skilled practitioners
familiar with the measurement process.

d. Subjective Judgment: Personal assessment based on
experience and intuition when objective data is
insufficient.

D. DATA QUALITY IN SCADA SYSTEM

Uncertainties are particularly problematic for wind turbines
due to the substantial variations in environmental condi-
tions. Most errors arise from two primary sources:

1. Imperfections Caused by Sensors: These imperfections
occur for various reasons, including fluctuations in
parametric values, instrument limitations (such as
bias, noise, or drift), incorrect calibration, measurement
location errors, and overall instrument degradation.
They can be further categorized as:

¢ Inherent Imperfections: In response to the changing
environmental conditions, sensors report values
based on their response time, sampling rate, resolu-
tion, sensitivity, and statistical analysis. Each of
these characteristics introduces unique uncertainties.

e Acquired Imperfections: During operation, sensors
are exposed to various environmental stressors such
as impacts, wind force, temperature fluctuations,
humidity, condensation, frosting or icing, vibrations,
and the accumulation of oil, dirt, or salt. These
factors contribute to gradual sensor degradation.

2. Imperfections Caused by SCADA System: SCADA
systems typically record data at 1- to 10-minute inter-
vals, meaning the recorded value is not an instanta-
neous measurement but rather a statistical estimate
derived from predefined algorithms. This limitation
can introduce errors, especially when rapid changes
occur within those intervals.

To improve the reliability and accuracy of the SCADA
data used for analysis, several corrective measures have
been recommended [4,6]:

e Use of High-Quality Sensors: High-quality sensors
should be robustly designed to withstand harsh envi-
ronmental conditions and provide superior perfor-
mance in terms of accuracy, precision, reliability,
repeatability, and reproducibility. Sensors with
improved structural integrity are less likely to degrade
under adverse conditions.

» Use of Multiple Data Streams: Employing multiple and
varied data streams enhances fault detection by cross-
referencing results, thereby increasing detection prob-
ability. For example, using both vibration monitoring
and debris analysis improves the reliability of detecting
bearing faults. While redundancy offers benefits, the
use of various sensors at different locations also im-
proves detection probability. However, this approach
may result in data overload, where the volume of
collected data becomes too large to process efficiently.
Additionally, the “law of diminishing returns” indi-
cates that deploying multiple sensors for the same task
may not yield significant new information.

e Use of Advanced Data Analytics Techniques: Various
methodologies have been developed to manage differ-
ent types of uncertainties. Aleatoric uncertainty, arising
from natural variability, is often addressed through
Probabilistic Approaches such as statistical analysis
and probability theory. Conversely, epistemic uncer-
tainty, resulting from knowledge gaps or incomplete
data, is more effectively managed through Possibilistic
Approaches, including fuzzy logic, expert systems, and
Bayesian networks.

Implementing these corrective measures can signifi-
cantly enhance data quality and reliability, thereby
improving the accuracy of fault detection, diagnostics,
and prognostics in wind turbine condition monitoring
systems.
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IV. POSSIBILISTIC APPROACH FOR
HANDLING EPISTEMIC
UNCERTAINTIES

A. REPRESENTATION BY POSSIBILITY
DISTRIBUTION FUNCTION

In this work, aleatoric uncertainties have not been dealt with
because values of a parameter varies with time; hence, it is
not possible to measure the same parameter multiple times
to enable the statistical evaluation of the uncertainties.

One effective method for addressing epistemic uncer-
tainties is through the use of the Possibilistic Approach.
This approach represents data as membership functions
rather than precise numerical values. A fuzzy variable X
is described by a fuzzy membership function. This member-
ship function can also be interpreted as a possibility distri-
bution function. Figure 2a illustrates how a possibility
distribution function, II(x), represents the variable X
through the degree of compatibility or truth associated
with different values.

The possibility distribution function, I1(x), maps the
values of the input variable X to a range between 0 and 1,
where [11,12]:

e a(x) =0 : The value is completely incompatible or
impossible.

e alx) =1 The value is
completely true.

fully compatible or

* 0 < a(x) < 1: The value is partially compatible, indi-
cating varying degrees of possibility.

Unlike probability density functions (PDFs), possibil-
ity distribution functions do not assign preference to any
specific value within the fuzzy interval. This feature is
advantageous in situations when dealing with incomplete,
sparse, or vague data, where conventional statistical meth-
ods may struggle to provide reliable results.

A feature of the Possibilistic Approach is the use of
a—cuts to represent possibility distribution function. An
a—cut of a possibility distribution function X, denoted by
X,, 18 a crisp set containing all elements of X whose
membership value is greater than or equal to a specified
threshold @. Mathematically, this can be expressed as
[11,12]:

Xo=[x3] ={reXlx<x<x} a€l0l] (2

where x = lowest real number value of the interval and x =
highest real number value of the interval.

The value of a can be in the range [0,1]. As a increases,
the interval [x,X] becomes narrower, representing values
with higher likelihood. Conversely, as the interval becomes
narrower, the certainty that the true value lies within that
interval decreases.

The a—cut representation allows for the extension of
various properties of crisp sets to fuzzy sets. By incremen-
tally changing the value of @, a nested family of sets is
generated Fig. 2b. These sets form a hierarchy where higher
a-levels correspond to smaller intervals with higher degrees
of possibility.

This concept is particularly useful because it allows
traditional interval analysis techniques to be applied to
fuzzy sets. When performing arithmetic operations on fuzzy
variables, the interval bounds generated by the a—cuts can
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Fig. 2. Tllustration of a fuzzy subset [13,14].
be manipulated using established rules for interval

arithmetic.

Properties of crisp sets that can be extended to fuzzy
sets through the use of a —cuts are referred to as cutworthy
properties. Such properties include operations like union,
intersection, and complement, which can be adapted to
work with fuzzy sets through the a—cut approach [11].

The use of a—cuts offers a practical means of applying
interval analysis techniques to fuzzy sets, enhancing the
ability to model and process uncertain or imperfect SCADA
data. This methodology is particularly useful for complex
systems like wind turbines, where data imperfections are
common. The advantages include:

* Handling Imperfections: By representing data as pos-
sibility distribution functions rather than precise points,
the approach can effectively handle vague, inconsis-
tent, or incomplete information.

e Compatibility with Interval Analysis: The use of
a—cuts allows well-established interval analysis tech-
niques to be applied to fuzzy data.

 Scalability: By varying the a-level, it is possible to
explore different levels of certainty and possibility,
providing a flexible framework for uncertainty
analysis.

Despite its numerous advantages, the Possibilistic
Approach has several limitations that can affect its practical
application, especially in scenarios requiring precise and
economically efficient decision-making. Some of the key
weaknesses include [11,12,15]:

e Imprecise Results: The reliance on possibility distribu-
tion functions instead of precise numerical values can
result in vague or overly conservative recommenda-
tions. When data is not well defined or incomplete, the
model may produce results that are too broad to be
actionable or economically feasible. This lack of pre-
cision can limit the approach’s effectiveness in provid-
ing clear guidance for maintenance or operational
adjustments.

* Loss of Information During Conversion: One signifi-
cant drawback of the Possibilistic Approach is the
potential loss of information when converting inspec-
tion or monitoring data to possibility distribution func-
tions. During this transformation, certain nuances or
details within the original dataset may be overlooked or
oversimplified, leading to less accurate or meaningful
results. This loss of detail can negatively impact the
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quality of the assessment and reduce the overall reli-
ability of the analysis.

 Violation of Consistency in Arithmetic Operations: The
propagation of possibility distribution functions
through arithmetic operations can lead to inconsisten-
cies. Unlike probability theory, which adheres to strict
mathematical rules during data manipulation, Possibil-
ity Theory may produce results that are inconsistent or
counterintuitive when complex calculations are per-
formed. This violation of consistency can compromise
the credibility and robustness of the analysis, particu-
larly when handling large datasets or intricate systems.

* Lack of Standardization: Unlike probabilistic methods
that are governed by well-established mathematical
frameworks and guidelines, the Possibilistic Approach
lacks universally accepted standards for implementa-
tion. This lack of formalization can result in subjective
and inconsistent application, especially when deter-
mining possibility distribution functions or evaluating
possibility distribution functions. The absence of stan-
dardized methodologies makes it difficult to compare
results across different studies or systems, reducing the
approach’s generalizability.

B. TRANSFORMING PROBABILITY
DISTRIBUTIONS TO APPROXIMATE
POSSIBILITY DISTRIBUTIONS

According to the Consistency Principle, a probability dis-
tribution function P(x) can be transformed to a number of
possibility distributions I1(x), provided IT(x) > P(x). Out
of all the possibility distributions the one which is maxi-
mally specific, that is, the possibility distribution that most
closely preserves the amount of information of the proba-
bility distribution, is the Optimal Possibility Distribution
Function. Developing and utilizing the optimal possibility
distribution can be a complex and computationally inten-
sive task. To address this challenge, simplified forms of
possibility distribution functions have been introduced.
Common examples include the triangular, trapezoidal,
truncated pseudo-triangular, and the Gaussian distribu-
tion. These simplified models provide a practical means of
approximating the original distribution while maintaining
essential characteristics [15,17,18].

Figure 3 illustrates the general shapes of these simpli-
fied distribution functions, which are typically derived by
transforming existing probability distributions into their
corresponding possibility distributions.

A possibility distribution function obtained through
such a transformation can be described using four key
parameters:

For confidence level = 0.99:
e=0.12, x, = x,,,, x, =x,£2.580

e x.: the core value representing the peak of the possi-
bility distribution,

* ¢: the minimal possibility level considered significant,

e x.: the nominal limit beyond which the possibility
rapidly diminishes (equal to €),

e x,: the threshold beyond which the possibility value
becomes negligible.

Optimal
Possibility

Pseudo-triangular
Possibility

L. Triangular
Possibility

Normalised Prob. Density
Membership Value

Fig. 3. Graphical illustration of the normal probability
distribution, the transformed optimal possibility distribution,
and the truncated pseudo-triangular possibility distribution
[15-17].

For unimodal distributions, the value of x, aligns with
the mode (the most probable value, which coincides
with the mean in a symmetric normal distribution) of the
original probability density function (PDF), denoted as x,,,.
Therefore,

X = X, (©))

The determination of x, depends on whether the
underlying distribution is bounded or unbounded:

» For bounded distributions — such as the triangular or
uniform distribution — x,, represents the finite support of
the distribution, that is, the maximum value within
which the distribution is defined.

o For unbounded distributions, such as the normal or
lognormal distributions, it is not feasible to consider the
entire domain due to their infinite tails. In these cases,
x,, must be carefully selected to represent a sufficiently
wide yet practical interval of the distribution.

Since unbounded distributions theoretically extend to
infinity, it is neither practical nor necessary to represent the
entire domain in the corresponding possibility distribution.
A widely used method for approximating possibility distri-
bution parameters from an unbounded probability distribu-
tion, such as the normal distribution, involves transforming
it into a Triangular Possibility Distribution Function
(TPDF), I1(x), where [15]:

a=x,—ko (4a)

b=x,+ko (4b)

o = Std. dev. of the original prob. dist.

By defining a confidence interval to capture a substan-
tial portion of the total probability mass, a significant
interval — determined by a confidence level — is selected
to effectively approximate the distribution’s behavior. For
instance, selecting a 99% confidence level provides an
interval that encompasses almost the entire area under
the normal curve, thereby retaining the most relevant
portion of the distribution. Under this condition,
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k =2.58. Using these bounds, a TPDF, II(x) can be con-
structed as:

Oif x<aorx>b
2L gfa < x <X,
II(x) =< %4 5
() f_;;iifxc<x<b ©®)
lifx = x,

This triangular function is a simplified representation
that captures the core (mode), support (bounded interval),
and spread (confidence-based width) of the original distri-
bution. The result is a computationally efficient and inter-
pretable possibility distribution.

However, this simplification comes with certain trade-
offs. The transformation from a normal probability distri-
bution function (PDF) to a TPDF inherently leads to a loss
of information. This occurs because the triangular function
essentially approximates the original distribution as having
Uniform Possibility Density within its core, disregarding
the variations in probability that are present in the normal
distribution’s bell shape. Consequently, although this trans-
formation is practical, it lacks the fidelity of the original
distribution and may misrepresent the actual uncertainty in
more sensitive analyses.

V. METHODS

A. SCADA DATA DESCRIPTION

To evaluate the feasibility of the proposed methodology,
SCADA data provided by the energy company EDP (2016)
has been utilized. This dataset comprises data collected
from four horizontal-axis wind turbines located off the
western coast of Africa. The data spans a two-year period
(2016 and 2017) with measurements recorded at 10-minute
averaging intervals. The datasets include values for 76
different parameters, covering various aspects of turbine
operation and performance. Additionally, an associated
dataset containing meteorological conditions recorded at
the same time intervals is provided, along with failure logs
detailing timestamps, damaged components, and related
remarks [3].

For this analysis, Turbine Number 7 (T07) has been
selected. The variables used in the calculation of the power
curve are listed in Table I.

To enable model development and testing, the dataset
was divided into two independent subsets: the 2016 data
was used for training, while the 2017 data served as the test
set to evaluate the model’s predictive performance.
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The total number of recorded instances for this turbine
is 52,445 for 2016 and 52,294 for 2017. During the same
time, total number of recorded instances for metrological
data is 52698 and 34832 for 2016 and 2017, respectively.
Since 2016 data was used for training, the data row that does
not contain all the values were dropped. It is expected that
the small number of dropped rows will not make any
significant effect on training.

In 2016, there were three recorded instances of failures.
Since these failures were for short durations and not rele-
vant for the analysis: high bearing temperature and high
transformer temperature, these rows were retained.

Figure 4 shows the relationships between Ambient
Wind Speed, Generator RPM, and Grid Produced Power
have been examined.

Figure 4a shows the effect of Ambient Wind Speed on
Generator RPM. The plot reveals a distinct relationship
between Ambient Wind Speed and Generator RPM, which
can be divided into three regions:

1. Low Ambient Wind Speed (Ambient Wind Speed < 4
m/s): When Ambient Wind Speed is below the Cut-In
Wind Speed (4 m/s), the frequency of Generator RPM
readings below 300 rpm is high.

2. Transition Region (4 m/s < Ambient Wind Speed < 12
m/s): When wind speed ranges between 4 m/s and
12 m/s (Rated Wind Speed), the wind turbine adjusts
its blade pitch angle to reach High RPM
Region. Hence, there are fewer readings in this
region.

3. High Ambient Wind Speed Region (12 m/s < Ambient
Wind Speed RPM <25 m/s): When wind speed is
above the Rated Wind Speed (12 m/s), the Generator
RPM increases from approximately 1250 rpm to
1650 rpm. However, once the wind speed exceeds
12 m/s, the wind turbine stabilizes the Generator
RPM at around 1650 rpm to ensure optimal perfor-
mance and prevent mechanical stress.

Figure 4b shows the effect of Ambient Wind Speed on
Grid Produced Power. The relationship between Ambient
Wind Speed and Grid Produced Power demonstrates the
following patterns:

1. Low Ambient Wind Speed (Ambient Wind Speed <
4 m/s): When Ambient Wind Speed is below the
Cut-In Wind Speed (4 m/s), Grid Produced Power is
generally negative or less than 275 kW.

2. Transition Region (4 m/s < Ambient Wind Speed <
12 m/s): The trend highlights a strong positive correla-
tion between wind speed and power generation until

TABLE I. Selected variables used for developing the model

Variable Short variable name Original SCADA Name Description Units

Timestamp 10-minute resolution

Ambient Temperature Amb_Temp Amb_Temp_Avg Average ambient temperature °C

Ambient Humidity Amb_Humidity Avg_Humidity Average ambient relative humidity %

Ambient Pressure Amb_Pressure Avg_Pressure Average ambient pressure millibar

Ambient Wind Speed Amb_Wind_Speed Amb_WindSpeed_Avg  Average wind speed within m/s
average timebase

Generator RPM Gen_RPM Gen_RPM_Avg Average generator shaft/bearing rpm
rotational speed

Grid Produced Power Grid_Prod_Power Grd_Prod_Pwr_Avg Power average kW

(Measured Produced Power)
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Fig. 4. Relationships between Ambient Wind Speed, Generator RPM, and Grid Produced Power [14].

the turbine reaches its rated capacity. As Ambient
Wind Speed increases, Grid Produced Power rises,
reaching approximately Rated Power (2000 kW) at
the Rated Wind Speed (12 m/s).

3. High Ambient Wind Speed Region (12 m/s < Ambient
Wind Speed RPM < 25 m/s): Between the Rated Wind
Speed and Cut-off Wind Speed, the wind turbine main-
tains Rated Power generation.

Figure 4c shows the effect of Generator RPM on Grid
Produced Power. This plot shows a clear relationship
between Generator RPM and Grid Produced Power:

1. Low RPM Region (Generator RPM < 1250 rpm): Grid
Produced Power remains negligibly low.

2. Transition Region (1250 rpm < Generator RPM <
1650 rpm): Grid Produced Power increases linearly,
reaching approximately 750 kW as the Generator RPM
rises within this range. This indicates a direct correla-
tion between RPM and power output within this
interval.

3. High RPM Region (Generator RPM =~ 1650 rpm): The

Generator RPM reaches its upper operational limit,
producing the maximum achievable power. Beyond

this point, the turbine maintains a stable RPM to
prevent mechanical stress and ensure efficient power
generation.

B. DATA PRE-PROCESSING

Data pre-processing is a critical step in the development of a
machine learning model, aimed at improving data quality
and ensuring algorithms perform effectively. It involves
correcting or removing vague, inconsistent, irrational,
duplicate, or missing values that may otherwise compro-
mise model accuracy and reliability.

In the case of wind turbine SCADA data, the dataset
often includes data points that deviate significantly
from expected patterns, particularly the power curve, and
are therefore classified as “outliers.” These outliers can
arise due to various explainable factors. For this work,
outliers have been identified based on the following
rules [3,14]:

Outlier Rule 1. Generator RPM =0 when Ambient

Wind Speed => 4 m/s. Although the wind speed is

above the Cut-In Wind Speed (4 m/s), the rotor remains

stationary because the wind turbine is in a shutdown
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state. This may occur due to various reasons, including
grid conditions or maintenance activities.

Outlier Rule 2. Grid Produced Power <= 0 when
Ambient Wind Speed <4 and Generator RPM > 0.
When the rotor RPM is low, the power generated is
insufficient to meet the power consumption required
for operation. The deficit is compensated by drawing
power from the grid, resulting in negative or zero
power output.

Outlier Rule 3. Grid Produced Power <= 0 when
Ambient Wind Speed => 4 and Generator RPM > 0.
Even though the wind speed exceeds the Cut-In Wind
Speed (4 m/s) and the rotor is rotating, power genera-
tion does not occur because the turbine is “free-wheel-
ing” in a shutdown state. This condition could be due to
grid issues, maintenance operations, or other shutdown
scenarios.

Apart from the predefined outlier rules, additional
anomalous data points need to be removed. These points
are often recorded during transitions between normal oper-
ation and shutdown states or vice versa. This shutdown
often takes place when the grid is saturated. They appear
scattered in the dataset and can be effectively identified
using DBSCAN (Density-Based Spatial Clustering of Ap-
plications with Noise), a density-based clustering algorithm
known for its robustness in handling noise and discovering
clusters of arbitrary shapes [19].

Two specific clustering rules have been applied [3,14]:

DBSCAN Clustering Rule 1. Ambient Wind Speed,
Grid Produced Power, eps value =2, min_samples
value = 10. To identify outliers based on the relation-
ship between wind speed and Grid Produced Power.

DBSCAN Clustering Rule 2. Ambient Wind Speed,
Generator RPM, eps value = 3.45, min_samples value =
10. To detect anomalies by examining the relationship
between wind speed and Generator RPM.

The application of these clustering rules helps to
effectively isolate and eliminate noise points, thereby
enhancing the integrity of the dataset.

The impact of the data pre-processing and outlier
removal is illustrated in Fig. 5, which compares the dataset
before and after cleaning. Eliminating outliers helps isolate

Il‘:.D I7‘.$ |/'Ih 70{0 2L
Amb_Wind_Speed

Fig. 5. Plot of power generated versus wind speed using SCADA
data. (a) Using raw data and (b) using data after removing outliers
[14].
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data points that follow the power curve, ensuring that the
machine learning model receives high-quality inputs. This
refinement enhances the model’s ability to accurately cap-
ture and represent the power curve, leading to more reliable
predictions.

C. FLOWCHART FOR PREDICTING
PRODUCED POWER

To develop an effective predictive model, it is essential to
understand the process in terms of its structure, environ-
ment, and operational dynamics.

Electrical power (Pgjeericar) Produced can be given as
[4,6]:

1
PElectrical = <2 pAU3) X CP()“vﬂ) X1 (6)
where Pgy,..rica = €lectrical power; p = air density, which is
dependent on the ambient temperature, humidity, and pres-
sure; A =rotor disk area; U = air velocity; Cp(4,8) = rotor
power coefficient, which expresses the recoverable fraction
of wind power and is a function of A (tip speed ratio) and
p (blade pitch angle); n=drive train efficiency
(generator power [ rotor power) (mechanical and
electrical).

The maximum theoretically possible rotor power coef-
ficient, Cp,,,, also called the Betz limit, can be determined
to be 0.59. The actual value of Cp(4,5) is below the Bentz
limit and is dependent on technical features of the turbine
and environmental factors [20].

This analysis reveals that Grid Produced Power has a
strong correlation with Ambient Wind Speed, making it a
pivotal factor for predictive modeling. In contrast, other
environmental variables such as Ambient Temperature,
Ambient Humidity, and Ambient Pressure exhibit only
weak correlations with Grid Produced Power. Recognizing
these differences helps in selecting the most relevant inputs
for the predictive model, thereby enhancing the accuracy
and reliability of power production assessments.

This insight serves as the foundation for developing a
simplified flowchart to calculate Predicted Produced Power,
as illustrated in Fig. 6. The flowchart highlights the relation-
ships between various environmental variables and power
generation, emphasizing the dominant influence of Ambi-
ent Wind Speed on power output.

D. SELECTION OF MACHINE LEARNING
ALGORITHMS
In this project, several machine learning algorithms were

evaluated for developing a robust predictive model. The
models considered include [3,14]:

1. Linear Linear Regression (LR), Lasso, Ridge, and
models Bayesian Ridge Regression

2. Tree-based Decision Trees, Random Forest (RF)
models

3. Boosting AdaBoost, XGBoost, and LGBoost
models

4. Support vector regression (SVR)

Among these, XGBoost was selected as the final model
based on its overall performance and practical advantages.
It demonstrated high level of goodness-of-fit (RMSE = 186,
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Fig. 7. Effect of Ambient Wind Speed on Predicted Produced
Power using XGBoost.

R*=0.93, MAE = 127) indicating a strong predictive
accuracy. Additionally, XGBoost was favored for its
computational efficiency and relatively simple implemen-
tation (Fig. 7).

VI. UNCERTAINTIES DUE TO MODEL

A. PROBABILITY DENSITY FUNCTION OF
MODELING ERROR

Figure 8 presents a plot of the error in Predicted Power
Production as a function of the Grid Produced Power. The
graph illustrates that, across the entire range of Grid Pro-
duced Power values, the prediction errors are generally
centered around a mean close to zero.

When the distribution of error values is analyzed, it
closely follows a normal distribution with a mean of 7.44

g
T
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¥
T

Error in Predicted_Prod_Power
T

T
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E) T oo
Grid_Prod_Power

Fig. 8. Effect of Grid Produced Power on Error in Predicted
Produced Power (difference between Grid Produced Power and
Predicted Produced Power) calculated using XGBoost.

and a standard deviation of 147.80. This suggests that the
prediction model maintains a balanced performance, with
errors symmetrically distributed around the mean.

B. REPRESENTATION OF MODELING
ERROR AS POSSIBILITY DISTRIBUTION
FUNCTION

As discussed in Section IV.B, the normal probability
distribution function (PDF) that characterizes the error in
Predicted Power Production can be systematically trans-
formed into a TPDF. This transformation provides a
simplified yet practical representation of uncertainty, par-
ticularly useful in possibilistic analysis where crisp proba-
bilities are replaced by degrees of possibility.
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In this context, the error distribution — originally
modeled as a normal distribution with a mean (mode) of
7.44 and a standard deviation of 147.80 — has been con-
verted into a triangular possibility distribution. This possi-
bility function uses the mode of the original distribution
(7.44) as the mean error value due to model. The support of
the triangle, which defines the full range of plausible error
values, is calculated using a +2.58c interval around the
mode. This corresponds to a 99% confidence level, ensuring
that the majority of the probability mass from the original
normal distribution is captured within the possibility
framework.

Mathematically, the triangular possibility distribution
is defined by:

* Mode (peak): 7.44
e Lower bound (a): 7.44-2.58 x 147.80
e Upper bound (b): 7.44+2.58 x 147.80

This transformation allows the model to account for
uncertainty in a more interpretable and computationally
efficient way, while still preserving the essential character-
istics of the original error distribution.

An advantage of using a possibility distribution func-
tion to represent uncertainty from modeling errors is that the
possibility measure is inherently more conservative than the
probability measure, making it well suited for decision-
making frameworks that prioritize zero-tolerance for errors.

C. POSSIBILITY OF ERROR DUE TO MODEL
IMPERFECTION

Figure 9 illustrates a comparison between the actual Grid
Produced Power and the Predicted Produced Power computed
at an a—cut=0, over a continuous 24-hour period on 10
November, 2017. This a—cut level represents the maximum
uncertainty scenario within the Possibilistic Framework,
incorporating the widest possible intervals for model output.

The plot reveals that the majority of the measured power
values lie within the outer bounds defined by the Certain —
Min and Certain — Max estimates. The fact that observed
values remain largely within these boundaries shows that the
possibilistic model effectively captures the range of possible
outcomes. It demonstrates that the model is capable of account-
ing for potential imperfections in the predictive model
itself.

2000

—
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o
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T
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Vil. UNCERTAINTIES DUE TO
MEASUREMENT

A. REPRESENTATION OF INPUT
VARIABLES AS POSSIBILITY DISTRIBUTION
FUNCTIONS

As outlined in Section III, SCADA data is inherently
affected by various imperfections, including sensor noise,
inconsistencies, inaccurate readings, and missing values.
These imperfections can significantly impact the reliability
and accuracy of any data-driven model if not properly
addressed. Developing a robust predictive model therefore
requires careful pre-processing and error-handling strate-
gies to mitigate the influence of such flaws.

Although a substantial portion of these data issues can be
identified and corrected during the training phase — through
methods such as data cleaning, normalization, and outlier
detection — additional sources of error may still emerge during
the model’s deployment. In this study, the model was trained
on data from 2016 and tested on data from 2017. During this
test phase, the model may encounter previously unseen
patterns, shifts in turbine behavior, or subtle inconsistencies
not captured in the training data. As a result, these residual
uncertainties and imperfections must be carefully considered
and quantified to ensure that the model remains both accurate
and resilient under real-world conditions.

In the Possibilistic Approach, instead of using fixed
numerical values for environmental variables such as
Ambient Temperature, Humidity, Pressure, Wind Speed,
and Power Coefficient as recorded by SCADA, the
approach models these variables as TPDFs.

A possibility distribution function for a variable is
constructed by stacking multiple intervals corresponding
to different a-levels. The process begins with the bottom
layer, where a = 0. At this level, the interval range is
defined as:

[(measured value — estimated limit value),
(measured value + estimated limit value) |

In the absence of a detailed study to precisely quantify
the interval, the estimated limit values used for calculations
are derived from existing literature and practical experi-
ence. For instance, the response time and uncertainty

- © Grid_Prod_Power
* Certain - Max
—Best Estimate
- Certain - Min

03:00
Nov 10, 2017

12:00

00:00
Nov 11, 2017

Timestamp

Fig. 9. Plot of Grid Produced Power and Predicted Produced Power incorporating uncertainties due to model at a—cut = 0 for a 24-hour

duration (10 November, 2016).
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associated with a measurement recorded by a cup anemom-
eter depend on various factors such as its construction
(e.g., dimensions, weight) and the degree of deterioration
over time (e.g., friction caused by corrosion).

Under ideal test conditions, a newly calibrated ane-
mometer may exhibit an inaccuracy of approximately 2%.
However, during actual operational conditions, this inaccu-
racy is likely to increase due to factors such as corrosion,
wear, misalignment, dust deposition, and other environ-
mental influences [4].

Therefore, at a = 0 (representing the interval within
which the expected value is considered to “certainly” lie),
the estimated limits around the measured values have been
determined based on practical estimates and previous expe-
rience. These intervals account for both the inherent inac-
curacies of the instruments and the additional uncertainties
introduced by operational degradation.

e Ambient Temperature : +1.0 °C
* Ambient Humidity : +£1.0%

* Ambient Pressure : +1.0 millibars
e Ambient Wind Speed : 0.5 m/s
e Power Coefficient : 0.45 +0.05

B. CALCULATION OF PREDICTED
PRODUCED POWER ACCOUNTING FOR
MEASUREMENT ERRORS

The calculation process within the Possibilistic Framework
involves performing computations over interval values at
various levels of certainty, represented by a — cuts. For
each selected value of a, ranging from O to 1, the corre-
sponding interval for each input variable is determined. The
overall methodology consists of the following key steps:

1. Interval Generation: To initiate the analysis, a specific
a value within the range [0,1] is selected. For this value,
the corresponding a — cut of each fuzzy number is
determined, yielding an interval representation for each
variable. Higher a values (closer to 1) correspond to
narrower intervals, reflecting greater certainty. Con-
versely, lower a values (closer to 0) result in wider

interval, indicating greater uncertainty in the vari-
able’s value.

2. Combination of Input Intervals: To thoroughly explore
the output range, various combinations of input interval
values are systematically analyzed. Each combination
corresponds to a particular set of input conditions at a
given a — cut. The evaluation of these combinations, as
detailed in Table II, helps quantify the output’s sensi-
tivity to input uncertainty and ensures comprehensive
coverage of all plausible input scenarios.

3. Calculation of Output Intervals: At each a—cut, the
output variable — Predicted Produced Power in this
case — is computed by evaluating the minimum and
maximum values of the output function over all possi-
ble combinations of input intervals. These calculations
are performed using the trained XGBoost model. This
step ensures that the full range of feasible outcomes is
considered for the selected a-level, thereby capturing
the propagation of uncertainty through the model.

4. Stacking of Intervals to Construct the Possibility Dis-
tribution: The intervals computed across all a—cuts
are then stacked to form the complete possibility
distribution function (PDF) of the output variable.
This stacking results in a comprehensive depiction
of uncertainty, ranging from the most uncertain sce-
narios (wide intervals at @ = 0), to the most certain
predictions (narrow intervals at @ = 1). This stacking
process creates a comprehensive representation of the
variable’s uncertainty, providing a full spectrum of
possibilities from the most uncertain (broadest interval)
to the most certain (narrowest interval).

By utilizing possibility distribution functions, the
model effectively captures and incorporates the uncertain-
ties inherent in SCADA-recorded environmental variables.
The application of intervals enables a more adaptable and
realistic representation of uncertain data — particularly
valuable when dealing with imprecise, inconsistent, or
sparse measurements.

This approach allows the prediction process to account
for varying degrees of uncertainty arising during measure-
ment, enhancing the model’s robustness and reliability,

Possible combinations of interval values used for calculating Predicted Produced Power.

Ambient temperature

Ambient pressure

Ambient humidity

TABLE L.

Combination Ambient wind speed

Combination_1 Min Min
Combination_2 Min Min
Combination_3 Min Min
Combination_4 Min Min
Combination_5 Min Max
Combination_6 Min Max
Combination_7 Min Max
Combination_8 Min Max
Combination_9 Max Min
Combination_10 Max Min
Combination_11 Max Min
Combination_12 Max Min
Combination_13 Max Max
Combination_14 Max Max
Combination_15 Max Max
Combination_16 Max Max

Min Min
Min Max
Max Min
Max Max
Min Min
Min Max
Max Min
Max Max
Min Min
Min Max
Max Min
Max Max
Min Min
Min Max
Max Min
Max Max
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even in scenarios where precise input data is unavailable.
Moreover, it ensures that the effects of measurement errors,
and other data imperfections are explicitly considered and
appropriately managed throughout the analysis.

C. POSSIBILITY OF ERRORS DUE TO
IMPERFECTION OF MEASUREMENT

Figures 10-12 present the results of calculations performed
using the Possibilistic Approach to assess the impact of
measurement uncertainties on the Predicted Pro-
duced Power.

Figure 10 illustrates the influence of the maximum and
minimum interval values of environmental variables on the
predicted power output. It is evident that different combina-
tions of these input values lead to significant variations in the
Predicted Produced Power. This sensitivity is largely attrib-
uted to the fact that, as described by Equation 6, the Predicted
Produced Power is proportional to the cube of the Ambient
Wind Speed. Consequently, Combinations 1 through 8 yield
noticeably lower power predictions compared to Combina-
tions 9 through 16. This difference is primarily due to the
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higher wind speeds used in the latter combinations. Within
each group (Combinations 1-8 and Combinations 9—16), the
variation is relatively small, largely because the air density
does not vary significantly across the combinations.

Figure 11 focuses on the effect of Ambient Wind Speed
on the Predicted Produced Power at a—cut = 0. This figure
highlights the pronounced influence of measurement uncer-
tainty on power prediction. The lower bound
(Certain — Min) of the predicted power is derived from
Combination 6, while the upper bound (Certain — Max)
corresponds to Combination 11. These bounds represent the
extremes of the predicted values based on plausible varia-
tions in the wind speed.

Figure 12 presents a comparison between the actual Grid
Produced Power and the Predicted Produced Power at
a—cut=0 over a 24-hour period (10th November, 2017).
The plot shows that the measured power values generally fall
within the outermost bounds defined by the Certain — Min
and Certain — Max predictions. This suggests that the pos-
sibilistic model effectively captures the range of potential
outcomes arising from measurement uncertainties in the input
variables.

Predicted_Produced_Power

Fig. 10. Impact of measurement error on Predicted Produced Power for various interval combinations listed in Table II at a—cuz = 0.
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Fig. 11. Effect of Ambient Wind Speed on Predicted Produced Power at acut = 0. Certain — Min is obtained from Combination_6 and

Certain — Max is obtained from Combination_11.
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Fig. 12. Plot of Grid Produced Power and Predicted Produced Power incorporating uncertainties due to measurement at a—cut = 0 for a

24-hour duration (10 November, 2016).

VIll. UNCERTAINTIES DUE TO
COMBINATION OF MEASUREMENT
AND MODEL

A. REPRESENTATION OF INPUT
VARIABLES AS POSSIBILITY DISTRIBUTION
FUNCTIONS

In this stage of the analysis, three distinct possibility
distribution functions (PDFs) are employed to represent
uncertainty in the input variables. These functions model
both measurement errors and model-related imperfections,
enabling a comprehensive uncertainty analysis in the pre-
diction of produced power. The three PDFs used are as
follows:

* Model_Error: This function represents the uncertainty
associated with model imperfection — specifically the
error arising from the limitations of the predictive
model itself. It was derived based on the error analysis
discussed in Section VI.B.

o Measurement_Error_Combination_6: This function
captures the lower bound of measurement uncertainty,
representing the Certain — Min scenario for Predicted
Produced Power. It is derived from Combination 6, as
detailed in Section VIIL.C.

o Measurement_Error_Combination_11: This function
captures the upper bound of measurement uncertainty,
representing the Certain — Max scenario for Predicted
Produced Power. It is derived from Combination 11,
also discussed in Section VII.C.

These possibility distribution functions are treated as
fuzzy numbers and are evaluated across multiple a—cuts,
which represent varying levels of confidence or certainty.

B. CALCULATION OF PREDICTED
PRODUCED POWER ACCOUNTING FOR
MODELING AND MEASUREMENT ERRORS

The combined effect of modeling error and measurement
error on the Predicted Produced Power is evaluated using
the principles of interval arithmetic applied at various a—cut
levels of the fuzzy numbers.

Each possibility distribution function is decomposed
into a—cut, which define interval ranges for each a-level
(a € [0,1]). For two fuzzy numbers, A and B, represented at
a given a—cut as:

A, = |a,a| and B, = |b,b|

the interval arithmetic operations are defined as follows:
Addition:

Aq + By = [ag + by, @y + by (7a)
Subtraction:
Aa_Baz [Qa_l;a’aa_ba] (7b)

These operations are used to propagate uncertainty
through the output variable (Predicted Produced Power)
by combining the fuzzy input intervals.

To apply these concepts of interval analysis, first a
value of « is selected. For this value of a, the a—cut of each
possibility distribution function is determined. Considering
all the values located in the a—cuts for every possibility
distribution function, the minimum and maximum values of
the output function are calculated. This step is repeated for
all a—curs for a € [0,1]. The results of all a—cuts are
combined to build the fuzzy membership function of the
output function.

Using this concept, the steps followed for the calcula-
tion of the Predicted Produced Power using fuzzy arithmetic
are as follows:

1. Initialize with a = 0: Select a value a of the member-
ship function starting from a = 0.

2. Determine a—cuts: For each possibility distribution
function (Model_Error, Measurement_Error_Combi-
nation_6, and Measurement_Error_Combination_11),
determine the interval corresponding to the
selected a—cut.

3. Calculate Certain — Min and Certain — Max:

e The lower bound (Certain — Min) of Predicted
Produced Power is calculated by subtracting the
Model_Error interval from the Measurement_Error
Combination_6 interval.
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e The upper bound (Certain — Max) is calculated by
adding the Model_Error interval to the Measuremen-
t_Error_Combination_11 interval.

4. Compute Output Interval: Using the above combina-
tions, determine the minimum and maximum values of
Predicted Produced Power for the given a.

5. Repeat for a € [0,1]: Repeat Steps 2—4 for multiple
a—cut levels (e.g., a=0, 0.1, ..., 1.0) to span the
entire range of uncertainty.

6. Stack a—cut Intervals: Combine the results of all
a—cuts to reconstruct the fuzzy membership function
of the Predicted Produced Power, effectively forming
its possibility distribution function.

This method ensures a thorough and mathematically
consistent handling of uncertainty, incorporating both mea-
surement variability and model imperfection into the final
prediction.

C. POSSIBILITY OF ERRORS DUE TO
COMBINATION OF MEASUREMENT AND
MODEL

Figure 13 illustrates the effect of Ambient Wind Speed on
the Predicted Produced Power under conditions of maxi-
mum uncertainty, represented by a—cut =0. This a-level
signifies the lowest level of certainty, where the input
variables are allowed to vary within their widest possible
bounds. The figure clearly highlights the pronounced
impact of combined measurement and model-related un-
certainties on the predicted power output.

At this a-level, the lower bound of the prediction
range — referred to as Certain — Min — is derived by
combining the model error distribution with the measure-
ment error from Combination 6, which represents the most
conservative (pessimistic) estimate. Conversely, the upper
bound, or Certain — Max, is determined by combining the
model error with the measurement error from Combination
11, representing the most optimistic scenario. Together, these
two boundaries define the extremes of predicted power based
on plausible variations in Ambient Wind Speed and the
associated uncertainty in the modeling process.

Figure 14 presents a time-series comparison of the
actual Grid Produced Power and the Predicted Produced
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Power at a—cut = 0 over a continuous 24-hour period on 10
November, 2017. This figure serves as a validation of the
possibilistic prediction approach. It shows that the majority
of the measured values fall within the envelope defined by
the Certain — Min and Certain — Max bounds. This indi-
cates that the possibilistic model not only accommodates
uncertainty but also does so in a way that encompasses real-
world observations, even under conditions of high variabil-
ity and limited data precision.

The fact that observed values remain largely within
these boundaries provides evidence that the possibilistic
model effectively captures the full range of possible out-
comes, even under significant uncertainty. More specifically,
it demonstrates that the model is capable of accounting not
only for uncertainties in environmental input variables (such
as wind speed and air density), but also for potential im-
perfections in the predictive model itself.

Overall, Figs. 13 and 14 underscore the value of the
possibilistic modeling approach in predictive power gener-
ation, particularly in operational contexts where uncertainty
is inevitable and precise measurements are difficult to
obtain. This method provides a comprehensive and realistic
representation of uncertainty, making it a suitable tool for
decision-making in wind energy forecasting.

IX. CONCLUSIONS

This paper presents a simple yet robust methodology for
predicting Produced Power from wind energy systems
using SCADA data, while explicitly accounting for uncer-
tainties arising from both modeling imperfections and
measurement errors. The approach integrates two comple-
mentary components:

* Machine Learning Models: Used to construct predic-
tive relationships between environmental input vari-
ables and power output.

e Possibilistic Framework: Used to systematically han-
dle uncertainty through the use of possibility distribu-
tion functions, derived from fuzzy logic and interval
analysis.

To demonstrate the applicability of this methodology, a
real-world case study was conducted using operational
SCADA data. The predictive model was trained using
various machine learning algorithms, with XGBoost
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Fig. 13. Effect of Ambient Wind Speed on Predicted Produced Power at a — cut = 0. (a) Certain — Min is obtained from Model_Error
and Measurement_Error_Combination_6 and (b) Certain — Max is obtained from Model _Error and Measurement_Error

Combination_11.
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Fig. 14. Plot of Grid Produced Power and Predicted Produced Power incorporating combined uncertainties due to measurement and

model at a—cut =0 for a 24-hour duration (10 November, 2016).

selected as the final model based on its superior perfor-
mance and computational efficiency.

The effectiveness of the Possibilistic Approach was
validated by comparing the Predicted Produced Power
under conditions of uncertainty against the actual Grid
Produced Power. The analysis showed that the observed
values remained largely within the predicted Certain — Min
and Certain — Max bounds. This result provides evidence
that the possibilistic model reliably captures the full range
of potential outcomes, even when input data is imprecise,
incomplete, or subject to operational variability.

More specifically, the methodology demonstrates a
clear capability to account for:

» Uncertainties in measurement (e.g., wind speed and air
density) in SCADA instrumentation,

e Structural limitations or assumptions in the predictive
machine learning model itself.

This ability to model and quantify uncertainty in both data
and model behavior makes the proposed approach especially
valuable for power forecasting in real-world applications,
where ideal measurement conditions are rarely met and system
performance may deviate from theoretical expectations.

In summary, the integration of machine learning with
possibilistic uncertainty modeling offers a practical, adapt-
able, and reliable solution for power prediction tasks in the
presence of real-world data imperfections.

DATA AVAILABILITY

The datasets presented in this study can be found in online
repositories given below:
https://www.edp.com/en/innovation/data/wind-farm- 1-
wind-turbine-scada-signals-2016
https://www.edp.com/en/wind-farm-1-wind-turbine-scada-
signals-2017
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