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Abstract: The steel-epoxy-steel sandwich structures provide enhanced corrosion resistance and fatigue resistance,
making them suitable for pipeline rehabilitation with effective repair and long-term durability. However, the repair
quality can be compromised by disbond between the steel and epoxy layers, whichmay result from insufficient epoxy
injection. Conventional ultrasonic testing faces challenges in accurately locating disbond defects due to aliased echo
interference at interfaces. This paper proposes a signal processing algorithm for improving the accuracy of ultrasonic
reflection method for detecting disbond defects between steel and epoxy layers. First, a coati optimization algorithm-
variational mode decomposition (COA-VMD) is applied to adaptively decompose the ultrasonic signals and extract
the intrinsic mode function components that show high correlation with the defect-related signals. Then, by
calculating the relative reflectance at the interface and establishing a quantitative evaluation index based on acoustic
impedance discontinuity, the locations of disbond defects are identified. Experimental results demonstrate that this
method can effectively detect the locations of disbond defects between steel and epoxy layers.
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I. INTRODUCTION
With the increasing operational lifespan of global energy
pipeline networks, aging infrastructure has led to severe
challenges, such as corrosion and leakage, posing significant
risks to industrial safety and environmental sustainability
[1,2]. In situ rehabilitation utilizing steel-epoxy-steel sand-
wich structures has emerged as a key strategy for maintaining
pipeline integrity. Among various reinforcement techniques,
this structure has gained widespread application in oil and
gas pipeline rehabilitation due to its exceptional sealing
performance, corrosion resistance, and mechanical reinforce-
ment capabilities [3]. This technology relies on epoxy injec-
tion to achieve interlayer bonding; however, disbond defects
often occur in practical engineering applications due to
factors such as temperaturefluctuations, insufficient injection
pressure, and uneven distribution [4]. These disbond defects
can result in a loss of interlayer bonding strength and lead to
localized stress concentration under operational loads, which
critically compromise the structural integrity and service life
of rehabilitated pipelines [5]. Therefore, detection of disbond
defects is crucial for evaluating the quality of pipeline
rehabilitation and ensuring long-term operational reliability.

As a conventional non-destructive testing (NDT) tech-
nique, ultrasonic NDT is employed in the inspection of
multi-layer structures [6,7]. It utilizes high-frequency

mechanical vibrations to transfer energy, and the ultrasonic
wave propagates through the materials until it encounters an
interface with discontinuity. The sudden change in acoustic
impedance between different materials causes a portion of
the incident ultrasonic wave to be reflected, producing an
observable reflection signal [8]. By capturing and analyzing
the characteristics of the reflected waves, such as amplitude,
it is possible to assess the quality of bonding within
sandwich structures.

Wang et al. [9] derived expressions for ultrasonic
longitudinal and shear wave transmission and reflection
coefficients in layered media using spring models and
established boundary conditions for the interfaces based
on the transfer matrix method. The experimental results are
basically consistent with numerical solution results, pro-
viding a theoretical foundation for ultrasonic inspection of
bonding interfaces of aluminum and polymethyl methacry-
late. Hou et al. [10] proposed an ultrasonic resonance to
evaluate the bonding between ultra-thin nickel sheets and
silicone films. By analyzing the attenuation characteristics
of ultrasonic resonance signals under different bonding
conditions, they defined a bonding coefficient to quantify
the strength of interfacial adhesion. Experimental results
demonstrated that bonding quality could be effectively
distinguished by setting appropriate thresholds. However,
due to the limitation of experimental conditions, the specific
relationship between adhesion coefficient and defects has
not been established. Sergey et al. [11] present an ultrasonic
pulse-echo method for detecting disbonds at the interfacesCorresponding author: Jing Rao (e-mail: jingrao@buaa.edu.cn).
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of adhesively bonded joints in automotive assemblies. The
method decomposes ultrasonic waveforms to isolate reflec-
tions from both metal-adhesive interfaces. By employing a
reference waveform acquired from a bare metal sheet, it
effectively suppresses strong reverberations in the first
metal layer. Experimental validation on steel and aluminum
specimens, respectively, demonstrated the technique’s abil-
ity to detect disbonds via phase inversion of echoes from the
second interface. However, this method was only detected
in specimens with a thickness of less than 2.5 mm.
Challenges faced in the detection of disbond defects in
thick-walled steel-epoxy-steel sandwich structures include
acoustic energy attenuation, interference from electronic
circuit noise, and environmental factors [12,13]. These
issues lead to diminished echo amplitudes at critical inter-
faces, complicating defect identification.

Variational mode decomposition (VMD) is an adaptive
signal decomposition method that can simultaneously esti-
mate multiple modes with high efficiency. It is particularly
suitable for decomposing and extracting ultrasound signals
[14]. Compared to empirical mode decomposition (EMD),
VMD avoids redundant components during the decompo-
sition process and significantly reduces the residual noise in
individual modes [15]. VMD operates by iteratively search-
ing for the optimal solution to the variational model,
determining the center frequencies and bandwidths of
each decomposed component, and effectively addressing
issues like mode mixing. However, VMD requires consid-
erable effort to determine the optimal number of modes (K)
and the penalty factor (α), often through multiple trials,
making it computationally intensive [16]. Xu et al. [17]
proposed a feature extraction method for ultrasonic signals
based on improved particle swarm optimization-VMD for
detecting cracks in hardwood logs. The method optimizes
decomposition parameters using minimum envelope
entropy as the fitness function and extracts defect-related
features by analyzing the Hilbert marginal spectrum and
energy ratios of sub-modes. Although the method is effec-
tive in obtaining optimal parameters, it relies on the initial
parameter settings. To the best of our knowledge, such
signal processing method has not yet been applied to the
detection of disbond defects in steel-epoxy thick structures.

To address these limitations, this study uses a coati
optimization algorithm-VMD (COA-VMD) framework for
adaptive parameter optimization. Dehghani et al. [18]
proposed the COA, a new population-based intelligent
optimization algorithm. The algorithm simulates the natural
behaviors of coatis during their predatory attacks on hyenas
and evasion from predators to find the optimal solution.
Unlike classical intelligent optimization algorithms such as
genetic algorithm and particle swarm optimization, COA
constructs a mathematical model by mimicking the natural
behaviors of coatis. Its search mechanism is divided into
two phases: predation and evasion, which provide strong
capabilities for both global search and local optimization,
and it does not require complex parameter settings. By
integrating COA with VMD, the optimal values for K and α
are autonomously determined, enabling precise extraction
of defect-sensitive frequency components. Based on this,
this study further establishes a quantitative evaluation index
based on acoustic impedance discontinuity to characterize
the location of disbond defects between steel and
epoxy layers. The remainder of this paper is organized
as follows: Section II presents the COA-VMD algorithm.
Section III describes the experimental setup and specimen

configurations. Section IV presents a comparison of the raw
and processed signals and gives the results of disbond
defect detection, followed by a discussion in Section V.
The conclusions are summarized in Section VI.

II. COA-VMD ALGORITHM
A. VMD ALGORITHM

VMD is an adaptive, non-recursive method that achieves
signal decomposition through variational optimization,
without the need to preset basis functions or wavelet
functions [19,20]. By employing variational optimization,
VMD breaks down original ultrasonic A-scan signals into
several intrinsic mode functions (IMFs), each with a distinct
center frequency and finite bandwidth. Each of these IMFs
represents a signal with combined frequency and amplitude
modulation, which can be expressed as:

ukðtÞ = AkðtÞcosðϕkðtÞÞ, (1)

where k represents the number of IMFs, with k= 1,2, : : : ,K.
ukðtÞ denotes the kth IMF; AkðtÞ is the instantaneous
amplitude of the kth IMF; ϕkðtÞ is the phase function of
the kth modal component, which typically contains fre-
quency modulation information, indicating how the phase
of the signal varies over time.

VMD is to formulate and solve a constrained varia-
tional optimization problem. The goal is to identifyKmodal
functions such that the total bandwidth of all decomposed
IMFs is minimized, and their sum equals the input source
signal [21]. The essential mathematical formula in the
VMD is presented in equation (2).8>>><
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where ∂t represents the partial derivative with respect to
time t, ωk corresponds to the center frequency, δðtÞ denotes
the Dirac delta function, ðδðtÞ + j

Πt ukðtÞÞ is the Hilbert
transform, the symbols ‖•‖ represent the norm, respec-
tively, and f denotes the ultrasonic A-scan signals.

The quadratic penalty factor α and the Lagrange mul-
tiplier operator λ are introduced to eliminate the constrained
behavior of the variational problem as shown in equa-
tion (3).
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where L is the augmented Lagrangian, the symbol <•>
represents inner product, and * is the convolution sign.
As indicated by equations (2) and (3), the performance of
VMD critically depends on two manually configured
parameters: the number of decomposition modes K and
the penalty factor α. Suboptimal parameter selection may
lead to mode redundancy, frequency aliasing, or residual
noise, thus necessitating a systematic optimization strat-
egy [22].
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B. COA-VMD ALGORITHM

The COA-VMD can automatically determine optimal
VMD parameters. This algorithm effectively reduces the
potential errors introduced by manual parameter selection
while enhancing the computational accuracy. As illustrated
in Fig. 1, the COA-VMD process involves: (1) constructing
a mathematical model based on coati behavioral simula-
tions and (2) implementing a two-phase search mechanism
(predation and evasion phases) that synergistically com-
bines global exploration with local optimization capabili-
ties. Notably, the algorithm operates without requiring
complex parameter configurations.

Before using the COA to optimize the parameters of
VMD, it is necessary to set the initial parameter ranges,
including (1) the population size M (where each coati
represents a candidate solution), (2) the maximum iteration
number N, and (3) the search boundaries for the target
parameters K (mode number) and α (bandwidth control).
In this framework, the position vector of the ith coati
Xi (i= 1,2, : : : ,M) is randomly initialized within the
defined parameter space, with K and α serving as the
optimization targets subject to the termination criterion
of reaching either maximum iterations N or convergence
thresholds.

Xi = lb + r · ðub − lbÞ, (4)

where lb and ub are the lower and upper bounds, respec-
tively, and r is a random number uniformly distributed from
0 to 1.

The fitness of each candidate solution is evaluated by
minimizing the envelope entropy. For IMF component uk,
the envelope entropy Ep is calculated as [23]:

8>>>>><
>>>>>:

Ep = −
XN
j=1

pj ln pj,

pj =
aðjÞXN

m=1

aðmÞ
, (5)

where a(j) is the envelope signal obtained from the Hilbert
demodulation of the IMF component uk and pj is the
normalized form of a(j).

In the phase of predation, a computational framework is
constructed to emulate the hunting conduct of coatis. The
population is evenly divided into two subgroups: one group
remains in the trees (keeping the current parameter settings
unchanged), while the other group positions itself on the
ground to capture prey (actively exploring new parameter
combinations). The optimal solution (prey) represents the best
parameter combination found so far. The coatis on the ground
update their parameter settings based on this optimal solution,
meaning they move toward better parameter combinations.
For the coatis in the trees, the mathematical expression is:

Xn+1
i = Xn

i + r · ðXn
best − I · Xn

i Þ, (6)

where Xn+1
i is the location information of the ith coati in the

(n+1)th iteration; I is a random integer between 1 and 2, and n
denotes the current iteration number.

The predation strategy enables coatis to explore diverse
locations within the search space, demonstrating COA’s
global exploration capability in navigating the problem
domain. For individuals awaiting prey on the ground, the
mathematical expressions are given by:

Xn+1
i =

�
Xn

i + r · ðIguanan − I ·Xn
i Þ, if f ðIguananÞ< f ðXn

i Þ
Xn

i + r · ðXn
i − IguananÞ, else

(7)

Iguanan = lb + r · ðub − lbÞ, (8)

where f ðXn
i Þ denotes the fitness value corresponding to the

position of the ith raccoon at the nth iteration, and Iguanan

represents the position of the prey that falls from the tree as
the optimal parameter combination currently identified
during the nth iteration.

The evasion phase is a mathematical model designed to
simulate coatis’ natural predator-escape behavior. This
strategy is triggered when certain coatis exhibit stagnation
or regression in their parameter combinations, prompting
them to simulate predator evasion by randomly adjusting
their parameters to escape potential local optima. This
mechanism facilitates exploration of new parameter spaces
and enhances global solution discovery. When attacked by
a predator, a coati flees from its current position, which is
mathematically represented as follows:8<
:

lblocal= lb
n ,

ublocal= ub
n ,

Xn+1
i =Xn

i −ð1−2rÞ ·ðlblocal+r ·ðublocal− lblocalÞÞ,
(9)

After each iteration, the population undergoes greedy
selection to preserve the highest-performing individuals.
The optimal parameters (K-best, α-best) are determined
when either the fitness value converges or the maximum
iteration count N is reached. Finally, the correlation coeffi-
cient between each IMF and the original ultrasonic A-scan
signal is calculated. A low correlation coefficient for any
given IMF indicates significant noise contamination,Fig. 1. Flowchart of COA-VMD algorithm.

Ultrasonic Detection of Disbonds in Steel-Epoxy Sandwiches 139

JDMD Vol. 4, No. 2, 2025



warranting its removal. The correlation coefficient is cal-
culated as follows [24]:

cork =

XS
s=1

ðuk,s − �ukÞðxs − �xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k=1

ðuk,s − �ukÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k=1

ðxs − �xÞ2
s (10)

where cork (k = 1, 2, : : : , K) represents the correlation
coefficient value for each order IMF, uk,s is the sth data
point of the kth IMF component, uk is the mean of the kth
IMF component, x is the sth data point of original ultrasonic
A-scan signal, and �x is the mean of the original ultrasonic
A-scan signal.

C. DISBOND DEFECT DETECTION OF
STEEL-EPOXY LAYERS

To enhance defect detection accuracy, this work employs
the COA-VMD algorithm to decompose ultrasonic A-scan
signals into their IMF components. The IMF component
with the highest correlation is then selected by computing
the correlation coefficients of all IMF components using
equation (10). Based on the time-domain amplitude char-
acteristics of this highest correlation IMF component, the
apparent reflectance is calculated. This reflectance metric
serves as the foundation for establishing a disbond defect
evaluation criterion. The following section details the
apparent reflectance calculation.

During ultrasonic wave propagation, reflection and
transmission typically occur at interfaces between different
materials due to acoustic impedance mismatch, accompanied
by changes in signal amplitude and phase. When the thick-
nesses of the media on both sides of the interface are much
greater than the ultrasonic wavelength, the reflection and
transmission coefficients can be approximated using plane
wave theory and are primarily determined by the acoustic
impedance of the media. In multi-layer structures, individual
layers exhibit distinct acoustic impedance due to variations in
material density and sound velocity across the layers [25]. At
the steel–epoxy interface, the reflected signal is received by
the transducer, and multiple echoes are generated as the
ultrasonic waves undergo repeated reflections between the
upper and lower boundaries of the medium [26]. Since these
multiple reflections occur within the medium, the signals
contain rich information about the bonded interface. The

presence of disbond defects alters the acoustic pressure
reflectance, which is primarily manifested as variations in
echo energy [27]. In practice, direct measurement of the
reflectance is challenging because the transmitted energy is
unknown [28]. Instead, it is proposed tomeasure the apparent
reflectance ra, estimated as the ratio of the reflection ampli-
tude at the steel-epoxy interface to that at the steel-air
interface. The acoustic impedance of air, steel, and epoxy
are shown in Table I. The calculated reflection coefficients at
the steel-epoxy and steel-air interfaces are −0.88 and −1,
respectively. A threshold of 0.88 is applied to identify
disbond in the tested regions of the steel-epoxy structure.
In real applications, the reflection amplitude of ultrasonic
A-scan signals from a steel–air interface can be measured
through a calibration experiment, and the apparent reflec-
tance ra can then be obtained accordingly [28].

ra =
A

Aref
, (11)

where A represents the amplitude of the interface reflection
signal of a steel-epoxy interface to be measured and Aref
represents the amplitude of the interface reflection signal
from a steel-air interface, where the thickness of the steel is

Table I. Acoustic impedance of different materials [29]

Material
Density
(Kg/m3)

Longitudinal wave
velocity (m/s)

Acoustic
impedance
(kg/(m2·s))

Steel 7800 5900 46 × 106

Air 1.2 340 408

Epoxy 1200 2337 2.8 × 106

Fig. 2. Configurations of (a) Specimen 1 and (b) Specimen 2.

Fig. 3. Experimental setup.
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the same as that of the steel layer in the steel-epoxy structure
under investigation. To reduce errors caused by manual
operation during the experiment, the ultrasonic signal was
normalized by using the amplitude of the second echo for
calculation.

III. EXPERIMENTAL PROCEDURE
A. SPECIMEN

Two steel-epoxy structures are used in this paper. The first
layer in Specimen 1 is steel with a thickness of 50 mm and

an arc length of 450 mm, with different thicknesses of
epoxy attached in the center (arc length of 210 mm), and air
at both ends (arc length of 120 mm, respectively). The

Table II. Ultrasonic phased array parameters

Probe parameters Probe

Number of arrays 32

Center frequency 5 MHz

Array spacing 0.6 mm

Array width 10 mm

Relative bandwidth (–6dB) ≥60%
Homogeneity in sensitivity ±2 dB

Fig. 4. Fitness function curve.

Fig. 5. Ultrasonic time-domain signals processed by VMD at region 1.
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configuration is shown in Fig. 2(a). Specimen 2 is a steel
pipe with a diameter of 813 mm, a part of which was
selected for testing in the configuration shown in Fig. 2(b).
The first layer of steel has a thickness of 15 mm and an arc
length of 450 mm, and the second layer is an epoxy with a
thickness of 15 mm, containing a disbond defect with a
thickness of 7.5 mm and an arc length of 225 mm; the third
layer of steel also has a thickness of 15 mm. In addition, to
determine the apparent reflectance, a corresponding cali-
bration experiment is required. A steel specimen with the
same material and dimensions as the first layer is used for
calibration, and the normalized echo amplitudes of each
signal are obtained and averaged to serve as Aref.

B. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 3, where an
ultrasonic phased array device is used to inspect the
steel-epoxy sandwich structures. The experiment was car-
ried out using a 64-channel phased array ultrasonic testing
device manufactured by TPAC (France). The phased array
ultrasonic probe (Doppler, China) is a 32-element linear

probe with a center frequency of 5MHz, an element spacing
of 0.6 mm, and a sampling frequency of 50 MHz, with
detailed parameters listed in Table II. This probe was
positioned on the steel surface with its scanning direction
aligned parallel to the axis. Consistent contact pressure was
maintained throughout the experiments, the aperture num-
ber was set to 8, and the gain was set to 15 dB using the line
scanning mode. For both Specimen 1 and Specimen 2, 12
uniformly distributed sampling regions were tested on each
specimen. For the calibration specimen, three uniformly
distributed regions were sampled and measured using the
same experimental setups.

IV. EXPERIMENTAL RESULTS
A. SPECIMEN 1

The COA algorithm is performed to optimize the VMD.
The population size of COA is set to 20, and the maximum
number of iterations is 10. The optimization range for the
penalty factor α is from 100 to 3500, and the range for the
number of decomposition modes K is from 2 to 15. Using

Fig. 6. Ultrasonic frequency-domain signals processed by VMD at region 1.
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the ultrasonic data at region 1 of Specimen 1 as an example,
the COA optimization results are shown in Fig. 4, where the
fitness value (minimum envelope entropy) converged to
1.3 × 10–4 by the 6th iteration. The optimal solution is then
preserved and exported, with the corresponding parameters
K= 9 and α= 208. Based on this optimal parameter com-
bination, VMD decomposition yields 9 IMFs. The time-
domain ultrasonic signals and frequency spectra of each
IMF are shown in Figs. 5 and 6, respectively. The correla-
tion of each IMF with the original signal was calculated
using equation (10), as shown in Table III. IMF 7 was
selected and normalized to calculate the apparent reflec-
tance, which exhibits the highest correlation with the
original ultrasonic A-scan signals.

The Aref before and after COA-VMD algorithm was
calculated to be 0.49 and 0.48, respectively. The apparent
reflectance of the ultrasonic signals acquired from Speci-
men 1 was then calculated using equation (11). The experi-
mental results are presented in Fig. 7(b), where the echo
reflectance ratio of the unprocessed signal exhibits signifi-
cant fluctuations (ranging from 0.45 to 1.1) across the 12
detection regions, with notable misclassification occurring
particularly at the defect edge (detection region 6). This
suggests that while disbond defects at the steel–epoxy
interface can be identified using relative reflectance,
some detection errors persist due to the influence of noise
and overlap of boundary echo signals. In contrast, after

COA-VMD processing, the apparent reflectance distribu-
tion becomes more uniform, and the previously misclassi-
fied region is corrected, thereby enhancing the accuracy of
ultrasonic disbond defect detection, as shown in Fig. 7(c).
This improvement can be attributed to COA-VMD’s ability
to retain signal components that are highly correlated
with the original ultrasonic signal while suppressing

Fig. 7. Defect identification results based on the apparent reflectance threshold: (a) the test specimen is divided into 12 regions,
(b) defect characterization results of the original ultrasonic A-scan signals, and (c) defect characterization results of the COA-VMD
processed ultrasonic signals.

Table III. Correlation coefficient between each IMF and the original signal

Intrinsic mode function IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

Correlation coefficient value 0.256 0.305 0.331 0.328 0.395 0.412 0.682 0.482 0.173

Fig. 8. Fitness function curve.
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high-frequency noise components with low correlation,
thus improving the overall quality of the ultrasonic signal.

B. SPECIMEN 2

To further demonstrate the capability of the COA-VMD
and apparent reflectance algorithm for disbond defect
detection, Specimen 2 with different thicknesses is used.
For detection region 1 of Specimen 2, Fig. 8 shows the
results of COA optimization with a goodness of fit value of
2.5 × 10–4 for the 6th iteration. After calculating K= 8 and
α= 1500, the decomposition is obtained by bringing in the
VMD as shown in Figs. 9 and 10. The IMF correlation
results are shown in Table IV, where it can be seen that IMF
7 has the highest correlation with the original ultrasonic
signal.

The values of Aref before and after COA-VMD proces-
sing were calculated to be 0.72 and 0.67, respectively.
Similarly, the apparent reflectance ra of the ultrasonic signal
obtained from specimen 2 and of the ultrasonic signal after
COA-VMD calculation was calculated using equation (11).

Figure 11(b) presents the disbond defect detection results
for the unprocessed signal. The amplitude ratio of the
untreated signal shows large fluctuations within a certain
range, and misclassification is observed in region 5, pri-
marily due to noise interference and the superposition of
transverse wave signals on the secondary returned longitu-
dinal waves. After COA-VMD processing, however, the
distribution of the apparent reflectance becomes more
consistent, and the misclassification in region 5 is corrected,
as illustrated in Fig. 11(c). These results demonstrate that
COA-VMD effectively extracts high-quality ultrasonic sig-
nals from sandwich structures with variable thicknesses and
enhances the accuracy of disbond defect detection. The
improved apparent reflectance profiles further confirm
COA-VMD’s ability to suppress overlapping echoes and
environmental noise, which is essential for accurate defect
localization. Overall, the successful application of this
method to Specimen 2 reinforces the versatility and reli-
ability of the proposed ultrasonic surface reflectance-based
approach for detecting disbond defects in sandwich
structures.

Fig. 9. Ultrasonic time-domain signals processed by VMD at region 1.
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V. DISCUSSIONS

The COA-VMD algorithm demonstrates significant ad-
vancements in detecting disbond defects in steel-epoxy-steel
sandwich structures. Compared to conventional manual
parameter tuning methods, the automation of K and α
selection reduces subjectivity and improves detection repeat-
ability, which is critical for industrial applications requiring
standardized quality assessments. By adaptively optimizing
VMD parameters through the COA, this approach effec-
tively suppresses noise interference and aliased echoes, as
evidenced by the stabilized apparent reflectance distributions
in both Specimen 1 and Specimen 2. However, the method

has some limitations that require further investigation.
First, while the algorithm effectively localizes the disbond
regions, it cannot quantify additional characteristics such as
the thickness of the disbond layers. This limits its applica-
bility in scenarios that require quantitative defect severity
assessment, such as evaluating residual structural strength.
Second, the current experimental validation is based on
two-dimensional testing methods applied to steel-epoxy
composite structures with predefined defect geometries.
The performance of this method on irregularly shaped
defects or materials with complex acoustic properties, as
well as its extension to three-dimensional detection, remains
untested.

Fig. 10. Ultrasonic frequency-domain signals processed by VMD at region1.

Table IV. Correlation coefficient between each IMF and the original signal

Intrinsic mode function IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Correlation coefficient value 0.261 0.297 0.356 0.361 0.252 0.362 0.641 0.535
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VI. CONCLUSION
In this study, an ultrasonic detection method for disbond
defects in steel-epoxy-steel sandwich structures is proposed.
To address the challenge of low detection accuracy of
ultrasonic disbond defects, a parameter-adaptive optimiza-
tion algorithm based on COA-VMD is introduced. The COA
autonomously determines the optimal VMD parameters,
specifically the penalty factor and the number of decompo-
sition modes, using the minimum envelope entropy as the
fitness function. This effectively minimizes the inaccuracies
introduced by manual parameter adjustments. After extract-
ing the IMFs with the highest correlation coefficient to the
ultrasonic signals, the apparent reflectance is calculated to
establish a quantitative evaluation index of the interface state.
This index, based on the acoustic impedance discontinuity at
the material interface, enables the identification of disbond
defects. Experiment results show that this method can locate
the disbond defects in steel-epoxy structures.
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