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Abstract

Geared-rotor systems are critical components in mechanical applications, and their

performance can be severely affected by faults, such as profile errors, wear, pitting, spalling,

flaking and cracks. Profile errors in gear teeth are inevitable in manufacturing and

subsequently accumulate during operations. This work aims to predict the status of gear

profile deviations based on gear dynamics response using the digital model of an

experimental rig setup. The digital model comprises detailed CAD models and has been

validated against the expected physical behaviour using commercial finite element analysis

software. The different profile deviations are then modelled using gear charts, and the

dynamic response is captured through simulations. The various features are then obtained by

signal processing, and various ML models are then evaluated to predict the fault/no-fault

condition for the gear. The best performance is achieved by an artificial neural network with

a prediction accuracy of 97.5%, which concludes a strong influence on the dynamics of the

gear rotor system due to profile deviations.

Keywords: Finite element modelling; Machine learning; Gear profile errors; Digital model;

Geared-rotor system.

1. Introduction

Gear constitutes one of the most vital components used in mechanical systems. They are

extensively used for transmitting motion and power from simple to very complex

mechanical systems. With the continuously growing demands of gear systems,

specifically in very high-speed applications, it is essential to achieve precise gearing

action. The fundamental law of gearing is essential to ensure the smooth and continuous

transmission of motion between gears. Despite the best manufacturing technologies and
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best practices followed across the industry, it is impossible to obtain ideal involute tooth

profiles, which are essential to abide as per law of gearing. Apart from that, the elastic

deformation of gears during meshing and gear tooth wear add to further errors and

deviations of gear tooth profiles. The gear profile deviations have an adverse effect on

gear transmission errors (TE). It is defined as the difference between the actual position

of the driven gear and the ideal position the gear would have occupied if the driving and

driven gears were of perfect conjugate profile. It sets gear mesh in continuous contact

without any deformation of gear mesh (Ghosh and Chakraborty, 2016).

Ghosh and Chakraborty (2016) mentioned noise, vibrations, and reduced efficiency in

mechanical systems as source of transmission errors which mainly arise due to profile

deviations, assembly errors, elastic deformations and wear and lubrication issues. TE

arises due to various types of faults associated with gears. The gear faults can be broadly

classified as operational faults, which are caused during gear operation and tooth profile

faults, which may be present due to initial manufacturing errors or may occur due to

operational faults, like wear. Mohammed and Rantatalo (2020) classified the gear

operational faults into two major classes based on: (i) lubrication-related failures:

overload failure and bending fatigue failure, which are independent of the system’s

lubrication and bound to occur with time; and wear, pitting and scuffing, which depend

on the lubrication of the system that is lubrication directly impacts these failure by

smoothening the interaction between gear tooth. and (ii) location-related failures: wear,

pitting, scuffing and flank overload, which occur on the tooth flank, whereas root

overload and bending fatigue failure occur at the tooth fillets near the root. The various

types of operational defects arising in gears are: (i) Cracks and breakage occur by

iniatiation of cracks at gear root, (ii) Gear tooth wear caused by wearing of gear tooth by

subsequent operations, (iii) Pitting and spalling resulting in formation of large pits due to

surface fatigue failure, (iv) Scuffing or scoring (adhesive wear), which is the surface

failure occurring due to lack of lubrication. Figure 1.2 depicts various classes of tooth

profiles and deviations in gears. The �� correspond to the length over which profile

deviations are evaluated. The profile deviations include: (i) Total Profile Deviation (��):

It refers to the distance between the actual profile trace, (ii) Profile Slope Deviation

(�퐻�): It refers to the distance between the design profile line and the mean profile line,

measured at the tip diameter, (iii) Profile Form Deviation (���): It refers to the distance
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between the two facsimiles of the mean profile trace, to enclose the actual mean profile

trace, (iv) Profile Crown (�� ) refers to modification given to the tooth surface with a

small amount of curvature.

Figure 1 Gear tooth profile deviations: (a) Total profile deviation, (b) Profile slope deviation,

(c) Profile form deviation and (d) Profile crown

Various researchers have tried exploiting tooth profile modifications and errors to attain a

smoother gear dynamic. On one hand, gear tooth profile errors are inevitable, whereas tooth

modifications are intentionally made to compensate for the degradation in performance due to

profile errors. Tesfahunegn et al. (2009) studied tooth profile modifications at the tip to

compensate for deflections under load, modelling them in linear and parabolic forms and

establishing the strong effect of modification on gear strength. Ma et al. (2016) discussed the

tooth profile modifications belonging to three classes: tip relief, root relief and whole tooth

profile modification and presented the equation for modelling profile modification curve at

the tip. Bonori and Pellicano (2007) analysed the non-linear vibration of spur gears in the
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presence of manufacturing errors treating them stochastically and modelled composite profile

error represented by first four harmonics of the Fourier Series as in equation 1
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where kE and k are amplitudes and phases, Ng and Np are the number of teeth on gear and

pinion respectively, and ωm is the gear mesh frequency. Mucchi et al. (2010) considered the

profile deviations in the study of the dynamics of the gear pump and modelled them as a

summation constant term depicting slope deviation and a sinusoidal term depicting form

deviation. Fernandez et al. (2014) analysed gear dynamics incorporating tooth profile

deviations and modelled as sinusoidal shapes with amplitude ��� and �� cycles as
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where, ��� is the profile form deviation, �퐻� is the profile slope deviation, s is the roll path

length, measured along tangent to base circle, and s0 and sf correspond to the starting and end

point on the involute. Zheng et al. (2023) established a model considering tooth profile

deviations and modelling the tooth profile error as a series of cosine functions as
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where,�푒�� and�푒�� represent the amplitude and phase of the nth cosine, respectively; and

��0 and � represent the angle at which the gear teeth turn from entering to exiting the

meshing area and represent the position corresponding point on the tooth profile. The

vibration-based condition monitoring and integration of machine learning in the same has

been a trending topic of research. Mohammed and Rantatalo (2020) discussed the

significance of condition-based monitoring (CBM) in reducing failures and unplanned

stoppages in gear systems. Sharma and Parey (2016) discussed the various signal parameters

that have been used for various fault predictions in gear systems. Researchers have tried

deriving various analytical and finite element models to study the gear mesh dynamics, which

is the main parameter to implement CBM in gear systems. Chen et al. (2020) analyzed time-

varying mesh stiffness and transmission errors as key excitations in gear meshing through an

analytical model validated against FEM results. Chen et al. (2021) developed an analytical

model to study the effects of tooth profile modifications, wear, corner contact, and structural

coupling on gear mesh stiffness.
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Zheng et al. (2023) improved existing analytical models of gear mesh by directly

incorporating tooth profile deviations, extended contact, and structural coupling along with

profile deviation. Saxena et al. (2016) performed a modal analysis of a gear rotor system

using ANSYS Workbench, obtaining mode shapes and corresponding frequencies. Tiwari

(2018) discussed the detailed analysis of torsional and transverse vibration of rotor systems

using one dimensional FEM elements. Visnadi et al. (2024) developed finite element model

of a gear rotor system to study gear mesh stiffness variations due to cracks. Liu et al. (2022)

discussed the integration of a digital twin (DT), which is a virtual representation of a physical

object, process or system coupled via real-time data for CBM. Kritzinger et al. (2018)

classified the concept of digital twin based on level of data integration between physical and

virtual entity: (i) Digital model which does not use any form of automated data exchange, (ii)

Digital shadow with one-way data flow and (iii) Digital twin with fully integrated flow of

data.

Further, the integration of machine learning to automate CBM for fault diagnosis is being

widely used. Praveenkumar et al. (2014) used a support vector machine model to detect faulty

and non-faulty gears based on wear criterion by acquiring vibration signals. Gecgel et al.

(2019) studied the performance of machine learning and deep learning models for fault

classification in gear tooth profiles using analytically simulated data. Lupea and Lupea (2022)

implemented multi-class classification and studied the performance of various classifier

algorithms to analyse mounting faults in an experimental rotor system setup. Das et al. (2023)

discussed the various works done, for fault identification in various elements of the rotor

system using machine learning (ML). The literature review has been done to start with the

transmission error and fault introduction in gears and then narrowed down to the profile

deviation. Subsequently, the profile modelling and work performed on the CBM, digital twin

and finally application of the ML.

Through this work, the aim is to develop the digital model of single-stage gearing, giving

more flexibility to introduce different profile deviations and modelling them in a realistic

manner and develop a machine learning model to predict the deviations based on the dynamic

response obtained from the system. For the same, the existing experimental rig setup is used

as a reference and step-by-step development, and validation of components is done. Figure 2

depicts the flowchart giving an insight into the step-by-step process followed for the study.

The gear profiles are derived from a gear chart to exactly replicate them in the digital model,

which is conventionally lacking in current work and has been achieved by fitting the

harmonic series. The work also becomes crucial with respect to the industrial aspect, where
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the coordinate measuring probe-based gear testers are used to benchmark the obtained gear

profiles against the required standards. This becomes a time-consuming task in industries for

quality testing, only considering three/four gear teeth for measuring deviations.

Figure 2 Flowchart concluding the procedure followed to develop the digital model

2. System Modelling

There are various assumptions which have been considered for subsequent development of

the model and are mentioned as (i) the developed components have been considered as linear,

isotropic and homogenous, (ii) loads applied are well within the elastic range of the

components (iii) defects except profile deviation have not been considered in the CAD

models, (iv) thermal considerations along with wear and tear during the operational aspect are

ignored, and (v) a few components in the model have been replaced with their equivalent

boundary conditions. Figure 3 depicts the experimental setup from which the numerical

model is derived. Motor of 1 HP was used to power the system, which drives the input shaft

connected via flexible coupling to the motor. The pinion is mounted on the input shaft, which

further meshes with the output shaft. Deep groove ball bearings support both the input and

output shaft at each of the ends. A magnetic brake is used in the model, which prevents free

rotation of the gear and ensures continuous mesh between the pinion and the gear. The

mountings are used to fix the model over the cast iron bed. The equivalent digital model

mainly consists of the modelling of the following components: shafts, pinion and gears and

replacing the rest of the components by equivalent boundary conditions. Tables 1,2 and 3

depict the attributes of each of the components. Figure 4 depicts the rendered CAD model

images of the components.
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Figure 3 Experimental rig setup

Table 1 Specification of the shaft

Sr. No. Parameter Particulars

Material properties

1 Material name Steel

2 Density 7850 kg/m3

3 Young's modulus, E 2.11011 Pa

4 Poisson's ratio, v 0.3

Physical measurements

5 Number of steps 2

6 Number of segments 3

7 Total length 295 mm

8 Segment wise length Segment 1: 70 mm

Segment 2: 190 mm

Segment 3: 35 mm

9 Segment wise diameter Segment 1: 10 mm

Segment 2: 12 mm

Segment 3: 10 mm

Table 2 Pinion and gear parameters used in the experimental rig
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Sr. No. Parameter Pinion Gear

Geometric properties

1 Type of profile Involute Involute

2 Number of teeth 16 35

3 Module (mm) 2 2

4 Pressure angle (°) 20 20

5 Pitch circle diameter (mm) 32 70

6 Base circle diameter (mm) 30.07 65.778

7 Addendum (mm) 2 2

8 Dedendum (mm) 2.5 2.5

9 Total height of tooth (mm) 4.5 4.5

10 Addendum diameter (mm) 36 74

11 Dedendum diameter (mm) 27 65

12 Profile/addendum shift coefficient (xmc) 0 0

13 Root fillet radius (mm) 1.381 1.415

14 Clearance (mm) 0.5 0.5

15 Tooth thickness (mm) 3.1416 3.14229

16 Space width (mm) 3.1416 3.14229

17 Backlash (mm) 0 0

18 Bore diameter (mm) 12 12

Material properties

Young’s Modulus (E) 210 GPa 210 GPa

Poisson’s ratio (v) 0.3 0.3

Table 3 Highlights the bearing dimensions used in the experimental rig

Sr. No. Parameter Value (mm)

1 Inner race groove radius of curvature (ri) 4.86

2 Outer race groove radius of curvature (ro) 4.95

3 Ball diameter (Db) 4.76

4 Bore diameter (d) 10

5 Outer diameter (D) 26

6 Bearing pitch diameter (Dm) 18
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Figure 4 Depicts the CAD model of gear, pinion and shaft

3. Validation
This section discusses the validation of each component to ensure that it behaves analogously

to its ideal physical equivalent. The components are validated based on their static and

dynamic behaviour. The validations are done to ensure the geometry, material characteristics,

mass and stiffness properties are in accordance with the ideal physical models. For the finite

element simulations, various modules of ANSYS Workbench have been used.

3.1 Validation of the shaft
The static validation of the shaft is done by comparing the deflection of the shaft from FEM

by making one end of the shaft cantilevered while applying the load on the other end against

the analytical deflection as in Figure 5 to validate the geometrical and material properties.

Table 4 summarizes the deviation for 3 loading conditions of the analytical and FEM

deflections. The dynamic validation is performed to validate the natural frequency of the

shaft, which is validated for the mass and stiffness properties.
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Figure 5 Depicts the modelling of the shaft for the static validation

Table 4 Depicts the deflection obtained from ANSYS and analytically

Load

applied (N)

Deflection from

ANSYS (mm)

Deflection from Castigliano's

theorem (mm)

%

Deviation

100 6.73 6.72 0.16%

200 13.46 13.43 0.22%

300 20.20 20.16 0.15%

Modal analysis is used for the dynamic validation of the shaft. The analysis is performed for

two end conditions (i) fix-fix ends of the shaft and (ii) Free-free ends of the shaft, ensuring

the behaviour of the shaft remains validated against all other intermediate conditions. Figure

6(a) and 6(b) depict the analytical FE model and the simulation setup in ANSYS Workbench,

respectively. The validation data is mentioned in Table 5, indicating the first 3 fundamental

frequencies within 4% deviation.
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Figure 6 (a) Depicts the FE model used for analytical modelling, (b) the 1st mode shape and
frequencies obtained in both transverse planes

Table 5 Benchmarking ANSYS simulation frequencies against the analytical solution

Sr.
No.

Boundary
condition

Mode
no.

Mode
type

Natural
frequency (Hz)
from theoretical

calculations

Natural
frequency (Hz)
from ANSYS

simulation

%
Deviation

1 Fixed-
fixed

1 Transverse 510.05 513.06 0.59%
2 Transverse 1484.74 1498.2 0.91%
3 Transverse 2869.04 2964.9 3.34%

2 Free-free
1 Transverse 664.58 669.67 0.77%
2 Transverse 1669.73 1685.3 0.93%
3 Transverse 3018.52 3138.5 3.97%

3.2 Validation of gear pair

The validation of the gear pair is done in 2 parts: first, the kinematic validation of the gear

pair ensures proper meshing and correct modelling of the ideal involute gear tooth profile and

then is followed by validating the meshing stiffness, which essentially takes care of the

flexibility and contact. For simulation, the pinion is given a constant rotational velocity of

100 rad/s for a period of 0.063 s with a surface mesh size of 0.5 mm elements and the gear
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ratio is calculated. The setup is depicted in Figure 7, where the gear and pinion are under

mesh. The instantaneous gear ratio lies within 6% of the ideal gear ratio, which is mainly

attributed to the contact ratio effect. The average gear ratio comes out to be 2.1870 against

the ideal gear ratio of 2.1875, which accounts for 0.02% deviation. Figure 8 depicts the gear

mesh mode, where gear teeth are taken as ideal involute profiles.

Figure 7 Setup for rigid dynamic analysis of gear pair in ANSYS Workbench
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Figure 8 Variation of gear ratio during gear meshing obtained from the ANSYS simulation
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For the mesh stiffness validation, analytical models are initially formulated, taking the

stiffness of the gear tooth, pinion tooth and contact mesh stiffness into consideration, and

then benchmarked with equivalent stiffness obtained from FEM. Figure 9 shows the

schematic used for deriving the energy expressions and further development of the gear mesh

stiffness formulations. The relevant dimensions of gears are obtained from Table 2. X and Y

denote the Cartesian coordinate system; X’ and Y’ denote the transformed coordinate system

where the Y’ axis is aligned along the axis of the tooth, dy’ denotes the elemental section

thickness of the tooth at distance y’ measured along the Y’ axis, � is the involute angle or

polar angle of the involute profile, λ is the angle between the start of the involute at the base

circle and the line of symmetry passing through the tooth, �� is the angle made by the force

acting normally to the involute profile with the line perpendicular to the line of tooth

symmetry, ψ denotes the angle made by the instantaneous normal to the involute with respect

to the Y axis. � is the force acting at point C normal to the tooth, and ( )invr  is the radial

distance from the origin to the instantaneous point on the involute curve. The various

dimensions of each gear and pinion have been summarised in Table 6.

Table 6 Various dimensional parameters for gear and pinion

Parameter Pinion Gear
l 0° 0°
u 4.29° 2.26°
 6.48° 3.43°
Rb 15.04 mm 32.89 mm
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Figure 9 Model used for determining tooth stiffness

The parametric equation for the involute profile is given as

(sin cos )bx R     , (cos sin )by R     (4)

The width of the tooth is determined to be ( ) 2 ( )sin( )inve r     . The strain energy and

stiffness expressions are mentioned as

t b a sU U U U   (5)

with
2 '
2b
M dyU
EI

  ;
2 '

2s
r

S dyU
A G

  ;
2 '
2a
F dyU
AE

  ;

and
2

2st
t

Fk
U

 (6)

where, Ub is the bending energy, Us shear energy, Ua axial compression energy, E and I

denote Young’s modulus of the gear material, and P, M, and S denote the load, moment, and

shear force, respectively. The integration is carried out using the Gauss quadrature due to the

high level of complexity involved with the implicit expressions, and the convergence was

observed with 120 Gaussian points. Figure 10 depicts the setup to determine the tooth
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stiffness in ANSYS with a load applied at the tip of the gear. Table 7 compares the tooth

stiffness for gear and pinion obtained analytically, and that from FEM using the force-

deflection curve in Figure 11, indicating a deviation of 6.41%. This accounts for the portion

of the tooth up to the involute profile, and the tooth fillet stiffness is disregarded in the

analysis. The analysis also considers the gear body stiffness, which increases the overall

stiffness.

Figure 10 Setup for tooth stiffness determination in ANSYS static structural workbench

Figure 11 Force-deflection curve for determining pinion and gear tooth stiffness

Table 7 Summary of pinion and gear tooth stiffness obtained analytically and ANSYS
simulation
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Particular Pinion stiffness

analytically

(N/mm)

Stiffness

from

ANSYS (N/mm)

%

Deviation

Pinion 457520.03 428210.52 6.41%

Gear 352612.75 328127.05 6.93%

Once the tooth stiffness is validated, the validation for contact mesh stiffness is performed.

Marafona et al. (2021) stated that contact stiffness mainly refers to the stiffness related to the

instantaneous point of contact of gears in mesh. Contact stiffness plays a vital role in

determining the gear dynamics and, hence the overall characteristic of the gear rotor system

and is greatly influenced by any minor deviations in tooth profile. Marafona et al. (2021)

discussed three main approaches to calculate the gear tooth compliance, yh, which are

mentioned in equations (7) through (9).

1) Hertzian and compression approach used as Hamilton Standard (Marafona et al.,

2021):

2 2
1 2

1 2

1 14 1
4h

v vFy
b E E




                    
(7)

2) Semi-empirical approach developed by Palmgren (Marafona et al., 2021):
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3) Closed-form approach developed by Weber (Marafona et al., 2021):
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where, bh, is the half Hertz contact width, subscripts 1 and 2 denote the pinion and gear

respectively, h1 and h2 are the distances on the pinion and the gear between the point of

contact and the tooth centreline along the line of action and 1 2,  are the curvature radii of

the pinion and gear respectively, and E1,�1 and E2,�2 denote the Young’s modulus and

Poisson’s ratio of pinion and gear material, respectively, and F is the force. The contact

stiffness is then given by: h
h

Fk
y

 . The three models for mesh stiffness are evaluated using

equations 7 to 9. The contact stiffness using the Hertzian and compression approach is found

to be 9.43105 N/mm, which becomes constant and thus independent of force. The mesh

stiffness variation obtained from Palmgren and Weber model is depicted in Figure 12(a) and

12(b) respectively. For FE modelling, the angle of action for the pinion is divided into 15

incremental steps, with the initial contact point to be taken as 0° and gradually an increment

of 0.306° is given to the pinion and the contact stiffness is evaluated. The hub of the gear is

fixed, and torque is applied on the pinion, which is free to rotate about its axis. Contact

elements are deployed to capture the contact stiffness accurately. Figure 13 summarises the

setup for the FE modelling that is used in the ANSYS environment. Figure 14 depicts the

contact stiffness and contact area as the meshing occurs. The contact stiffness starts from an

initial value of 1.86×107N/mm at θ = 0° and reaches a maximum value of 2.08×107N/mm at

an angular rotation value of θ = 2.76°, post which it starts decreasing and reaches a value of

1.91×107N/mm. Figure 15 compares the contact stiffness values from FEM against analytical

models, where it agrees closest with the Weber model with a maximum deviation at θ = 2.76°

stands at a 9.48%. It is due to the FE model couples the stiffness of the gear body and leading

to deviation from the ideal line contact at all instances during the meshing of the gears. Thus,

the overall stiffness of the meshing model is given by
1 2

1
1/ 1/ 1/

tp
st st

h

k
k k k


 

, where 1
stk is

the pinion tooth stiffness and 2
stk is the gear tooth stiffness. The maximum stiffness therefore

obtained from FEM deviates by maximum 6.66% against the stiffness obtained analytically.
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Figure 12 Contact stiffness-pinion angular rotation as obtained by the (a) Weber model (b)
Palmgren model

Figure 13 Depicts the setup for gear mesh stiffness analysis in ANSYS workbench (a)
Isometric view (b) Front view
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Figure 14 Variation of contact stiffness with angular rotation of the pinion; the primary axis
depicts the stiffness values, and the secondary axis depicts the contact area values

Figure 15 Comparison of analytical models and finite element models for contact stiffness
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3.3 Sub-assembly and assembly validations

This section discusses the sub-assembly and system assembly validations. The validation

performed ensures the correct modelling of contacts and boundary conditions, and accurate

meshing of the gear pair. The modal analysis is carried out to validate the dynamic behaviour.

The pinion and gear are taken to be rigid for sub-systems while flexible for final assembly

validation, and the shaft is taken as a flexible body for both cases. For validating the finite

element solid element data, the 1-D FE analysis is carried out. The 1-D FE analysis is carried

out using 8 beam elements (Tiwari, 2018), neglecting the material damping of the shaft. The

boundary conditions for the free-free case result in the shear force and the bending moment

being zero at the free ends, while for fix-fix end conditions result in displacement and slope

at the fixed end are set to zero for sub-system validation. Table 8 summarises the deviations

of frequencies obtained from the solid model and the 1-D model using FEM for the sub-

assemblies. For system validation, two frequencies are considered: the fundamental

transverse and torsional frequencies. The fundamental transverse frequency is obtained

experimentally (Deshpande & Tiwari, 2024), whereas the torsional frequency is obtained

using 1-D FEM (Tiwari, 2018). The bearings and coupling ends are modelled as remote

displacements with bending and rotation allowed. Figure 16 depicts the torsional mode of

vibration for the system. Table 9 summarises the deviation of natural frequencies of the

digital model against the equivalent physical/1-D FEM analytical model.

Table 8 Represents the validation data for sub-systems

Particular Boundary

condition

Natural frequency (Hz)

from 1-D FEM

Natural

frequency (Hz)

ANSYS

simulations

%

Deviation

Shaft with

Pinion

Fix-Fix 424.08 435.27 2.64%

Free-Free 625.52 634.54 1.44%

Shaft with

Gear

Fix-Fix 273.7 279.4 2.08%

Free-Free 536.49 547.43 2.04%

The deviations in the 1-D model and solid model FE simulations are attributed to the

following reasons: (i) In the torsional case, with the 1-D model the gears are rigid bodies
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whereas, in the 3-D model the gears are taken as flexible bodies to mesh, (ii) Cases with fix-

fix boundary condition have more deviation as in 3-D model several nodes are restricted from

displacement, unlike the case in the 1-D model, thus adding to some artificial stiffness. Some

possible deviations are expected of the physical system components with the 3-D model,

which is mainly attributed to the following reasons: lack of homogeneity and isotropy in the

3-D models, tolerances involved in manufacturing and unbalances in the physical system.

Table 9 Benchmarking the fundamental natural frequency of the system obtained from 3-D
model against the test rig and 1-D model.

Frequency

Type

Fundamental natural

frequency from test rig / 1-D FEM

(Hz)

Fundamental natural

frequency (Hz) from

ANSYS

%

Deviation

Transverse 234.00 (Experimentally) 217.45 7.07%

Torsional 6611.9 (Analytically) 6112.23 7.56%

Figure 16 A snip of modal analysis workbench depicting torsional frequency and mode shape

3.4 Bearing linearisation

Bearing forms an essential component of the experimental rig setup as the complex dynamics

of the bearing has a major effect on the overall dynamics of the system. The inclusion of the

bearing CAD model possesses two main challenges: the complex geometry of the bearing

elements (such as balls, races and their eventual contact) making it computationally
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expensive and the non-linear behaviour of the bearing further makes the analysis of the

system complicated. Thus, a simplified approach has been used here to include the bearing

dynamics in the operating force range of the model by linearising the bearing and treating it

as a spring model. For the slow and moderate speeds, deep-groove ball bearings subjected to

a radial load that causes the radial deflection only (axial deflection being zero), the force-

deflection equation given by Palmgren (Harris and Kotzalas, 2006) is

2/3
4 max

1/34.36 10
cosr

b

Q
D




  (13)

where, r is the displacement (m) in the radial direction due to the maximum rolling element

load maxQ (N), Db is the diameter of the ball (m) and is the contact angle (deg.). The value

for the parameters is mentioned in Table 10. for the bearing are and Db = 4.764 mm

and maxQ expression is obtained using Stribeck’s equation (Harris and Kotzalas, 2006) for the

radial load, Fr. Considering a resisting torque of 0.5639 N-m, which is being implemented

with the help of a magnetic brake on the gear shaft. The forces acting in the tangential and

radial directions on bearing are obtained as in Table 10. The bearing is then linearised using

equation 13 in the obtained force range and the stiffness values are mentioned in Table 11.

Table 10 Load acting on bearings

Bearing Location Direction with respect to line of action Load (N)
Input shaft Tangential 7.65
Input shaft Radial 2.93
Output shaft Tangential 9.63
Output shaft Radial 2.93

Table 11 Stiffness value obtained for bearings

Sub-assembly Parameter Value (N/m)
Gear-Shaft kgr (Radial stiffness) 11934.94

kgt (Tangential stiffness) 17785.13
Pinion-Shaft kpr (Radial stiffness) 11934.94

kpt (Tangential stiffness) 16753.82

4. Modelling of profile deviation and simulations
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To model the profile deviations exactly, the ‘web plot digitiser’ app was used, which involves

the coordinate extraction of actual gear profiles from the gear chart provided by the

manufacturer. The required profile is grade 6 as per DIN standards. Any grade higher than

this is considered faulty, and lower grades are considered non-faulty. The different profile

deviations for each of the 40 fault cases are summarised in Table 12. For brevity, only the

first 4 faults are depicted in Figure 18. The faults are assumed symmetrical on the tooth, and

each of the gear teeth has the same profile to shorten the simulation time. Practically varying

deviations can be seen as a superposition of various single deviations. The pinion and gear

are bonded to the shaft. The coupling between the input shaft and the motor is replaced by a

revolute joint at which a constant angular velocity of 14 Hz is applied, which acts as input

power supplied to the system by the motor. A resisting moment of 0.5639 N-m is applied to

replace the magnetic brake on the gear shaft. The bearings at the shoulders of the shaft are

replaced by springs at 4 mm from the shoulders, as in Figure 17. Further, to ensure proper

meshing of gears, a frictionless contact type is used between the gear and pinion teeth. The

entire system is meshed with a mesh size of 1.5 mm with an additional contact mesh of 0.5

mm, ensuring proper meshing of gears by validating the gear ratio to be within 0.04% of the

ideal gear ratio. The meshing between the gears is formulated using the augmented Lagrange

solver method, ensuring efficient formulation of non-linear contact. The data is collected for

40 fault cases as per Table 13, using four deformation probes in Y and Z directions placed at

30 mm from the gear/pinion on respective shafts at a sampling rate of 1000Hz to accurately

capture the meshing frequency. Figure 19 depicts the displacement data for the fault-1 case

obtained from the simulation collected using four probes. Further, Table 14 benchmarks the

simulation signal against the experimental signal (Deshpande and Tiwari,2024) qualitatively,

where cross-correlation is used to find the hidden patterns in the experimental signals

corresponding to fault cases 11, 10, 9 and 8. An average correlation value of 0.52 is obtained;

the deviations are likely due to: replacing the motor and magnetic brake by equivalent

boundary conditions, simplified bearing dynamics, unintentional defects in the assembly of

the experimental setup, noise in the data acquired through sensors and negligence of profile

deviations in the pinion.
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Figure 17 Model setup in ANSYS Workbench

Table 12 Depicts the�� for different fault cases

Fault �� (흁�
)

Fault �� (흁�
)

Fault �� (흁�
)

Fault
��

(흁�)

Fault 1 16.5 Fault 11 8.6 Fault 21 4.3 Fault 31 11
Fault 2 10.7 Fault 12 5.8 Fault 22 4.5 Fault 32 `9.2
Fault 3 12.7 Fault 13 5.7 Fault 23 7.8 Fault 33 3.2
Fault 4 22.7 Fault 14 5.9 Fault 24 5.8 Fault 34 4.2
Fault 5 14 Fault 15 6.9 Fault 25 17.5 Fault 35 3.8
Fault 6 11.7 Fault 16 6.4 Fault 26 13 Fault 36 30
Fault 7 11.9 Fault 17 6.1 Fault 27 15.3 Fault 37 4
Fault 8 8.6 Fault 18 6.4 Fault 28 16 Fault 38 5
Fault 9 8.3 Fault 19 3.6 Fault 29 12.4 Fault 39 7.2
Fault 10 8.7 Fault 20 4.3 Fault 30 10 Fault 40 24.9
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Figure 18 Profile deviations obtained from gear charts for 1st four fault cases

Table 13 Lists the names of the probes and data acquired

Probe Location
IP1 30 mm from the pinion towards the motor on the input shaft
IP2 30 mm from the pinion towards the free end side of the input shaft
OP1 30 mm from the gear towards the free-end side of the output shaft
OP 2 30 mm from the gear towards the magnetic brake on the output shaft
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Figure 19 Depicts the displacement data collected using four probes for fault case 1

Table 14 The cross-correlation values of the signals obtained from simulations against the

experiment

Fault Sensor Correlation
Value Fault Sensor Correlation

Value

11

IP1Y 0.49
9

IP1Y 0.49
IP2Z 0.57 IP2Z 0.59
OP1Z 0.49 OP1Z 0.51
OP2Y 0.52 OP2Y 0.51

10

IP1Y 0.49
8

IP1Y 0.51
IP2Z 0.59 IP2Z 0.60
OP1Z 0.51 OP1Z 0.50
OP2Y 0.52 OP2Y 0.48

5. Machine Learning

Once the data is acquired white Gaussian noise is added to make the data more realistic and

robust, and then various statistical parameters for condition monitoring are determined:

Energy Ratio (ER), FM0, Crest Factor (CF), Skewness(S), FM4, NA4, RMS, Mean, M6A,

M8A, Kurtosis(K) and Standard deviation (SD) (Sharma and Parey, 2016). The best signal to

predict the fault state is then determined using the Mutual Information (MI). The MI is a

measure from information theory that quantifies the amount of information one random
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variable contains about another, and hence, it is crucial to determine the most informative

features with respect to the target variable. The different signals are analysed, and a particular

parameter with the maximum MI score across 8 signals is chosen to be a feature for the

development of ML models. Table 15 lists the features along with their MI scores and the

signal from which they are taken. For dimensionality reduction, further correlations and

principal component analysis (PCA) are performed. Table 16 depicts a correlation matrix

where M6A is eliminated based on its low MI score and high correlation with M8A. Figure

20 depicts the PCA analysis and the variance of 95% achieved with 8 components.

Table 15 Final list of selected features

Feature MI Score Signal
ER 0.2449 OP1Z
FM0 0.2335 IP2Y
CF 0.1690 OP1Y

Skewness 0.1578 OP1Y
FM4 0.1382 IP2Z
NA4 0.1070 IP2Z
RMS 0.0896 OP1Z
Mean 0.0798 IP1Y
M8A 0.0698 IP1Z

Kurtosis 0.0643 IP1Y
SD 0.0643 IP2Z
M6A 0.0546 IP2Y

Total MI
Content 1.4729

Table 16 Correlation matrix for the final set of selected features

Feature/Feature Mean SD S RMS K CF FM4 M6A M8A FM0 ER NA4
Mean 1.00 -0.03 -0.32 -0.31 0.26 0.12 0.08 0.24 0.03 -0.09 0.11 0.14

SD -0.03 1.00 -0.14 0.51 0.03 0.21 -0.40 -0.05 -0.22 0.55 0.02 0.60
S -0.32 -0.14 1.00 0.19 0.18 -0.01 0.22 0.18 0.07 -0.03 0.07 -0.03

RMS -0.31 0.51 0.19 1.00 -0.02 -0.31 -0.20 -0.01 -0.08 0.36 -0.13 0.01
K 0.26 0.03 0.18 -0.02 1.00 0.37 0.06 0.96 -0.03 -0.31 -0.14 0.04

CF 0.12 0.21 -0.01 -0.31 0.37 1.00 -0.08 0.31 -0.05 -0.17 -0.25 0.45
FM4 0.08 -0.40 0.22 -0.20 0.06 -0.08 1.00 0.12 0.88 -0.17 0.21 -0.15
M6A 0.24 -0.05 0.18 -0.01 0.96 0.31 0.12 1.00 -0.02 -0.27 -0.15 -0.01
M8A 0.03 -0.22 0.07 -0.08 -0.03 -0.05 0.88 -0.02 1.00 -0.11 0.15 -0.04
FM0 -0.09 0.55 -0.03 0.36 -0.31 -0.17 -0.17 -0.27 -0.11 1.00 0.20 0.31
ER 0.11 0.02 0.07 -0.13 -0.14 -0.25 0.21 -0.15 0.15 0.20 1.00 0.16

NA4 0.14 0.60 -0.03 0.01 0.04 0.45 -0.15 -0.01 -0.04 0.31 0.16 1.00
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Figure 21 Variational of the cumulative variance with components in PCA

Once the PCA components are obtained, the various ML models, namely, Logistic

Regression, K-Nearest Neighbour (KNN), Kernel Support Vector Machine (Kernel SVM),

Random Forest and the Artificial Neural Network (ANN) have been implemented and

optimised for their best prediction accuracy over the test data, with the aim to carry out

binary classification between fault/non-fault case. To ensure better generalisation of the

models over the data, K-fold validation is used with K=4 folds. Figure 22 represents the

performance of various ML models over the selected feature set, where ANN to be best

performing with 97.5% prediction accuracy with the optimised parameters and logistic

regression to be worst performing with 58.41% prediction accuracy. Table 17 further depicts

the optimised hyperparameters identified for different models to get the maximum prediction

accuracy, along with the optimised performance.

Table 17 Optimised parameters for various ML models

Model %
Accuracy Optimized Parameters

Logistic Regression 58.41% None

KNN 92.49% K=6, where K is the tuning parameter with K nearest neighbours to be
considered when classifying

Kernel SVM 90% Kernel selection with the best performance for the RBF Kernel
Random Forest 90.23% Number of decision trees: n_estimators = 10

ANN 97.50% Optimiser: Adam, 2 hidden layers with 15 neurons each, Output layer
activation function: Sigmoid, Batch size: 5, Epochs: 50
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Figure 22 Illustrates the performance of various ML models over the test set

6. Conclusions

This work mainly involves studying the effect of profile deviations on gear tooth flanks and

predicting them from the dynamic response of the system. The digital model of the system is

developed by validating against the equivalent analytical component at each step. The system

is dynamically validated against the experimental setup. The different profile deviations are

then modelled in the gear in the CAD environment to exactly replicate the deviation present

in the tooth of the experimental gears. The response of the system is then collected for

different cases in the time domain, and different ML models are then used for binary

classification of the system as a fault/no non-fault state using the twelve features extracted

from the signal data. The hyperparameters for the ML models are tuned to achieve the

maximum prediction accuracy, along with K-fold validation to ensure better generalisation

and a check on overfitting with a limited set of data. The logistic regression model performs

poorly, whereas models such as KNN, Kernel SVM with rbf-kernel and Random Forest are

found to be performing with above 90% accuracy, indicating a strong non-linear relationship

between the response and the defects, which is likely due to a change in contact non-linearity

with the profile deviations. The best performance for the prediction accuracy is obtained

using the ANN at 97.5%, which can capture the complex non-linear relationships by

optimising the weights to minimise losses. This concludes that the response of a gear rotor
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system is strongly dependent on the profile deviation. The future scope involves converting

the digital model to a digital shadow, where real-time data integration can be done with the

physical model to improve the digital model, ensuring the model is more realistic and robust

for performance against the experimental rig setup, which may then be further extended to

the concept of digital twin. However, the challenges include high computational resources,

the requirement of large data samples and profile deviation modelling, the inclusion of fine

dynamics and complex infrastructure setup for real-time data transfer.
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