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In the field of gear Fault Detection, the Symmetrized Dot Pattern (SDP) technique, combined 

with a Convolutional Neural Network (CNN), is widely used to classify various types of defects. 

The SDP-CNN combination is used to transform vibration signals and simplify the defect classi-

fication process under stationary operating conditions. This work aims to enhance the SDP-CNN 

combination for detecting incipient defects in gear under variable working conditions. The vibra-

tion signals are filtered by Vold-Kalman Filter Multi-Order Tracking to highlight fault character-

istics under variable working conditions. Subsequently, the signals are SDP-transformed and fol-

lowing classified by optimized CNN. The new pipeline has been validated on an experimental 

dataset and compared with the classical one by developing both two and multi-class CNNs. The 

results showed the applicability of the new pipeline in terms of percentage accuracy and ROC 

curve compared to the classical approach. Finally, the proposed pipeline was compared with oth-

er ML literature techniques using the same dataset. 

Keywords: Fault Detection, Symmetrized Dot Pattern, Order-Tracking, Convolutional Neural 

Network, Vibrational Signal Processing. 

Introduction 
Fault detection (FD) is a crucial part of pre-

dictive maintenance. It is the process of 

monitoring and identifying malfunctions, 

anomalies, and faults of the mechanical sys-

tems. The main objective is to detect any 

variation from the expected behaviour to 

prevent greater damage and reduce down-

time [1-2]. 

Zhi et al. [3] had developed a new algorithm 

to detect gearbox faults through Meshing 

Frequency Modulation (MFM) analysis and 

a definition of a new index to generate a 

MFMgram. El Yousfi et al. [4] had devel-

oped a physical model of an electric motor 

and a gearbox to detect gear teeth break and 

crack under stationary and non-stationary 

working conditions. Recently, new methods 

for FD of planetary gearboxes under non-



stationary conditions have been developed 

through order tracking [5], residual signal 

energies [6], improved Variational Mode 

Decomposition (VMD) [7], and pattern 

recognition [8-9]. Yuan et al. [10] had im-

proved the Synchrosqueezing Wavelet 

Transform (WT) to detect gearbox faults in 

high noise and transient condition. Tao et al. 

[11] had projected a robust statistical de-

scriptor WT and Gaussian Density Model-

ling based to detect bearings faults. Li et al. 

[12] proposed the Heterogeneous Signal 

Embedding module, a plug-and-play com-

ponent that unifies fault diagnosis across di-

verse signals with varying sampling rates 

and lengths. In addition, they introduced an 

interpretable neural network using learnable 

Morlet wavelet operators, gated matrices, 

and skip connections to enhance fault signa-

ture extraction, boosting transparency and 

performance in mechanical fault diagnosis 

[13]. 

Nowadays, the use of ML techniques has 

become widespread in FD of mechanical 

systems, thanks to their ability to identify 

anomalies, detect early faults, and optimize 

predictive maintenance strategies [14]. In-

novative Deep Learning architecture to filter 

and extract fault features from acceleromet-

ric signals to detect bearings faults was pre-

sented in [15]. The lack of a failure condi-

tion dataset to train the ML classification 

model can be fixed using physical models 

[16] or Generative Adversarial Networks 

[17] and finally testing the model to validate 

it. Ravikumar et al. [18] developed an ML 

model composed of a Convolutional Neural 

Network (CNN) and a Long Short-Time 

Memory to detect faults in gearbox: the first 

was used for feature extraction, while the 

second was used for feature selection. A 

Feedforward Neural Network (FNN) based 

on accelerometer signals has been developed 

for the FD of aircraft hybrid electric propul-

sion systems [19]. 

The Symmetrized Dot Pattern (SDP) tech-

nique has emerged as a tool for signal analy-

sis, providing a signal transformation to fa-

cilitate system anomaly detection with sig-

nificant applications in diagnostics and pre-

dictive maintenance [20]. An advantage of 

the SDP technique over raw signal analysis 

is its ability to convert complex, non-linear, 

and non-stationary signals into easily visual 

representations. This facilitates the identifi-

cation and classification of operating condi-

tions or faults in mechanical systems [21]. A 

study has shown that FD based on the SDP 

transformation of vibrational signals signifi-

cantly increases process accuracy compared 

to other transformation techniques [22]. 

Thanks to SDP signal transformation, it is 

possible to automate the FD process by 

means of existing or purpose-built CNN [23-

25]. The transformation of vibrational [26], 

acoustic [27], or different sensor signals [28] 

using SDP makes it possible to achieve high 

classification accuracy thanks to CNNs. 

Song et al. [29] proposed a transfer learning 

method to extract and classify bearing de-

fects using SDP.  Zhang et al. [30] demon-

strated the SDP potential to predict wear-

cutting tools using a multi-covariance 

Gaussian process regression. Xu et al. [31] 

presented a matching technique of snow-

flake diagrams using templates derived from 

signals SDP transformation for fan FD, and 

they implemented the technique in real time 

[32]. Improving the accuracy of classifying 

CNNs, Empirical Mode Decomposition, and 

VMD are widely used [33-35]. Liu et al. 

[36] developed a new CNN architecture for 

FD under stationary and time-varying gear-

box working conditions using different ac-

celerometers to obtain the SDP diagram. The 

technique was experimentally validated on a 



test bench demonstrating high classification 

accuracy and a low false positive rate. 

The SDP allows recurring patterns or anom-

alies in vibration signals to be visualized 

graphically, facilitating the identification of 

mechanical faults through symmetrical rep-

resentations. Compared to raw signal analy-

sis, SDP provides greater clarity and ease of 

identification of distinguishing features, im-

proving the FD process using CNNs. FD 

based on SDP and CNN is almost always 

performed under stationary operating condi-

tions due to the high variability of the snow-

flake diagram. In real practice, many plants 

operate under variable working conditions, 

hence the need to implement FD techniques 

under such conditions.  

This work aims to provide an effective ap-

proach to enhance the SDP-CNN combina-

tion to detect incipient gear faults under 

speed and load variable working conditions. 

The proposed method involves extracting 

the Gear-Meshing Order (GMO) of the 

Faulty Gear (FG), and the Coupled Gear 

(CG) on the same shaft, to highlight the sys-

tem fault characteristics. This operation was 

carried out by implementing a Vold-Kalman 

Filter Multi-Order Tracking (VKF_MOT): 

this filter allows to extraction of fault signa-

tures from the signal under variable working 

conditions. The filtered signal was then 

transformed into SDP coordinates. Finally, a 

designed and optimized CNN was intro-

duced to predict the gear condition. The 

proposed methodology was tested on an ex-

perimental dataset that includes several op-

erating conditions, both stationary and time-

varying, and various incipient defects. The 

method validation was carried out by devel-

oping several two-class CNNs comparing 

the health state and the incipient defect. A 

multi-class CNN was also developed to pro-

vide a technique capable of identifying the 

defect type. The proposed method 

VKF_MOT-SDP-CNN was compared with 

the traditional SDP-CNN pipeline to demon-

strate the low accuracy of the classic ap-

proach to FD under variable working condi-

tions. The comparison showed that the pro-

posed method is more accurate and has a 

lower false positive rate than the classic ap-

proach. Finally, the VKF_MOT‑SDP ‑CNN 

was compared with other ML classification 

algorithms applied to the same dataset. 

The main contributions of this work can be 

summarized as follows: 

1. A new pipeline VKF_MOT-SDP-CNN 

was developed for FD using SDP in var-

iable working conditions for different 

kinds of incipient defects to enhance the 

SDP-CNN FD process. 

2. The new pipeline was tested on the ex-

perimental dataset by using a two-class 

CNN and compared to the classic SDP-

CNN approach. 

3. The new pipeline was tested by using a 

multi-class CNN and compared to the 

classic SDP-CNN approach. 

4. The VKF_MOT-SDP-CNN was com-

pared with other ML algorithms. 

The rest of this article is structured as fol-

lows: the dataset description is presented in 

Section 2; the methodology is described in 

Section 3; the results are discussed in Sec-

tion 4; and finally, Section 5 summarizes the 

conclusions of this work. 

Experimental Dataset 
The experimental data were provided from 

the “MCC5-THU gearbox fault diagnosis 

dataset” which includes vibration, speed, 

and torque signals under variable working 

conditions, different gearbox faults, and se-

verity degree [37]. The dataset was collected 

from a two-stage parallel gearbox where the 

gear on the intermediate shaft is the FG. 



Each signal was sampled at 12.8 kHz for 60 

seconds. Fig. 1 shows the gearbox test rig 

and the parallel gearbox internal structure.  

In this work, the signals reported in Tab. 1 

were used. These signals are featured by a 

light severity degree of gear faults, a double 

trapezoidal load-time curve, and a ramp 

speed-time curve. Signals with light severity 

degree defects were selected to demonstrate 

that the proposed technique can detect an in-

cipient fault. 

Figure 1. Schematic gearbox overview. 

Table 1. Signals list. 

Signal  

number 

Gear Condition Defect Description 

1 Healthy / 

2 Healthy / 

3 Light Wear 1/3 of the teeth surface ar-

ea 

4 Light Wear 1/3 of the teeth surface ar-

ea 

5 Light Gear Pitting Fault diameter 0.5 mm 

6 Light Gear Pitting Fault diameter 0.5 mm 

7 Light Teeth Break ¼ of the teeth width 

8 Light Teeth Break ¼ of the teeth width 

 

Fig. 2 shows the gearbox input speeds and 

torques for signals number 1 and 2 of Tab. 1. 

In Fig. 2 it is possible to see the speed and 

the torque transients highlighted by the grey 

zone. The speed transients are a ramp that 

goes from 0 to 20 seconds, while the torque 

time-varying curves are a double trapezoidal 

curve. 

 
Figure 2. Gearbox input speeds and torques for 

healthy signals. 

FD strategy under variable working 

conditions: development steps 
The FD-developed strategy under variable 

working conditions can be viewed as the 

task of extracting modulating diagnostic 

components from a non-stationary, and 

noisy vibration signal, when the fundamen-

tal frequency changes over time and the fault 

is localized. Traditional methods based on 

the SDP-CNN approach have demonstrated 

effectiveness under stationary conditions, 

but their sensitivity to dynamic changes lim-

its their applicability in real-world scenarios. 

To overcome these limitations, it is proposed 

to integrate the VKF_MOT as a pre-

processing step for vibration signals. It is re-

nowned for its capability to extract specific 

harmonic components from complex and 

non-stationary signals, thereby enhancing 

the robustness of fault diagnosis under vari-

able operating conditions. The integration of 

VKF_MOT allows for the isolation of fre-

quency components associated with faults, 

reducing the influence of noise and non-

stationary variations. This process improves 

the quality of the generated SDP images, 

providing more representative inputs for the 



 

Figure 3. Algorithm steps for gear health status prediction.

CNN and increasing the accuracy of fault 

classification. Furthermore, the VKF_MOT-

SDP-CNN pipeline eliminates the need for 

complex time-frequency transformations, 

preserving the integrity of temporal infor-

mation and reducing the risk of phase distor-

tions. This characteristic is particularly ad-

vantageous for analyzing vibration signals 

under variable working conditions, where 

non-stationarity is an intrinsic feature. The 

proposed approach combines the strengths 

of VKF in handling non-stationary signals 

with CNN capability to perform accurate 

classifications based on SDP images, offer-

ing an effective solution for fault diagnosis 

in complex industrial scenarios. 

The developed algorithm is shown in Fig. 3. 

As shown in Fig. 3: 

1. The first step of the algorithm is to ex-

tract the GMOs of FG and CG using 

VKF_MOT from the vibrational signals. 

Using this filter enables the extraction of 

the FG and CG fault signatures from the 

signal under variable working condi-

tions. 

2. The second step of the algorithm is to 

transform the filtered signal using the 

SDP. 

3. The third step of the algorithm is to de-

velop the CNN for gear FD. 

Non-stationary vibrational signals 
In scenarios involving variable speed and 

load, the vibrational signal 𝑦(𝑡) acquired 

from a rotating gearbox system is typically 

non-stationary, meaning its statistical prop-

erties change over time. A formal model can 

be expressed as: 

𝑦(𝑡) = 

∑ 𝐴𝑘(𝑡) cos (2𝜋 ∫ 𝑓𝑘(𝜏)𝑑𝜏
𝑡

0

+ 𝜙𝑘(𝑡))

𝐾

𝑘=1

 

+𝜂(𝑡)                                                       (1) 

where: 

• 𝐴𝑘(𝑡) is the time-varying amplitude of 

the 𝑘-th harmonic component. 

• 𝑓𝑘(𝑡) = 𝑘 ∙ 𝑓(𝑡) is the instantaneous fre-

quency, the 𝑘-th multiple of the non-

stationary rotational frequency 𝑓(𝑡). 

• 𝜙𝑘(𝑡) is the non-stationary phase term. 

• 𝐾 is the number of GMOs harmonics. 

• 𝜂(𝑡) is gaussian additive noise and other 

not target components. 

Under stationary conditions can be written: 

𝑓(𝑡) = 𝑓0                               (2) 

where 𝑓0 is the constant rotational instanta-

neous frequency, and the signal 𝑦(𝑡) is peri-

odic. If Eq. (2) is not valid, 𝑦(𝑡) is non-

stationary and 𝑓(𝑡) changes over time. 

This non-stationarity undermines the effec-

tiveness of the SDP, which assumes constant 

periodicity for a stable representation in the 

polar domain. Additionally, it complicates 

the identification of diagnostic components 

related to faults. To tackle this challenge, a 

VKF_MOT is proposed to pre-filter the non-



stationary signal 𝑦(𝑡). The filter isolates 

components: 

𝐴𝑘(𝑡) cos (2𝜋 ∫ 𝑓𝑘(𝜏)𝑑𝜏
𝑡

0

+ 𝜙𝑘(𝑡))      (3) 

that corresponding to desired GMOs, attenu-

ating 𝜂(𝑡), and the resulting signal 𝑦𝑓(𝑡) 

contains only the desired components to 

make SDP snowflake diagram stable.  

VKF_MOT implementation 
The VKF_MOT is a pass-band adaptive fil-

ter to extract non-stationary periodic com-

ponents from vibration or acoustic signals of 

the rotating machine if its instantaneous ro-

tational frequency is known [38-39]. The 

problem is defined by solving two equa-

tions, the structural and the data equation, 

using the method of least squares. The equa-

tions smooth the unknown complex enve-

lopes. They relate the tracked orders to the 

measured signal. 

The discrete signal 𝑦(𝑛) obtained from a ro-

tating machine contains 𝐾 components 

𝑥𝑘(𝑛), each of which is associated with an 

order related to the rotation of the machine 

and represents a signal to be tracked. How-

ever, these components are contaminated by 

random noise and other irrelevant periodic 

components denoted by 𝜖𝑘(𝑛),. Each order 

𝑥𝑘(𝑛) is also modelled as a solution to a 

second-order differential equation, which al-

lows an accurate description of the dynamics 

within the system. Then, it is possible to 

write the 𝑘-order as: 

 

𝑥𝑘(𝑛) − 2 cos(𝜔𝑘(𝑛)∆𝑇) 𝑥𝑘(𝑛 − 1) 

+𝑥𝑘(𝑛 − 2) = 𝜖𝑘(𝑛)                     (4) 

 

where 𝜔𝑘(𝑛) = 𝑘 ∙ 𝜔(𝑛) and 𝜔(𝑛) is the 

angular frequency. The Eq. (4) can be re-

written in status form defining: 

 

𝑥𝑘(𝑛) = [
𝑥𝑘(𝑛 − 1)

𝑥𝑘(𝑛)
]                 (5) 

 

𝑥𝑘(𝑛 + 1) = [
𝑥𝑘(𝑛)

𝑥𝑘(𝑛 + 1)
]            (6) 

 

The Eq. (5) and (6) allows to be rewritten 

the Eq. (4) as a linear relationship between 

consecutive states. The Eq. (4) can be writ-

ten for the 𝑛 + 1 iteration as: 

 

𝑥𝑘(𝑛 + 1) − 2 cos(𝜔𝑘(𝑛)∆𝑇) 𝑥𝑘(𝑛) 

+𝑥𝑘(𝑛 − 1) = 𝜖𝑘(𝑛)                     (7) 

 

𝑥𝑘(𝑛 + 1) = 2 cos(𝜔𝑘(𝑛)∆𝑇) 𝑥𝑘(𝑛) 

−𝑥𝑘(𝑛 − 1) + 𝜖𝑘(𝑛)                      (8) 

 

and in matrix form: 

 

[
𝑥𝑘(𝑛)

𝑥𝑘(𝑛 + 1)
] = 

[
0 1

−1 2 cos(𝜔𝑘(𝑛)∆𝑇)] [
𝑥𝑘(𝑛 − 1)

𝑥𝑘(𝑛)
] 

+[
0

𝜖𝑘(𝑛)]                                          (9) 

 

and substituting with the Eq. (5) and (6) in 

the Eq. (9): 

 

𝑥𝑘(𝑛 + 1) = 𝑴𝑘(𝑛)𝑥𝑘(𝑛) + 𝜖𝑘(𝑛)   (10) 

 

where: 

 

𝑴𝑘(𝑛) = [
0 1

−1 2 cos(𝜔𝑘(𝑛)∆𝑇)]   (11) 

 

𝜖𝑘(𝑛) = [
0

𝜖𝑘(𝑛)]                          (12) 

 

The Eq. (10) is a recursive matrix relation. 

To track 𝐾 multiple order components sim-



ultaneously, it is necessary to concatenate all 

state vectors into a global state vector: 

 

𝑿(𝑛) =

[
 
 
 
𝑥1(𝑛)

𝑥2(𝑛)

⋮
𝑥𝐾(𝑛)]

 
 
 

                        (13) 

 

𝑿(𝑛 + 1) =

[
 
 
 
𝑥1(𝑛 + 1)

𝑥2(𝑛 + 1)

⋮
𝑥𝐾(𝑛 + 1)]

 
 
 

                (14) 

 

and let the diagonal matrix: 

 

𝑭(𝑛 + 1, 𝑛) = 

[
 
 
 
 
𝑴1(𝑛) 0 0 0 ⋯ 0 0

0 𝑴2(𝑛) 0 0 ⋯ 0 0

0 0 𝑴3(𝑛) 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 0 𝑴𝐾(𝑛)]

 
 
 
 

 

 (15) 

 

and defined: 

 

𝑬(𝑛) =

[
 
 
 
𝜖1(𝑛)

𝜖2(𝑛)

⋮
𝜖𝐾(𝑛)]

 
 
 

                     (16) 

 

the Eq. (4) for 𝐾 multiple order components 

simultaneously tracked became: 

 

𝑿(𝑛 + 1) = 𝑭(𝑛 + 1, 𝑛)𝑿(𝑛) 

+𝑬(𝑛)                                  (17) 

 

The Eq. (17) is the structural equation of 

VKF_MOT. 

The measured signal 𝑦(𝑛) to track multiple 

order components simultaneously can be 

write as: 

 

𝑦(𝑛) = 𝑥𝐾(𝑛) + 𝜂(𝑛) = 

= ∑ 𝑥𝑘(𝑛)

𝐾

𝑘=1

+ 𝜂(𝑛)    (18) 

 

where 𝜂(𝑛) is a random gaussian noise and 

other not targets periodic components. Ex-

pressing the Eq. (18) as a state vector: 

 

𝑦(𝑛) = 𝑰(𝑛)𝑿(𝑛) + 𝜂(𝑛)            (19) 

 

that is the data equation of VKF_MOT 

where: 

 

𝑰(𝑛) = [𝐼1(𝑛)  𝐼2(𝑛)   ⋯   𝐼𝐾(𝑛)]    (20) 

 

𝐼𝑘(𝑛) = [0   1]                      (21) 

 

If the instantaneous frequency 𝜔𝑘(𝑛) is 

known, the 𝑘-order non-stationary compo-

nent 𝑥𝑘(𝑛) can be evaluated as: 

 

𝑥𝑘(𝑛) = 

[cos (∑ 𝜔𝑘(𝑚)∆𝑇

𝑛

𝑚=0

)   sin (∑ 𝜔𝑘(𝑚)∆𝑇

𝑛

𝑚=0

)] 

[
𝑎𝑘(𝑛)

𝑏𝑘(𝑛)
]                                                            (22) 

 

where the amplitude of 𝑥𝑘(𝑛) is obtained by 

√𝑎𝑘(𝑛)2 + 𝑏𝑘(𝑛)2.  

Since Eqs. (17) and (19) are written identi-

cally to the process and measurement equa-

tions of the Kalman filter, they can be solved 

as illustrated in [40]. 

The obtained 𝑥𝐾(𝑛) is used as the input sig-

nal for SDP transformation. 

SDP Transformation 
The SDP is a technique that transforms a 

time signal into a normalized point plane by 

creating a symmetrical scatter plot of ampli-

tudes on a polar diagram called a “snow-

flake” [20].  



 
Figure 4. Snowflake dependency from ξ and 𝑙.

This method allows a visual representation 

of signal amplitude and frequency varia-

tions, simplifying fault diagnosis in rotating 

systems such as gears. SDP improves the FD 

process by providing greater clarity and eas-

ier identification of features compared to 

raw signal analysis [21-22]. The difference 

between signals can be seen in the shape of 

the petals that make up the snowflake dia-

gram. The diagram uses ℎ planes of sym-

metry by rotating the petals by an angle: 

𝜗 =
360

ℎ
                          (23) 

A necessary condition to plot the snowflake 

is that the petals do not overlap. 

It is possible to transform 𝑥𝐾(𝑛) in polar co-

ordinates using the SDP transform by the 

formula: 

𝑟(𝑖) =
𝑥𝐾(𝑖) − max(𝑥𝐾(𝑛))

max(𝑥𝐾(𝑛)) − min(𝑥𝐾(𝑛))
  (24) 

 

𝜃(𝑖) = 𝜗 + 

+
𝑥𝐾(𝑖 + 𝑙) − min(𝑥𝐾(𝑛))

max (𝑥𝐾(𝑛)) − min(𝑥𝐾(𝑛))
𝜉   (25) 

Φ(𝑖) = 𝜗 − 
𝑥𝐾(𝑖 + 𝑙) − min(𝑥𝐾(𝑛))

max(𝑥𝐾(𝑛)) − min(𝑥𝐾(𝑛))
𝜉      (26) 

where: 

• min(𝑥𝐾(𝑛)) and max(𝑥𝐾(𝑛)) are the 

minimum and the maximum value of 

𝑥𝐾(𝑛) respectively. 

• 𝑟(𝑖) is the radius of the 𝑖-th point. 

• 𝜃(𝑖) is the clockwise deflection angle of 

the 𝑖-th point along the symmetry plane. 

• Φ(𝑖) is the anticlockwise deflection an-

gle of the 𝑖-th point along the symmetry 

plane. 

• 𝑙 is the delay coefficient. 

• 𝜗 is the rotation angle of the symmetry 

plane. 

• 𝜉 is the gain of the deflection angle. 



Fig. 4 shows the influence of 𝜉 and 𝑙 in the 

snowflake diagram: as 𝜉 increases, the petal 

curvature will be greater, while as 𝑙 increas-

es, the petal width will be greater. 

After setting the optimal ξ and 𝑙 parameters 

[41], it is possible to transform 𝑥𝐾(𝑛) into 

the snowflake diagram and thus obtain the 

CNN input images. 

CNN development and optimization 
The images generated by the SDP are first 

converted to binary images as shown in Fig. 

5. and then processed by the proposed CNN 

algorithm. 

A CNN is a type of Artificial Neural Net-

work (ANN) specifically designed to pro-

cess image datasets using a grid-based struc-

ture, making it suitable for image classifica-

tion tasks [42]. The proposed supervised 

CNN learns a mapping between the input 

image, derived from the SDP algorithm, and 

the corresponding output, allowing the clas-

sification of the fault category associated 

with the image. 

The input layer processes single-channel bi-

nary images. The network uses an optimized 

depth convolutional architecture where both 

the number of layers and the hyperparame-

ters are Bayesian optimized [43]. 

Each convolutional block follows a struc-

tured sequence involving a convolutional 

layer, Batch Normalization (BN), a Rectified 

Linear Unit (ReLU) as the activation func-

tion, and a max-pooling layer. This process 

can be expressed mathematically as: 

𝑋(𝑙+1) = 𝑚𝑎𝑥 (𝑅𝑒𝐿𝑈(𝐵𝑁(𝑋𝑙 ∗ 𝑊𝑙))) 

      (27) 

where 𝑊𝑙 is the convolution kernel of size 

𝑘 × 𝑘, 𝑙 is the generic convolutional block, 

𝑋 is the input image, and * is the convolu-

tion operator.  

 
Figure 5. CNN input images development. 

The BN function normalizes the feature 

maps (𝑋𝑙 ∗ 𝑊𝑙) to stabilize training, while 

ReLU introduces non-linearity into the net-

work by allowing positive values to pass un-

altered and setting negative values to zero. 

The number of convolutional filters 𝑊𝑙 is 

optimized by Bayesian optimization to im-

prove the feature extraction. Finally, in the 

convolutional block is applied the max-

pooling which is the maximum value within 

a defined pooling window to reduce the spa-

tial dimensionality of the feature map.  

After the final convolutional block, the flat-

tened final pooling layer is given to the fully 

FNN, where the ReLU is used as the activa-

tion function, and a SoftMax function con-

verts the raw output scores into a probability 

distribution over the classes. 

The loss function used in the proposed CNN 

is the cross-entropy loss, which is widely 

used in classification tasks to measure the 

difference between the predicted probability 

distribution and the true class labels. The 

proposed CNN algorithm employs Stochas-

tic Gradient Descent with Momentum 

(SGDM) as the optimization method. The 

Bayesian optimization process aims to min-

imize the expected loss over the space of 

hyperparameters. It is formulated as: 

𝒪(𝜃) = 𝐸[𝐿(𝜃)]                  (28) 

where 𝜃 represents the vector of chosen hy-

perparameters, and 𝐸[𝐿(𝜃)] shows the ex-

pected value of the loss function under the 

current hyperparameter configuration.  



 

Figure 6. Generic proposed CNN architecture.

Bayesian optimization efficiently searches 

the hyperparameter space using probabilistic 

models to find the best combination without 

requiring an exhaustive grid search. 

A generic proposed CNN architecture is 

shown in Fig. 6. 

Results and Discussion 
All three axes were considered in this study 

to fully capture the vibrational behavior of 

the gearbox. Fig. 7 shows the normalized 

raw and filtered vibration signals for signal 1 

of Tab 1. 

 
Figure 7. Raw and filtered gearbox vibration for Sig-

nal 1. 

GMO represents the fundamental order in 

which meshing occurs between the teeth of 

two gears. Multiples of this frequency can 

be influenced by defects in the teeth such as 

wear or local breaks. The analysis of these 

harmonics enables the identification and 

characterization of such defects. raw and fil-

tered vibration signals for signal 1 of Tab 1. 

GMO represents the fundamental order in 

which meshing occurs between the teeth of 

two gears. Multiples of this frequency can 

be influenced by defects in the teeth such as 

wear or local breaks. The analysis of these 

harmonics enables the identification and 

characterization of such defects. 

In particular, the analysis of the first har-

monics of GMO is widely recognized in the 

literature as effective for fault detection in 

mechanical transmission systems, and the 

defects in the FG are visible in the CG 

GMOs since the FG meshes directly with the 

CG [44-45]. 

The signals were acquired at a frequency of 

12800 Hz. According to the Shannon-

Nyquist theorem, the visible frequency limit 

is 6400 Hz. The rotation speed of the FG 

corresponds to the maximum input speed of 

the gearbox, approximately 1000 rpm 

(which equals about 16.67 Hz), considering 

the 29/95 transmission ratio (Fig. 1). 

                    

        

  

    

 

   

 

 
 
  
  
 

                 

                    

        

  

    

 

   

 

 
 
  
  
 

                 

                    

        

  

    

 

   

 

 
 
  
  
 

                 

                    

        

  

    

 

   

 

 
 
  
  
 

                      

                    

        

  

    

 

   

 

 
 
  
  
 

                      

                    

        

  

    

 

   

 

 
 
  
  
 

                      



 
Figure 8. Raw and filtered gearbox vibration order spectrum for signal 1. 

Therefore, the maximum visible order con-

sidering the rotational speed of the shaft on 

which the FG is coupled is given by the fol-

lowing equation: 

𝑂𝑚𝑎𝑥 =
𝑓𝑠
2𝑓𝑟

1

𝜀
=                            

12800

2 ∙ 16.67

95

29
≈ 1257           (29) 

where 𝑓𝑠 is the sampling frequency, 𝑓𝑟 is the 

input rotation frequency, and 𝜀 is the trans-

mission ratio. Since beyond order 300 there 

is a significant reduction in amplitudes in the 

order spectrum of Fig. 8, only orders below 

this value were selected. For this reason, re-

calling from the diagram in Fig. 1 that the 

FG has 36 teeth, and the CG has 90 teeth, 

the selected orders are: 

• 36, 72, 108, 144, 180, 216, 252, and 288 

for the FG; 

• 90, 180, and 270 for the CG. 

This approach ensures a balance between 

capturing relevant fault signatures and min-

imizing noise, thereby enhancing the relia-

bility and reproducibility of the FD process. 

In the present study, the effectiveness of 

VKF_MOT is demonstrated by showing in 

Fig. 8 the normalized raw and filtered gear-

box vibration order spectrum for signal one 

of Tab. 1. 

Fig. 8 shows the amplitude reduction of the 

unselected orders, considered as noise, and 

how the selected orders are correctly ex-

tracted: the use of VKF_MOT allows high-

lighting the selected orders that are charac-

teristic of the faulty gear and allow to high-

light the differences between the healthy and 

the defects. In addition, the bandwidth also 

considers orders around the selected orders. 

This is due to the chosen first-order filter: 

this bandwidth could have been reduced by 

adopting a second-order filter, but the com-

putational cost would have increased [46]. 

The first-order ±3 𝑑𝐵 passband filter of 

each tracked order is established equal to 

0.5% of the sampling frequency 𝑓𝑠. Switch-

ing to a second-order structural equation 

halves the passband but quadruples the state 

dimension and roughly octuplets the float-

ing-point operations [47]. The work aim is 

to demonstrate that the proposed pipeline 



can enhance the SDP-CNN combination for 

detecting the incipient defects in gear under 

variable working conditions. 

The raw and filtered signals were divided 

into segments of three faulty gear revolu-

tions and transformed using SDP. This 

choice is useful to further highlight the de-

fects that will have to differentiate the SDP 

diagrams, and it is made to obtain as many 

images as possible to train, validate, and test 

the developed CNNs. Fig. 9 shows a com-

parison between the snowflakes of raw and 

filtered signals for one segment. 

The SDP diagrams in Fig. 9 were obtained 

by setting 𝜉 = 30 and 𝑙 = 7. These SDP pa-

rameters are empirically chosen to prevent 

the petals from overlapping [41]. The gener-

ic snowflake diagram in Fig. 9 was obtained 

by composing the SDP transformation of vi-

brational signals sampled along the three ax-

es. 

 

Figure 9. Comparison between SDP transformation 

of raw and filtered signals. 

The simultaneous use of all three axes in the 

same snowflake allows for greater differen-

tiation of SDP diagrams. In Fig. 9, the SDP 

diagrams of raw signals appear visually 

complex and overlapped with patterns show-

ing some symmetry that tends to mask mor-

phological differences between fault classes. 

Indeed, the Pitting and Break conditions pre-

sent very similar shape in the raw signals, 

making clear distinction difficult. Moreover, 

the presence of high-frequency noise and the 

dispersion of the data points compromise 

class separability. Instead, the diagrams ob-

tained from the filtered signals show more 

distinct shapes and sharper contours across 

conditions. Filtering reduces the influence of 

noise while preserving the main informative 

components, thereby enhancing the dynamic 

features associated with each fault mode. 

For example, the Wear case exhibits a 

marked reduction in amplitude along the 𝑥-

axis, whereas Break produces a very regular 

and distinct symmetry. These differences be-

come easier to interpret both visually and 

computationally, facilitating the application 

of automatic classification techniques. Spe-

cifically, SDP diagrams from the filtered 

signals in Fig. 9 highlight: 

• Healthy has a regular, balanced pattern 

with homogeneous amplitudes and well-

distributed symmetry across the three 

axes. 

• Wear reduced amplitude on the 𝑥-axis, 

resulting in a compressed shape com-

pared to the healthy state. This character-

istic is hard to detect in the raw diagram 

due to noise masking. 

• Pitting is clearly asymmetric across axes, 

with greater spread along the 𝑧-axis. 

This pattern is not visible in the raw sig-

nals by high-frequency components. 

• Break shows a highly regular and strong-

ly extended pattern, particularly along 

the 𝑥 and 𝑦 axes, with marked symme-

tries reflecting structural compromise. 

Unlike Pitting, this distinction is clear 

only after filtering. 

The improvement in class separation 

achieved through filtering is attributable to 

removing spectrally non-informative com-

ponents while preserving defects character-

istic frequencies. This makes the SDP trans-

form more effective as a diagnostic tool. 

The obtained SDP diagrams were used as 

input for the developed CNNs: the dataset 

was divided into 50% for train, 20% for val-

idation, and the remaining 30% for test.  



The first step to validate the proposed meth-

odology was to develop two-class CNNs to 

discriminate between the health state and 

one of the defects shown in Tab. 1. For each 

optimisation process, a minimum set of 50 

iterations was set to interrupt the Bayesian 

optimisation process using the Expected Im-

provement criterion. Each CNN was trained 

for 1000 epochs with a Validation Frequen-

cy every 10 epochs. A PC with a processor 

13th Gen Intel Core i9-13900 of 2.00 GHz, 

32 GB of RAM, and a 12 GB NVIDIA Ge-

Force RTX 3060 was used. In Tab. 2, the 

ranges of optimized hyperparameters. 

Table 2. Hyperparameter range. 

Hyperparameter Range 

Convolutional Layers 1÷4 

Stride of Convolutional Layers 2÷5 

Filters Size of Convolutional Layers 1÷5 

Filters Numbers of Convolutional Lay-

ers 

2÷50 

 

Stride of Pooling 2÷5 

Pooling Size 1÷5 

Fully Connected Layers Number 1÷5 

Neurons Numbers of Fully Connected 

Layers 

1 ÷ 1000 

Initialization Learning Rate 10−6

÷ 10−1 

Momentum 

 

0.01
÷ 0.99 

Mini Batch Size 2÷256 

L2 Regularization 10−6

÷ 10−1 

 

In Fig. 10 are reported the trend of the errors 

during the Bayesian Optimization process 

for each CNN where it can be observed that 

the error achieved by CNNs for the 

VKF_MOT-SDP-CNN pipeline is always 

lower than the SDP-CNN one. 

Furthermore, in Tab. 3 the computational 

time for each optimization process is report-

ed, while the CNNs tasting accuracy was re-

ported in Tab. 4. 

Comparing the CNNs accuracy between the 

SDP diagram obtained from the raw and the 

filtered signals of Tab. 4, it is possible to 

note that the accuracy always increases us-

ing the VKF_MOT for pre-processing the 

signals. 

 
Figure 10. CNNs Bayesian Optimization process. 

Table 3. Computational time of CNNs optimization 

process. 

CNN  

Classes 

Raw  

signals 

Filtered  

signals 

Healthy - 

Break 

00:42:08 01:05:33 

Healthy - 

Pitting 

00:52:27 00:50:55 

Healthy - 

Wear 

01:06:04 00:39:23 

     

         

 

   

   

   

 
  
  
 
 
 
 
 
  

              

     

         

 

   

   

   

 
  
  
 
 
 
 
 
  

                 

     

         

 

    

   

    

 
  
  
 
 
 
 
 
  

               

   

        



 

Table 4. CNN testing accuracy. 

CNN 

Classes 

% accuracy of 

raw signals 

% accura-

cy of 

filtered 

signals 

% differ-

ence 

Healthy - 

Break 

89.65 95.69 +6.04 

Healthy - 

Pitting 

96.55 97.41 +0.86 

Healthy - 

Wear 

85.34 91.52 +6.18 

 

The Receiver Operating Characteristic 

(ROC) [48] curve for each CNN was calcu-

lated to evaluate the false positive rate. The 

ROC curves were reported in Fig. 11, while 

the corresponding Area Under the Curve 

(AUC) was reported in Tab. 5. 

 
Figure 11. ROC curves for CNNs. 

Looking at the ROC curves in Fig. 11, it is 

possible to see that the filtered cases have a 

greater tendency toward the point (0,1) than 

the raw cases: this means that the false posi-

tive rate is lower in the filtered case than in 

the raw case. This result was confirmed by 

the AUC reported in Tab 5. 

Table 5. AUC of CNNs testing results. 

CNN 

Classes 

AUC of 

raw 

signals 

AUC of 

filtered 

signals 

Percentage 

AUC 

difference 

Healthy - 

Break 

0.964 0.987 + 2.3 

Healthy - 

Pitting 

0.997 0.998 + 1.0 

Healthy - 

Wear 

0.853 0.958 + 10.5 

 

Finally, a multiclass CNN network was de-

veloped to classify whether the input SDP 

diagram belongs to the gear healthy state, or 

it is related to an incipient defect. The com-

parison between the classical and the pro-

posed technique was carried out: the CNNs 

Bayesian Optimization process errors are re-

ported in Fig. 12, in Tab. 6 is reported the 

computational time, the test accuracy is 

shown in Tab. 7, Fig. 13 shows the One vs 

Rest ROC curve (Wear, Break, and Pitting 

defects as positive class), and Tab. 8 shows 

the AUC. 

 
Figure 12. CNNs Bayesian Optimization process. 

     

                   

 

   

 

 
 
 
 
  
 
  
  
 
 
  

 
  

              

     

                   

 

   

 

 
 
 
 
  
 
  
  
 
 
  

 
  

                 

     

                   

 

   

 

 
 
 
 
  
 
  
  
 
 
  

 
  

               

   

        

     

         

 

   

   

   

 
  
  
 
 
 
 
 
  

   

        



Table 6. Computational time of CNNs optimization 

process. 

CNN 

Classes 

Raw 

signals 

Filtered 

signals 

Healthy – 

Break – 

Pitting - 

Wear 

1:20:13 1:37:08 

 

Table 7. CNN testing accuracy. 

CNN 

Classes 

% accuracy of 

raw signals 

% accura-

cy of 

filtered 

signals 

% differ-

ence 

Healthy – 

Break – Pit-

ting – Wear 

80.95 92.64 +11.69 

 

 
Figure 13. One vs Rest ROC curve. 

Table 8. AUC of CNN testing results. 

CNN 

Classes 

AUC of 

raw 

signals 

AUC of 

filtered 

signals 

Percentage 

AUC 

difference 

Healthy vs 

Break – 

Pitting – 

Wear 

0.942 0.977 +0.035 

 

The validity of the new technique is con-

firmed by Tab. 7, which shows an increase 

of 11% in the pre-processing of the signals 

using the VKF_MOT compared to the raw 

signals. The improvement is still evident 

when comparing the two One vs Rest ROC 

curve (Fig. 13) and the AUC values (Tab. 8). 

Finally, a comparison with other ML tech-

niques applied on the same dataset is pro-

posed. The comparison is reported in Tab. 9 

where the last column shows the difference 

between the accuracy of the proposed tech-

nique and that obtained in literature. 

The proposed VKF_MOT‑SDP‑CNN 

achieves a lower accuracy compared to [49] 

and [50], but it offers a more intuitive visual 

interface for less experienced operators by 

allowing the direct observation of distinct 

patterns; indeed, [49] requires feature ex-

traction across multiple domains. Moreover, 

its hyperparameter optimization is fully au-

tomated, unlike the approach in [50]. Addi-

tionally, the proposed method reaches a 

comparable accuracy with [51]. 

Conclusions 
The SDP transforms vibration signals into 

symmetrical visual patterns to facilitate the 

FD process, improves clarity, and makes it 

easier to recognize distinctive features, 

thereby improving the fault diagnosis pro-

cess, compared to raw signal analysis. The 

work aimed to enhance the SDP-CNN com-

bination for detecting incipient defects in 

gear under variable working conditions. For 

this purpose, a new pipeline was developed: 

first, a filtering of the vibration signals with 

VKF_MOT, then a transformation of the 

signals with the SDP technique, and finally 

the development of a CNN for gear FD. The 

method was validated on an experimental 

dataset including trapezoidal load-time 

curves and ramp speed-time curves.  

Two-class CNNs were developed between 

the healthy state and an incipient defect, 

then a final CNN was developed to distin-

guish between the healthy or defects type. 

The new pipeline was compared with the 

classical SDP-CNN approach: the experi-



mental results demonstrate the higher classi- fication  

Table 9. Comparison with other techniques. 

References Technique Advantages Disadvantages Accuracy 

[%] 

Comparison 

[%] 

 

Sun et al. [49] 

 

STNG and 

GCAIPN 

• Robustness 

with small 

data 

• Local and 

global  

feature  

extraction 

• High computa-

tional coast 

• Hypersensitivity 

to segmentation 

parameters 

 

96.25 

 

-3.61 

 

 

Zhang et al. 

[50] 

 

 

MVML-LCLLC 

 

• Application 

even in case 

of missing or 

incomplete 

labels 

• Multi-labels  

 

 

 

• High computa-

tional coast 

• Offline applica-

tions only 

 

97.30 

 

-4.66 

 

Shao et al. [51] 

 

PLL-WCAN 

• High  

robustness 

• High  

generaliza-

tion 

• High computa-

tional coast 

• Complex hy-

perparameters 

tuning 

 

92.20 

 

+0.44 

 

accuracy of the new approach compared to 

the classical one. These findings were also 

confirmed by ROC curve analysis and AUC 

calculation. Finally, the proposed technique 

was compared with other literature research 

demonstrating a slight decrease in accuracy, 

but with a more intuitive interpretation of 

the diagrams and with simpler hyperparame-

ters optimization. 

The proposed technique experimentally val-

idated the VKF_MOT-SDP-CNN pipeline 

for gear FD under variable working condi-

tions for incipient defects. The new method 

shows high accuracy, but it is computation-

ally expensive due to VKF_MOT. In order 

to implement a VKF_MOT filter, it is neces-

sary to acquire both the rotational speed of 

the system and the vibrational signal to be 

filtered. In practical applications, an encoder 

or tachometer sensor is usually available to 

derive the system rotational speed, so this 

dependency is not a limitation of 

VKF_MOT applicability in practical scenar-

ios. 

Future research will include the ability to as-

sess the presence of combined defects and 

testing on different gearbox components 

such as bearings. It will also be possible to 

compare with other signal pre-processing 

techniques and combine the SDP diagram 

using signals of a different nature, such as 

vibration and rotational speed. To further 

improve the capabilities of feature represen-

tation in fault diagnosis, the integration of 

advanced embedding techniques could be 

explored. These methodologies could pro-

vide valuable insights into developing more 

robust and generalized fault diagnosis sys-

tems. Future work should also consider im-

plementing the new pipeline in online moni-



toring systems, leveraging hardware acceler-

ation such as FPGA‑based platform. This 

would enable real‑time monitoring of an in-

dustrial gearbox and allow for studying the 

trade‑off between performance and hard-

ware resource usage. 
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