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Abstract: In the field of gear fault detection, the symmetrized dot pattern (SDP) technique, combined with a
convolutional neural network (CNN), is widely used to classify various types of defects. The SDP-CNN
combination is used to transform vibration signals and simplify the defect classification process under stationary
operating conditions. This work aims to enhance the SDP-CNN combination for detecting incipient defects in gear
under variable working conditions. The vibration signals are filtered by Vold-Kalman Filter Multi-Order Tracking
to highlight fault characteristics under variable working conditions. Subsequently, the signals are SDP-trans-
formed and are then classified by optimized CNN. The new pipeline has been validated on an experimental dataset
and compared with the classical one by developing both two- and multi-class CNNs. The results showed the
applicability of the new pipeline in terms of percentage accuracy and ROC curve compared to the classical
approach. Finally, the proposed pipeline was compared with other ML literature techniques using the same

dataset.
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I. INTRODUCTION

Fault detection (FD) is a crucial part of predictive mainte-
nance. It is the process of monitoring and identifying
malfunctions, anomalies, and faults of the mechanical
systems. The main objective is to detect any variation
from the expected behavior to prevent greater damage
and reduce downtime [1,2].

Zhi et al. [3] had developed a new algorithm to detect
gearbox faults through meshing frequency modulation
(MFM) analysis and a definition of a new index to generate
a MFMgram. El Yousfi ef al. [4] had developed a physical
model of an electric motor and a gearbox to detect gear teeth
break and crack under stationary and non-stationary work-
ing conditions. Recently, new methods for FD of planetary
gearboxes under non-stationary conditions have been
developed through order tracking [5], residual signal ener-
gies [6], improved variational mode decomposition (VMD)
[7], and pattern recognition [8,9]. Yuan ef al. [10] had
improved the synchrosqueezing wavelet transform (WT) to
detect gearbox faults in high noise and transient condition.
Tao et al. [11] had projected a robust statistical descriptor
WT and Gaussian density modeling to detect bearing faults.
Li et al. [12] proposed the heterogeneous signal embedding
module, a plug-and-play component that unifies fault diag-
nosis across diverse signals with varying sampling rates and
lengths. In addition, they introduced an interpretable neural
network using learnable Morlet wavelet operators, gated
matrices, and skip connections to enhance fault signature
extraction, boosting transparency, and performance in
mechanical fault diagnosis [13].

Nowadays, the use of ML techniques has become
widespread in FD of mechanical systems, thanks to their
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ability to identify anomalies, detect early faults, and opti-
mize predictive maintenance strategies [14]. Innovative
deep learning architecture to filter and extract fault features
from accelerometric signals to detect bearing faults was
presented in [15]. The lack of a failure condition dataset to
train the ML classification model can be fixed using physi-
cal models [16] or generative adversarial networks [17] and
finally testing the model to validate it. Ravikumar et al. [18]
developed an ML model composed of a convolutional
neural network (CNN) and a long short-term memory to
detect faults in gearbox: the first was used for feature
extraction, while the second was used for feature selection.
A feedforward neural network (FNN) based on accelerom-
eter signals has been developed for the FD of aircraft hybrid
electric propulsion systems [19].

The symmetrized dot pattern (SDP) technique has
emerged as a tool for signal analysis, providing a signal
transformation to facilitate system anomaly detection with
significant applications in diagnostics and predictive main-
tenance [20]. An advantage of the SDP technique over raw
signal analysis is its ability to convert complex, non-linear,
and non-stationary signals into easily visual representa-
tions. This facilitates the identification and classification
of operating conditions or faults in mechanical systems
[21]. A study has shown that FD based on the SDP
transformation of vibrational signals significantly increases
process accuracy compared to other transformation techni-
ques [22]. Thanks to SDP signal transformation, it is
possible to automate the FD process by means of existing
or purpose-built CNN [23-25]. The transformation of
vibrational [26], acoustic [27], or different sensor signals
[28] using SDP makes it possible to achieve high classifi-
cation accuracy thanks to CNNs.

Song et al. [29] proposed a transfer learning method to
extract and classify bearing defects using SDP. Zhang et al.
[30] demonstrated the SDP potential to predict wear-cutting
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tools using a multi-covariance Gaussian process regression.
Xu et al. [31] presented a matching technique of snowflake
diagrams using templates derived from signals’ SDP trans-
formation for fan FD, and they implemented the technique
in real time [32]. The Empirical Mode Decomposition and
VMD are widely used to improve the accuracy of CNNs
[33-35]. Liu et al. [36] developed a new CNN architecture
for FD under stationary and time-varying gearbox working
conditions using different accelerometers to obtain the SDP
diagram. The technique was experimentally validated on a
test bench demonstrating high classification accuracy and a
low false positive rate.

The SDP allows recurring patterns or anomalies in
vibration signals to be visualized graphically, facilitating
the identification of mechanical faults through symmetrical
representations. Compared to raw signal analysis, SDP
provides greater clarity and ease of identification of distin-
guishing features, improving the FD process using CNNs.
FD based on SDP and CNN is almost always performed
under stationary operating conditions due to the high
variability of the snowflake diagram. In real practice,
many plants operate under variable working conditions,
hence the need to implement FD techniques under such
conditions.

This work aims to provide an effective approach to
enhance the SDP-CNN combination to detect incipient gear
faults under speed and load variable working conditions.
The proposed method involves extracting the Gear-Mesh-
ing Order (GMO) of the Faulty Gear (FG), and the Coupled
Gear (CG) on the same shaft, to highlight the system fault
characteristics. This operation was carried out by imple-
menting a Vold-Kalman Filter Multi-Order Tracking
(VKF_MOT): this filter allows to extract fault signatures
from the signal under variable working conditions. The
filtered signal was then transformed into SDP coordinates.
Finally, a designed and optimized CNN was introduced to
predict the gear condition. The proposed methodology was
tested on an experimental dataset that includes several
operating conditions, both stationary and time-varying,
and various incipient defects. The method validation was
carried out by developing several two-class CNNs compar-
ing the health state and the incipient defect. A multi-class
CNN was also developed to provide a technique capable of
identifying the defect type. The proposed method
VKF_MOT-SDP-CNN was compared with the traditional
SDP-CNN pipeline to demonstrate the low accuracy of the
classic approach to FD under variable working conditions.
The comparison showed that the proposed method is more
accurate and has a lower false positive rate than the classic
approach. Finally, the VKF_MOT-SDP-CNN was com-
pared with other ML classification algorithms applied to the
same dataset.

The main contributions of this work can be summa-
rized as follows:

1. A new pipeline VKF_MOT-SDP-CNN was developed
for FD using SDP in variable working conditions for
different kinds of incipient defects to enhance the SDP-
CNN FD process.

2. The new pipeline was tested on the experimental
dataset by using a two-class CNN and compared to
the classic SDP-CNN approach.

3. The new pipeline was tested by using a multi-
class CNN and compared to the classic SDP-CNN
approach.
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4. The VKF_MOT-SDP-CNN was compared with other
ML algorithms.

The rest of this article is structured as follows: the
dataset description is presented in Section II; the method-
ology is described in Section III; the results are discussed in
Section IV; and finally, Section V summarizes the conclu-
sions of this work.

Il. EXPERIMENTAL DATASET

The experimental data were provided from the “MCCS5-
THU gearbox fault diagnosis dataset” which includes
vibration, speed, and torque signals under variable working
conditions, different gearbox faults, and severity degree
[37]. The dataset was collected from a two-stage parallel
gearbox where the gear on the intermediate shaft is the FG.
Each signal was sampled at 12.8 kHz for 60 seconds.
Figure 1 shows the gearbox test rig and the parallel gearbox
internal structure.

In this work, the signals reported in Table I were used.
These signals are featured by a light severity degree of gear
faults, a double trapezoidal load-time curve, and a ramp
speed-time curve. Signals with light severity degree defects
were selected to demonstrate that the proposed technique
can detect an incipient fault.

Figure 2 shows the gearbox input speeds and torques
for signals number 1 and 2 of Table I. In Fig. 2, it is possible
to see the speed and the torque transients highlighted by the
gray zone. The speed transients are a ramp that goes from 0

Tt 29 Teeth ﬁ
Shaft g Q
95 Teeth 36 Teeth .1ty Bearing
Intermediate 6 6
Shaft J Q
Faulty gear

B 90 Teeth 6
Shaft g Q

Fig. 1. Schematic gearbox overview.

Table I.  Signal list

Signal

number Gear condition Defect description

1 Healthy /

2 Healthy /

3 Light Wear 1/3 of the teeth surface area
4 Light Wear 1/3 of the teeth surface area
5 Light Gear Pitting Fault diameter 0.5 mm
6 Light Gear Pitting Fault diameter 0.5 mm
7 Light Teeth Break Y of the teeth width

8 Light Teeth Break Y4 of the teeth width
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Fig. 2. Gearbox input speeds and torques for healthy signals.

to 20 seconds, while the torque time-varying curves are a
double trapezoidal curve.

lll. FD STRATEGY UNDER VARIABLE
WORKING CONDITIONS:
DEVELOPMENT STEPS

The FD-developed strategy under variable working condi-
tions can be viewed as the task of extracting modulating
diagnostic components from a non-stationary, and noisy
vibration signal, when the fundamental frequency changes
over time and the fault is localized. Traditional methods
based on the SDP-CNN approach have demonstrated effec-
tiveness under stationary conditions, but their sensitivity to
dynamic changes limits their applicability in real-world
scenarios. To overcome these limitations, it is proposed
to integrate the VKF_MOT as a pre-processing step for
vibration signals. It is renowned for its capability to extract
specific harmonic components from complex and non-
stationary signals, thereby enhancing the robustness of fault
diagnosis under variable operating conditions. The integra-
tion of VKF_MOT allows for the isolation of frequency
components associated with faults, reducing the influence
of noise and non-stationary variations. This process im-
proves the quality of the generated SDP images, providing
more representative inputs for the CNN and increasing
the accuracy of fault classification. Furthermore, the
VKF_MOT-SDP-CNN pipeline eliminates the need for
complex time-frequency transformations, preserving the

GMOs of FG and CG

Vibrational Signal Filtered Signal

SDP

VKF_MOT

Instantaneous Rotational

Frequency

Transformation

integrity of temporal information and reducing the risk
of phase distortions. This characteristic is particularly
advantageous for analyzing vibration signals under variable
working conditions, where non-stationarity is an intrinsic
feature. The proposed approach combines the strengths of
VKEF in handling non-stationary signals with CNN capabil-
ity to perform accurate classifications based on SDP
images, offering an effective solution for fault diagnosis
in complex industrial scenarios.

The developed algorithm is shown in Fig. 3. As shown
in Fig. 3:

1. The first step of the algorithm is to extract the GMOs of
FG and CG using VKF_MOT from the vibrational
signals. Using this filter enables the extraction of the
FG and CG fault signatures from the signal under
variable working conditions.

2. The second step of the algorithm is to transform the
filtered signal using the SDP.

3. The third step of the algorithm is to develop the CNN
for gear FD.

A. NON-STATIONARY VIBRATIONAL
SIGNALS

In scenarios involving variable speed and load, the vibra-
tional signal y(7) acquired from a rotating gearbox system is
typically non-stationary, meaning its statistical properties
change over time. A formal model can be expressed as:

Snowflakes Classification

Fig. 3. Algorithm steps for gear health status prediction.
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— x.(n)
X(n+1)= {xk(n—kl)} (6)

¥t = 3 A(r) cos (2nj’ofk<r>dr ¥ m(r)) ) M

k=1
where:
* Ai(t) is the time-varying amplitude of the k-th har-
monic component.

* fi(t) = k-f(¢) is the instantaneous frequency, the k-th
multiple of the non-stationary rotational frequency f(¢).

* ¢;(t) is the non-stationary phase term.
¢ K is the number of GMOs harmonics.

* n(t) is Gaussian additive noise and other not target
components.

Under stationary conditions can be written:

f() =fo 2

where f is the constant rotational instantaneous frequency,
and the signal y(¢) is periodic. If equation (2) is not valid,
¥(¢) is non-stationary and f(¢) changes over time.

This non-stationarity undermines the effectiveness of
the SDP, which assumes constant periodicity for a stable
representation in the polar domain. Additionally, it com-
plicates the identification of diagnostic components related
to faults. To tackle this challenge, a VKF_MOT is proposed
to pre-filter the non-stationary signal y(z). The filter isolates
components:

o) o5 20 o1+ u0) ) G)

that corresponds to desired GMOs, attenuating #7(z), and the
resulting signal y,(¢) contains only the desired components
to make SDP snowflake diagram stable.

B. VKF_MOT IMPLEMENTATION

The VKF_MOT is a passband adaptive filter to extract non-
stationary periodic components from vibration or acoustic
signals of the rotating machine if its instantaneous rotational
frequency is known [38,39]. The problem is defined by
solving two equations, the structural and the data equation,
using the method of least squares. The equations smooth the
unknown complex envelopes. They relate the tracked or-
ders to the measured signal.

The discrete signal y(n) obtained from a rotating
machine contains K components x;(n), each of which is
associated with an order related to the rotation of the
machine and represents a signal to be tracked. However,
these components are contaminated by random noise and
other irrelevant periodic components denoted by ¢ (n).
Each order x;(n) is also modeled as a solution to a sec-
ond-order differential equation, which allows an accurate
description of the dynamics within the system. Then, it is
possible to write the k-order as:

xi(n) —2cos(or () AT )xi(n—1) + x, (n—=2) =€ (n) (4

Where wy(n) = k - w(n) and w(n) is the angular frequency.
The equation (4) can be rewritten in status form
defining:

xy(n) = [( ~V ] )

xi(n)

The equations (5) and (6) allow the equation (4) to be
rewritten as a linear relationship between consecutive states.
The equation (4) can be written for the n + 1 iteration as:

X (n+1)=2cos(wp (n)AT)x;(n) +x,(n—1) =€, (n) (7)

X (n+1)=2cos(wy(n)AT)x (n) —x;(n—1) +€,(n) (8)
and in matrix form:

o= 1S sestorman ] ]

- |:€k(()n)]
©

and substituting with the equations (5) and (6) in the equa-
tion (9):

xe(n+ 1) = My (n)xi(n) + €(n) (10)
where:
0 1
Mi(n) = {—1 ZCos(a)k(n)AT)} (1
(n) = Lk(()n)] (12)

The equation (10) is a recursive matrix relation. To
track K multiple order components simultaneously, it is
necessary to concatenate all state vectors into a global state
vector:

x,(n)
X (n)
Xm)=| ", (13)
| xk(n)
[ x(n+1)
+1
X(n+1)= xZ(n: ) (14)
)_CK(”'Jr 1)
and let the diagonal matrix:
M, (n) 0 0O 0 --0 0
0 M,n) 0O 0 --0 0
0 0 0 0 -0 Mg
(15)
and defined:
€i(n)
By = | < (16)
ex(n)

the equation (4) for K multiple order components simulta-
neously tracked became:
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X(n+1)=F(n+1,n)X(n) + E(n) (17)

The equation (17) is the structural equation of
VKF_MOT.

The measured signal y(n) to track multiple order
components simultaneously can be written as:

K
¥(n) = xg(n) +n(n) = Y m(m) +q(n)  (18)
k=1

where 7(n) is a random Gaussian noise and other not targets
periodic components. Expressing the equation (18) as a
state vector:

y(n) =1(n)X(n) +n(n) (19)

that is the data equation of VKF_MOT where:
I(n) = [L,(n) I(n) -+ Ix(n)] (20)
L(n)=[0 1] 21

If the instantaneous frequency wy(n) is known, the
k-order non-stationary component x; (1) can be evaluated as:

)= o (Sontmar ) sin( Sy )| o)

(22)

where the amplitude of x,(n) is obtained by
Va(n)® + b(n)*.

Since equations (17) and (19) are written identically to
the process and measurement equations of the Kalman
filter, they can be solved as illustrated in [40].

The obtained xg (n) is used as the input signal for SDP
transformation.

C. SDP TRANSFORMATION

The SDP is a technique that transforms a time signal into a
normalized point plane by creating a symmetrical scatter
plot of amplitudes on a polar diagram called a ‘“‘snow-
flake” [20].

This method allows a visual representation of signal
amplitude and frequency variations, simplifying fault diag-
nosis in rotating systems such as gears. SDP improves the
FD process by providing greater clarity and easier identifi-
cation of features compared to raw signal analysis [21,22].
The difference between signals can be seen in the shape of
the petals that make up the snowflake diagram. The diagram
uses h planes of symmetry by rotating the petals by an
angle:

_ 360
Tk

A necessary condition to plot the snowflake is that the
petals do not overlap.

It is possible to transform xg(n) in polar coordinates
using the SDP transform by the formula:

(i) = xxl) —max(re(m)
max(xy (1)) — min( e (1))

9 (23)

(24)

xi(i + 1) - min(xg (n))

o0 = (o) = min ()

¢ (25

o) = 9 xx (i 4 1) — min(xg (n)) ¢

~ max(eg(n) — minGeg () © 0

where:

 min(xg(n)) and max(xg(n)) are the minimum and the
maximum value of xg(n) respectively.

* r(i) is the radius of the i-th point.

* 0(i) is the clockwise deflection angle of the i-th point
along the symmetry plane.

* ®@(i) is the anticlockwise deflection angle of the i-th
point along the symmetry plane.

¢ [ is the delay coefficient.
* J is the rotation angle of the symmetry plane.
e £ is the gain of the deflection angle.

Figure 4 shows the influence of £ and / in the snowflake
diagram: as £ increases, the petal curvature will be greater,
while as [ increases, the petal width will be greater.

After setting the optimal & and / parameters [41], it is
possible to transform xx () into the snowflake diagram and
thus obtain the CNN input images.

D. CNN DEVELOPMENT AND OPTIMIZATION

The images generated by the SDP are first converted to
binary images as shown in Fig. 5. and then processed by the
proposed CNN algorithm.

A CNN is a type of artificial neural network (ANN)
specifically designed to process image datasets using a grid-
based structure, making it suitable for image classification
tasks [42]. The proposed supervised CNN learns a mapping
between the input image, derived from the SDP algorithm,
and the corresponding output, allowing the classification of
the fault category associated with the image.

The input layer processes single-channel binary
images. The network uses an optimized depth convolu-
tional architecture where both the number of layers and the
hyperparameters are Bayesian optimized [43].

Each convolutional block follows a structured
sequence involving a convolutional layer, batch normaliza-
tion (BN), a rectified linear unit (ReLU) as the activation
function, and a max-pooling layer. This process can be
expressed mathematically as:

X = max (ReLU (BN (X' + W'))) (27)

where W! is the convolution kernel of size k X k, [ is the
generic convolutional block, X is the input image, and * is
the convolution operator.

The BN function normalizes the feature maps (X' * W')
to stabilize training, while ReLU introduces non-linearity
into the network by allowing positive values to pass unal-
tered and setting negative values to zero. The number of
convolutional filters W/ is optimized by Bayesian optimi-
zation to improve the feature extraction. Finally, in the
convolutional block is applied the max-pooling which is the
maximum value within a defined pooling window to reduce
the spatial dimensionality of the feature map.

After the final convolutional block, the flattened final
pooling layer is given to the fully FNN, where the ReLU is
used as the activation function, and a SoftMax function
converts the raw output scores into a probability distribu-
tion over the classes.
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1=40

Fig. 4. Snowflake dependency from & and /.

x-axis

CNN input

SDP Transformation

Ry,

Fig. 5. CNN input image development.

The loss function used in the proposed CNN is the cross-
entropy loss, which is widely used in classification tasks to
measure the difference between the predicted probability
distribution and the true class labels. The proposed
CNN algorithm employs Stochastic gradient descent with
momentum (SGDM) as the optimization method. The
Bayesian optimization process aims to minimize the ex-
pected loss over the space of hyperparameters. It is formu-
lated as:

o) = E[L(G)} 28)
where 6 represents the vector of chosen hyperparameters,
and E[L(0)] shows the expected value of the loss function
under the current hyperparameter configuration.

Bayesian optimization efficiently searches the hyper-
parameter space using probabilistic models to find the best
combination without requiring an exhaustive grid search.

A generic proposed CNN architecture is shown
in Fig. 6.

IV. RESULTS AND DISCUSSION

All three axes were considered in this study to fully capture
the vibrational behavior of the gearbox. Figure 7 shows the
normalized raw and filtered vibration signals for signal 1 of
Table L.

GMO represents the fundamental order in which mesh-
ing occurs between the teeth of two gears. Multiples of this
frequency can be influenced by defects in the teeth such as
wear or local breaks. The analysis of these harmonics enables
the identification and characterization of such defects.

In particular, the analysis of the first harmonics of
GMO is widely recognized in the literature as effective for
FD in mechanical transmission systems, and the defects in
the FG are visible in the CG GMOs since the FG meshes
directly with the CG [44,45].

The signals were acquired at a frequency of 12800 Hz.
According to the Shannon-Nyquist theorem, the visible
frequency limit is 6400 Hz. The rotation speed of the FG
corresponds to the maximum input speed of the gearbox,
approximately 1000 rpm (which equals about 16.67 Hz),
considering the 29/95 transmission ratio (Fig. 1).

Therefore, the maximum visible order considering the
rotational speed of the shaft on which the FG is coupled is
given by the following equation:

o _ds1_ 12800 95
M Tof e 2-16.6729

where f is the sampling frequency, f, is the input rotation
frequency, and ¢ is the transmission ratio. Since beyond
order 300 there is a significant reduction in amplitudes in
the order spectrum of Fig. 8, only orders below this value
were selected. As reported in Fig. 1, since the FG has 36
teeth and the CG has 90 teeth, the selected multiple order
values are:

~ 1257 (29)
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Fig. 7. Raw and filtered gearbox vibration for Signal 1.

e 36,72, 108, 144, 180, 216, 252, and 288 for the FG;
¢ 90, 180, and 270 for the CG.

This approach ensures a balance between capturing
relevant fault signatures and minimizing noise, thereby
enhancing the reliability and reproducibility of the FD
process.

In the present study, the effectiveness of VKF_MOT is
demonstrated as showed in Fig. 8 for the normalized raw
and filtered gearbox vibration order spectrum for signal 1 of
Table 1.

Figure 8 shows the amplitude reduction of the unse-
lected orders, considered as noise, and how the selected
orders are correctly extracted: the use of VKF_MOT allows
highlighting the selected orders that are characteristic of the
faulty gear and allows to highlight the differences between
the healthy and the defective. In addition, the bandwidth
also considers orders around the selected orders. This is due

to the chosen first-order filter: this bandwidth could have
been reduced by adopting a second-order filter, but the
computational cost would have increased [46]. The first-
order +3dB passband filter of each tracked order is estab-
lished equal to 0.5% of the sampling frequency f,. Switch-
ing to a second-order structural equation halves the
passband but quadruples the state dimension and roughly
octuplets the floating-point operations [47]. The work aim is
to demonstrate that the proposed pipeline can enhance the
SDP-CNN combination for detecting the incipient defects
in gear under variable working conditions.

The raw and filtered signals were divided into segments
of three faulty gear revolutions and transformed using SDP.
This choice is useful to further highlight the defects that will
have to differentiate the SDP diagrams, and it is made to
obtain as many images as possible to train, validate, and test
the developed CNNs. Figure 9 shows a comparison between
the snowflakes of raw and filtered signals for one segment.
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Fig. 8. Raw and filtered gearbox vibration order spectrum for signal 1.

The SDP diagrams in Fig. 9 were obtained by setting
¢ =30 and [ =7. These SDP parameters are empirically
chosen to prevent the petals from overlapping [41]. The
generic snowflake diagram in Fig. 9 was obtained by
composing the SDP transformation of vibrational signals
sampled along the three axes.

The simultaneous use of all three axes in the same
snowflake allows for greater differentiation of SDP dia-
grams. In Fig. 9, the SDP diagrams of raw signals appear
visually complex and overlapped with patterns showing
some symmetry that tends to mask morphological differ-
ences between fault classes. Indeed, the Pitting and Break
conditions present very similar shape in the raw signals,
making clear distinction difficult. Moreover, the presence of
high-frequency noise and the dispersion of the data points
compromise class separability. Instead, the diagrams ob-
tained from the filtered signals show more distinct
shapes and sharper contours across conditions. Filtering

reduces the influence of noise while preserving the main
informative components, thereby enhancing the dynamic
features associated with each fault mode. For example, the
Wear case exhibits a marked reduction in amplitude along
the x-axis, whereas Break produces a very regular and
distinct symmetry. These differences become easier to
interpret both visually and computationally, facilitating
the application of automatic classification techniques. Spe-
cifically, SDP diagrams from the filtered signals in Fig. 9
highlight:

* Healthy has a regular, balanced pattern with homoge-

neous amplitudes and well-distributed symmetry
across the three axes.

* Wear reduced amplitude on the x-axis, resulting in a
compressed shape compared to the healthy state. This
characteristic is hard to detect in the raw diagram due to
noise masking.

Raw signals - Healthy

Raw signals - Wear

Raw signals - Pitting

Raw signals - Break

Filtered signals - Healthy

Filtered signals - Wear

® x-axis ® y-axis ® z-axis

Filtered signals - Pitting

Filtered signals - Break

Fig. 9. Comparison between SDP transformation of raw and filtered signals.
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« Pitting is clearly asymmetric across axes, with greater
spread along the z-axis. This pattern is not visible in the
raw signals by high-frequency components.

* Break shows a highly regular and strongly extended
pattern, particularly along the x and y axes, with marked
symmetries reflecting structural compromise. Unlike
Pitting, this distinction is clear only after filtering.

The improvement in class separation achieved through
filtering is attributable to removing spectrally non-informa-
tive components while preserving defects characteristic
frequencies. This makes the SDP transform more effective
as a diagnostic tool.

The obtained SDP diagrams were used as input for the
developed CNNs: the dataset was divided into 50% for
training, 20% for validation, and the remaining 30% for
testing.

The first step to validate the proposed methodology
was to develop two-class CNNss to discriminate between the
health state and one of the defects shown in Table I. For
each optimization process, a minimum set of 50 iterations
was set to interrupt the Bayesian optimization process using
the expected improvement criterion. Each CNN was trained
for 1000 epochs with a validation frequency every 10
epochs. A PC with a processor 13th Gen Intel Core i9-
13900 of 2.00 GHz, 32 GB of RAM, and a 12 GB NVIDIA
GeForce RTX 3060 was used. Table II reports the opti-
mized hyperparameter ranges.

In Fig. 10 are reported the trend of the errors during the
Bayesian Optimization process for each CNN where it can
be observed that the error achieved by CNNs for the
VKF_MOT-SDP-CNN pipeline is always lower than the
SDP-CNN one.

Furthermore, in Table III the computational time for
each optimization process is reported, while the CNN
testing accuracy is reported in Table IV.

Comparing the CNN accuracy between the SDP dia-
gram obtained from the raw and the filtered signals of
Table IV, it is possible to note that the accuracy always
increases using the VKF_MOT for pre-processing the
signals.

The receiver operating characteristic (ROC) [48] curve
for each CNN was calculated to evaluate the false positive
rate. The ROC curves were reported in Fig. 11, while the
corresponding area under the curve (AUC) was reported in
Table V.

Table Il. Hyperparameter range

Hyperparameter Range
Convolutional Layers 1+4
Stride of Convolutional Layers 2+5
Filters Size of Convolutional Layers 1+5
Filters Numbers of Convolutional Layers 2+50
Stride of Pooling 2+5
Pooling Size 1+5
Fully Connected Layers Number 1+5
Neurons Numbers of Fully Connected Layers 1+1000
Initialization Learning Rate 10765107
Momentum 0.01+0.99
Mini Batch Size 2+256
L2 Regularization 107%+107!
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Fig. 10. CNN Bayesian Optimization process.

Looking at the ROC curves in Fig. 11, it is possible to
see that the filtered cases have a greater tendency toward the
point (0,1) than the raw cases: this means that the false
positive rate is lower in the filtered case than in the raw case.
This result was confirmed by the AUC reported in Table V.

Finally, a multi-class CNN network was developed to
classify whether the input SDP diagram belongs to the gear
healthy state, or it is related to an incipient defect. The
comparison between the classical and the proposed tech-
nique was carried out: the CNN Bayesian optimization
process errors are reported in Fig. 12, in Table V1is reported
the computational time, the test accuracy is shown in
Table VII, Fig. 13 shows the One vs Rest ROC curve
(Wear, Break, and Pitting defects as positive class), and
Table VIII shows the AUC.

Table lll. Computational time of CNN optimization
process

CNN classes Raw signals Filtered signals
Healthy — Break 00:42:08 01:05:33
Healthy — Pitting 00:52:27 00:50:55
Healthy — Wear 01:06:04 00:39:23
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Table IV. CNN testing accuracy Table V. AUC of CNN testing results
CNN % accuracy of % accuracy of % AUC of AUC of
classes raw signals filtered signals difference CNN raw filtered Percentage
Healthy — 89.65 95.69 46.04 classes signals signals AUC difference
Break Healthy — 0.964 0.987 +23
Healthy — 96.55 97.41 +0.86 Break
Pitting Healthy — 0.997 0.998 +1.0
Healthy — 85.34 91.52 +6.18 Pitting
Wear Healthy — 0.853 0.958 + 10.5
Wear
Healthy - Wear 0.6
g 1 Raw
& > O Filtered
2 = 04
Z 0.5
g 3
P 2
=
= 1 0.2
=) - .
0 0.5 1 '_.\‘
False Positive Rate 0 e
g ! Iteration
-4
2
05 Fig. 12. CNN Bayesian Optimization process.
&
§ e Raw
= ooy BT Filtered Table VI. Computational time of CNN optimization
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The validity of the new technique is confirmed by
Table VII, which shows an increase of 11% in the pre-
processing of the signals using the VKF_MOT compared to
the raw signals. The improvement is still evident when
comparing the two One vs Rest ROC curve (Fig. 13) and the
AUC values (Table VIII).

Finally, a comparison with other ML techniques
applied on the same dataset is proposed. The comparison
is reported in Table IX where the last column shows the
difference between the accuracy of the proposed technique
and that obtained in literature.

Table VII. CNN testing accuracy

0 0.2 0.4 0.6 0.8 1
False Positive Rate

Fig. 13. One vs Rest ROC curve.

The proposed VKF_MOT-SDP-CNN achieves a lower
accuracy compared to [49,50], but it offers a more intuitive
visual interface for less experienced operators by allowing

CNN classes

% accuracy of raw signals

% accuracy of filtered signals % difference

Healthy — Break — Pitting — Wear 80.95

92.64 +11.69
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Table VIIl. AUC of CNN testing results
CNN classes AUC of raw signals AUC of filtered signals Percentage AUC difference
Healthy vs Break — Pitting — Wear 0.942 0.977 +0.035
Table IX. Comparison with other techniques
Accuracy Comparison
References Technique Advantages Disadvantages [%] [%]
Sun et al. [49] STNG and * Robustness with small data * High computational cost 96.25 -3.61
GCAIPN ¢ Local and global * Hypersensitivity to
feature extraction segmentation parameters
Zhang et al. MVML-LCLLC e Application even in case of  ® High computational cost 97.30 —4.66
[50] missing or incomplete labels ¢ Offline applications only
* Multi-labels
Shao et al. PLL-WCAN * High * High computational cost 92.20 +0.44
[51] robustness * Complex hyperparameter
* High tuning
generalization

the direct observation of distinct patterns; indeed, [49]
requires feature extraction across multiple domains.
Moreover, its hyperparameter optimization is fully
automated, unlike the approach in [50]. The proposed
method reaches an accuracy comparable to what reported
by Shao et al. [51].

V. CONCLUSIONS

The SDP transforms vibration signals into symmetrical
visual patterns to facilitate the FD process, improves clarity,
and makes it easier to recognize distinctive features, thereby
improving the fault diagnosis process, compared to raw
signal analysis. The work aimed to enhance the SDP-CNN
combination for detecting incipient defects in gear under
variable working conditions. For this purpose, a new
pipeline was developed: first, a filtering of the vibration
signals with VKF_MOT, then a transformation of the
signals with the SDP technique, and finally the develop-
ment of a CNN for gear FD. The method was validated on
an experimental dataset including trapezoidal load-time
curves and ramp speed-time curves.

Two-class CNNs were developed between the healthy
state and an incipient defect, then a final CNN was devel-
oped to distinguish between the healthy and defective types.
The new pipeline was compared with the classical SDP-
CNN approach: the experimental results demonstrate the
higher classification accuracy of the new approach
compared to the classical one. These findings were also
confirmed by ROC curve analysis and AUC calculation.
Finally, the proposed technique was compared with
other literature research demonstrating a slight decrease
in accuracy, but with a more intuitive interpretation
of the diagrams and with simpler hyperparameter
optimization.

The proposed technique experimentally validated the
VKF_MOT-SDP-CNN pipeline for gear FD under variable
working conditions for incipient defects. The new method
shows high accuracy, but it is computationally expensive
due to VKF_MOT. In order to implement a VKF_MOT
filter, it is necessary to acquire both the rotational speed of
the system and the vibrational signal to be filtered. In

practical applications, an encoder or tachometer sensor is
usually available to derive the system rotational speed, so
this dependency is not a limitation of VKF_MOT applica-
bility in practical scenarios.

Future research will include the ability to assess the
presence of combined defects and testing on different
gearbox components such as bearings. It will also be
possible to compare with other signal pre-processing tech-
niques and combine the SDP diagram using signals of a
different nature, such as vibration and rotational speed. To
further improve the capabilities of feature representation in
fault diagnosis, the integration of advanced embedding
techniques could be explored. These methodologies could
provide valuable insights into developing more robust and
generalized fault diagnosis systems. Future work should
also consider implementing the new pipeline in online
monitoring systems, leveraging hardware acceleration
such as FPGA-based platform. This would enable real-
time monitoring of an industrial gearbox and allow for
studying the trade-off between performance and hardware
resource usage.
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