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Abstract: As a critical technology for industrial system reliability and safety, machine monitoring and fault
diagnostics have advanced transformatively with large language models (LLMs). This paper reviews LLM-based
monitoring and diagnostics methodologies, categorizing them into in-context learning, fine-tuning, retrieval-
augmented generation, multimodal learning, and time series approaches, analyzing advances in diagnostics and
decision support. It identifies bottlenecks like limited industrial data and edge deployment issues, proposing a
three-stage roadmap to highlight LLMs’ potential in shaping adaptive, interpretable PHM frameworks.
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I. INTRODUCTION
Machine monitoring and fault diagnostics are vital for
ensuring industrial machinery reliability. Large models
(LMs), particularly large language models (LLMs), are
transforming PHM by addressing challenges in condition
monitoring and fault diagnostics through capabilities like
in-context learning (ICL) and multimodal reasoning. This
paper reviews LM-based approaches (ICL, fine-tuning,
retrieval-augmented generation (RAG), multimodal, time
series) and outlines a three-stage roadmap for LM-enabled
prognostics and health management (PHM): knowledge-
enhanced, task-driven, and self-learning frameworks.

Section II, contributed by Xuefeng Chen, overviews
LLMmethods for intelligent maintenance, covering advance-
ments in ICL, fine-tuning, and multimodal fusion. Section III,
by Yaguo Lei, explores opportunities/challenges in LLM-
driven machine fault diagnosis, highlighting progress in
foundation models and interpretability. Section IV, authored
by Simon Parkinson from the University of Huddersfield,
discusses LLMs in engineeringmonitoring, emphasizing data
interpretation and human-in-the-loop applications. Section V,
by Yan-Fu Li, outlines future directions, including industrial
knowledge integration, multimodal modeling, and edge opti-
mization for LLM evolution in PHM.

II. LMs IN PHM
A. OVERVIEW

In recent years, LMs, exemplified by LLMs, have achieved
remarkable strides, unveiling colossal potential towards the
actualization of artificial general intelligence. LMs refer to
models with massive parameters across various data types,

while LLMs are a specific type of the LMs trained exclu-
sively on text to understand and generate natural language,
which belong to a subset of LMs. LLMs employ large
generative modeling on vast textual corpora. When both
dataset scale and model size reach a certain inflection point,
they can exhibit astounding generative prowess. The well-
known ChatGPT, being a paragon, employs techniques like
instruction alignment, reinforcement learning, fine-tuning,
and thought chain for training and adjustment, equipping
LMs with robust generalization, inference, decision-mak-
ing, and generative capabilities. It is also promising to
develop LM-based PHM applications to leverage PHM
with the powerful performance, like ChatGPT. Meanwhile,
there is a pressing need to address the bottlenecks and
practical requirements pertaining to PHM technology. By
synergizing applications of LMs, collaborating between
ordinary models and LMs, and emphasizing specialized
field LMs development, there’s an opportunity to
refine current PHM operational frameworks, enhance
PHM algorithm competencies, and bolster downstream
PHM tasks.

This section provides an overview of LM-based meth-
ods applied to intelligent maintenance, as illustrated in
Fig. 1. It summarizes the main paradigms of LM-based
methods from five perspectives: ICL-based, fine-tuning-
based, RAG-based, multimodal-based and time-series-
based LMs. Furthermore, details of the paradigms are
introduced and related works are reviewed. Additionally,
the challenges and future directions related to intelligent
maintenance of complex systems are discussed.

B. ADVANCES OF LMs IN PHM

1. ICL-BASED LMs. Most LMs utilized in ICL are LLMs
since ICL is a prominent capability of LLMs wherein the
model can perform novel tasks by conditioning on a
sequence of input-output examples provided in the prompt,
without any parameter updates or task-specific fine-tuning.
In this setting, the model effectively leverages the
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contextual information to infer the underlying task
and generate appropriate outputs for new inputs. Unlike
traditional learning paradigms that require explicit training
on labeled datasets, ICL enables zero-shot, one-shot, or
few-shot generalization by treating the provided examples
as implicit supervision. This approach highlights the mod-
el’s ability to internalize broad patterns during pretraining
and adapt to specific tasks dynamically at the testing
time.

In PHM, ICL means enabling an LLM to answer
specialized questions, like equipment faults or maintenance
protocols, by including relevant technical documents and
expert knowledge in the prompt without retraining the
model. Specifically, a task-specific query, such as fault
diagnosis or maintenance recommendation, is formulated
by the user at first. Subsequently, relevant background
information, such as technical specifications, operational
guidelines, or historical maintenance records, is selected
and organized to provide the necessary context for the task.
Next, this contextual information is combined with the
query into a well-structured prompt that reflects the task’s
domain-specific requirements. Finally, LLMs process the
prompt holistically and generate a response that reflects
both the contextual cues and its pretrained language under-
standing capabilities, giving fault diagnosis results, main-
tenance recommendation, etc.

For LLMs like GPT, the generation is autoregressive.
Given a prompt x = ðx1, x2, : : : , xTÞ, whose number is T , the
output tokens y = ðy1, y2, : : : , yNÞ, whose number is N, are
generated via:

PðyjxÞ =
YN

t=1

Pðytjx,y<tÞ (1)

This reflects how the LLM generates output one token
at a time, conditioned on the input and previous outputs.

From an end-to-end view, the whole ICL pipeline can
be described as:

Output = LLM ðPromptðContext, QueryÞÞ (2)

where the prompt is the function of the combination of
technical context and users’ query.

The research progress of ICL-based LMs in the
field of PHM. In recent years, numerous scholars have
actively explored the application of ICL-based LMs in the
field of PHM, investigating their potential for tasks such as
intelligent fault diagnosis, predictive maintenance, and
knowledge-based decision support across various industrial
domains. For instance, Wang et al. [1] proposed a local
knowledge base-empowered LLM that incorporates PHM-
specific knowledge through prompt-based retrieval to
enhance LLMs. Specifically, it combined text embedding,
vector similarity search, and prompt engineering to inte-
grate external technical content into the LLM’s input
without requiring model retraining. It significantly
improved the model’s ability to generate accurate, relevant,
and professional responses in PHM scenarios. Lukens et al.
[2] developed an LLM-based copilot system for mainte-
nance recommendations. A framework using specialized
LLM agents, recommender and evaluator, that generates
and assesses diagnostic steps in response to sensor alerts,
was designed. The system incorporated RAG to enhance
contextual relevance and leveraged prompt engineering to
structure inputs for reliable, task-specific reasoning. Dave
et al. [3] developed a system for explainable fault diagnosis
by integrating a physics-based diagnostics tool, named PRO-
AID [4], with an LLM. Prompt engineering was utilized to
carefully manage and provide specific contextual informa-
tion to the LLM. This involved feeding the LLM with
knowledge about the plant, real-time data from PRO-AID,
and the structure of the diagnostic system through a “Sym-
bolic Engine.” This contextualization aimed to align the
LLM’s responses with accurate, physics-based information
and diagnostic results, thereby constraining the LLM
to prevent hallucinations and enabling it to provide under-
standable explanations for fault diagnosis. Liao et al. [5]

Fig. 1. LLMs in PHM.
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proposed a novel approach for constructing a fine-grained
knowledge graph (KG) for robotic fault diagnosis. This work
leveraged LLMs with a prompt-engineered industrial nested
label classification template to enhance nested named entity
recognition. The attention-map-aware keyword selection for
industrial nested language model and confidence filtering
mechanism further improved data augmentation and entity
extraction accuracy. Huang et al. [6] introduced a framework
for root cause analysis in industrial asset health management
with pretrained LLMs. The LLM-enhanced deep root cause
analysis method designed prompts to direct LLMs in ranking
potential root causes identified by data-driven models,
leveraging symptom signals and saliency maps. A multi-
LLM debating strategy with self-exclusionary voting
reduced biases, improving reliability. Ma et al. [7] proposed
a fault diagnostic reasoning pipeline named FDRKG-LLM,
integrating LLMs with KGs. The method enhanced human-
machine collaboration by enabling natural language queries
for fault diagnosis in mechanical equipment. Sophisticated
prompt engineering facilitated named entity recognition,
intent recognition, and subgraph correction, guiding LLMs
to leverage KGs effectively, reducing hallucinations, and
improving interpretability. Zhou et al. [8] proposed Cau-
salKGPT, an industrial causal knowledge-enhanced LLM for
analyzing quality defects in aerospace product manufactur-
ing. By integrating a causal quality-related KG with a
structure causal graph-based sum-product network, the
model eliminated pseudo-associations.

2. FINE-TUNING-BASED LMs. Fine-tuning in LMs refers
to the process of adapting a pretrained model to a specific
task or domain by updating its parameters using labeled,
task-specific data. While LMs are typically pretrained on
diverse textual corpora using self-supervised objectives
(e.g., causal or masked language modeling), fine-tuning
enables the model to specialize in narrower domains such as
failure mode identification, maintenance recommendation
generation, or anomaly report summarization.

This adaptation involves continued supervised train-
ing, where gradients from a task-specific loss function are
used to update the model’s parameters. Depending on
computational resources and data availability, fine-tuning
can be performed at different levels of granularity—from
full-model updates to parameter-efficient techniques such
as adapter layers, Low-Rank Adaptation (LoRA), and
prefix tuning. By incorporating domain-specific knowledge
and aligning the model with operational goals and compli-
ance requirements, fine-tuning enhances the utility of LMs
in real-world PHM systems.

Let D = fðxi,yiÞgNi=1 be a labeled dataset, where xi
denotes structured or unstructured input data, e.g., sensor
logs, maintenance records, or inspection notes, and yi
corresponds to the target output, e.g., fault types, remaining
useful life (RUL), or maintenance action.

Given a pretrained model f θ with parameters θ, fine-
tuning aims to optimize the parameters θ to minimize a task-
specific loss function L:

θ� = arg min
θ

1
N

XN

i=1

Lðf θðxiÞ,yiÞ (3)

For resource-constrained industrial environments or
scenarios where labeled data are limited, parameter-effi-
cient fine-tuning approaches can be employed. In these
settings, only a small set of task-specific parameters ϕ� θ
is updated while the core model θ remains frozen:

ϕ� = arg min
ϕ

1
N

XN

i=1

Lð f θ,ϕðxiÞ,yiÞ (4)

where f θ,ϕ is a model where lightweight modules—such as
adapter layers or low-rank projection matrices—are in-
serted into the frozen base model. This allows for efficient
customization of LMs to PHM tasks without the computa-
tional overhead of full retraining, while still achieving
domain-specific accuracy and compliance.

The research progress of fine-tuning-based LMs in
the field of PHM. Tao et al. [9] proposed to textualize
vibration data by extracting 24 time and frequency domain
features and converting them into natural language descrip-
tions paired with fault modes as question-and-answer inputs
for LLMs. The LoRA and quantized LoRA were applied to
fine-tune the LLMs. Zheng et al. [10] conducted an empiri-
cal study on fine-tuning LLMs for fault diagnosis of
complex systems. Sensor data were converted into prompt
datasets and used LoRA for fine-tuning. Zhang et al. [11]
proposed a labeled-data-supervised fine-tuning method for
LLMs in heating, ventilation, and air conditioning fault
diagnosis. It used self-correction to generate datasets and
SMOTE for augmentation. The fine-tuned GPT-3.5 with
LoRA outperformed GPT-4, with strong generalization and
dimension-agnostic ability. Lai et al. [12] proposed a
bearing fault diagnosis foundation model, BearingFM. It
adopted a cloud-edge-end collaborative framework, used
fault-mechanism data augmentation, and designed a con-
trastive learning model for efficient fine-tuning with small
labeled datasets.

3. RAG-BASED LMs. LMs utilized in RAG-based meth-
ods are all LLMs since RAG is designed for language-based
tasks. RAG is a hybrid framework that enhances LLMs by
incorporating external, domain-specific knowledge at the
testing time. In PHM, where accurate diagnostics and
decision support depend on complex, evolving information
sources, such as sensor logs, fault histories, and technical
manuals, RAG offers a powerful mechanism for grounding
responses in relevant operational data. Unlike standard
LLMs, which rely solely on static pretraining, RAG dynam-
ically retrieves relevant documents or records based on the
input query, enabling the model to generate outputs that are
more context-aware, accurate, and timely.

A typical RAG pipeline for PHM includes a retriever
module, using dense vector search or keyword-based tech-
niques, to identify the top-k most relevant maintenance
reports, inspection records, or operating manuals. These
documents are concatenated with the original input and
passed to a generator model, often a pretrained LLM fine-
tuned for industrial terminology. This setup allows the
system to deliver high-quality, explainable outputs for tasks
such as failure diagnosis, maintenance recommendation,
and anomaly interpretation, while mitigating issues like
hallucination and outdated knowledge without requiring
model retraining.

The research progress of RAG-based LLMs in the
field of PHM. Xia et al. [13] proposed FCLLM-DT for
bearing fault diagnosis, integrating digital twin, RAG-as-
sisted LLMs, and federated continual learning. For RAG, it
constructed a knowledge base from historical data, used a
sliding window mechanism in prompts, and updated the
queue to generate virtual data, enhancing LLM’s accuracy
and mitigating hallucination issues. Tao et al. [14] proposed
LLM-R, a framework for domain-adaptive maintenance
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scheme generation, integrating LLMs with hierarchical
task-based agents and instruction-level RAG. RAG
enhanced the framework by vectorizing maintenance task
keywords, retrieving relevant data from a vast knowledge
base using a BERT encoder and maximum inner product
search, and generating accurate maintenance schemes. It
also combined LoRA-KR loss. LLM-R mitigates knowl-
edge conflicts and improves adaptability for complex and
small-sample maintenance tasks in diverse domains like
aviation and manufacturing. Jurim et al. [15] proposed
ChatCNC, a conversational machine monitoring frame-
work for human-centric smart manufacturing. It integrated
LLMs and real-time RAG. RAG dynamically retrieved real-
time CNC machine data from IIoT databases to enable
context-aware responses, reducing reliance on technical
support and enhancing human-data interaction flexibility.
Liu et al. [16] proposed an intelligent CNC fault diagnosis
system for identifying fault causes, providing repair
solutions, and supporting real-time monitoring and mainte-
nance. It integrated LLMs and domain KGs. A multi-source
KG is constructed for structured representation. A RAG
framework based on KG supports multi-turn interactive
diagnosis with real-time data. A dynamic learning mecha-
nism enables knowledge updates.

4. MULTIMODAL-BASED LMs. LMs integrate multi-
source data, including text, images, audio, and vibration
signals, into a unified architecture capable of processing,
reasoning, and generating contextually coherent outputs
across heterogeneous inputs. Extending beyond traditional
text-based LMs, these models employ modality-specific
encoders, such as vision encoders for images and special-
ized modules for industrial signals like vibration or temper-
ature, to transform non-text data into compatible
representations. Techniques like cross-attention, joint em-
beddings, or unified tokenization enable effective fusion of
these modalities. In PHM, multimodal LMs can process
equipment monitoring data, enhancing fault detection, pre-
dictive maintenance, and decision-making. These capabili-
ties advance the development of robust, general-purpose AI
systems for complex industrial PHM tasks.

The research progress of multimodal LMs in the
field of PHM. Multimodal LMs for PHM can be broadly
categorized into two approaches: alignment and embed-
ding. The alignment approach encodes multi-source infor-
mation, leveraging methods such as CLIP [17] to align
features across modalities at the representation level, ensur-
ing coherent integration of heterogeneous data such as
vibration and images. For instance, Li et al. [18] proposed
the VSLLaVA pipeline, which integrates vibration analysis
expert knowledge into a multimodal LM with signal-ques-
tion-answer triplets. This pipeline employs LoRA to fine-
tune the linear layers of CLIP and the LLM, enhancing
performance in signal parameter identification and fault
diagnosis for industrial vibration analysis. Alsaif et al. [19]
developed a multimodal LM to integrate various modality
information, including text, images, audio, vibration sig-
nals, and video, employing a CLIP-like modality alignment
operation. It maps multimodal features to a unified semantic
space through input projectors, linear projectors, and cross-
attention mechanisms, ensuring semantic consistency and
efficient feature fusion. Chen et al. [20] constructed a large-
scale fault diagnosis dataset including vibration time-
frequency image-text label pairs and human instruction-
ground truth pairs, and employed a multi-scale cross-modal

image decoder to extract fine-grained fault semantics,
enhancing the accuracy of fault diagnosis reports. Lin
et al. [21] developed FD-LLM for fault diagnosis in
aero-engines and bearings. The approach integrated multi-
modal data alignment and fuzzy semantic embedding to
process engineering time series data, addressing challenges
like data readability and limited fault samples. Conversely,
the embedding approach prioritized one primary source,
encoding secondary sources like vibration signals into
feature vectors that are integrated into the dominant repre-
sentation. Jose et al. [22,23] fine-tuned a LLM on domain-
specific texts, embedded inspection notes using the fine-
tuned LLM, and used these embeddings to weight other
monitoring data, thereby improving the prediction accuracy
of machine degradation levels. Peng et al. [24] converted the
features of both query and fault-free vibration signals into
word embedding and concatenated user instruction text
embedding to generate natural language responses for anom-
aly detection, fault diagnosis, maintenance recommendation,
and potential risk analysis tasks. Wang et al. [25] augmented
the input signal with semantic information by concatenating
embedding signals and prompts and fine-tuned a pretrained
LLM for fault diagnosis. Furthermore, some approaches use
LLMs as components to leverage linguistic semantics for
time series modeling. Liu et al. [26] employed an LLM as a
supervisor for preliminary diagnosis, leveraging brain-
inspired chain-of-thought reasoning. Subsequently, small
models refined the initial results to achieve precise diagnoses.
Zhang et al. [27] utilized an LLM to automatically select the
best decomposition level and frequency band by analyzing
historical fault data for optimized wavelet packet transform,
reducing the subjectivity and uncertainty of manual parame-
ter settings. Du et al. [28] proposed a method to incorporate
time-frequency domain information into LLMs, enabling
rapid learning of time-frequency data characteristics for
fine-tuning convolutional model. This approach significantly
reduces manual operation time.

5. TIME SERIES-BASED LMs. Time series-based LMs
usually utilize LLMs as encoders to directly process moni-
toring signals, which do not take pure text as input. By
treating time series as sequences of tokens, time series LMs
leverage transformer architectures to capture complex tem-
poral patterns and long-range dependencies, which are
critical for tasks such as fault diagnosis and RUL prediction.
Different types of time series LMs exist based on their input
representations and adaptation strategies. Token-based
models segment sensor data into fixed-length tokens, while
time-frequency models transform signals into spectral re-
presentations before tokenization. Prompt-based models
introduce task-specific tokens to guide the learning process,
and adapter-based models fine-tune lightweight modules
while keeping most pretrained parameters fixed for efficient
domain adaptation. Additionally, foundation models pre-
trained on large, diverse datasets using self-supervised
objectives provide robust, generalizable representations,
enabling few-shot or zero-shot learning across PHM tasks.

The general pipeline begins by normalizing raw time
series xt and segmenting it using a sliding window or
patching function pi = f ðxt∶t+ΔÞ. Each segment is embed-
ded into a vector:

ei = ϕðpiÞ + φðiÞ (5)

where ϕð·Þ is a learnable embedding function and φðiÞ adds
positional information. The sequence feig is then processed
by a transformer:

Large Models for Machine Monitoring and Fault Diagnostics 79

JDMD Vol. 4, No. 2, 2025



H = TransformerðfeigÞ (6)

where attention weights model interactions across time. A
task-specific head y = gðHÞ outputs RUL estimates, fault
classes, or anomaly scores, supporting maintenance strate-
gies and system health assessment.

The research progress of time series-based LMs in
the field of PHM. Wang et al. [29] proposed a time series
LM for RUL prediction. By fine-tuning GPT2, it incorpo-
rated time series-specific processing: patching to segment
sequences into fixed-length patches, positional encoding to
inject temporal order, and linear probing for dimension
alignment. Self-attention and feed-forward layers in GPT2
were frozen, while residual/normalization layers were up-
dated during fine-tuning. Wang et al. [30] proposed
RmGPT, a time series-based LM utilizing a token-based
framework with Signal/Prompt/Time-Frequency Task/
Fault Tokens. Self-supervised learning via next signal token
prediction extracted features, and prompt learning adapts to
tasks was integrated. A dual-stage attention transformer was
utilized to process multi-channel signals. Pan et al. [31]
proposed ParInfoGPT, an LM-based two-stage framework
for rotating machine reliability assessment under partial
information. It integrated a self-supervised reconstruction
network with MI-based masking and a weakly supervised
classification network using a parallel side adapter. GPT-2
served as the backbone, leveraging pretrained linguistic
capabilities for time series feature learning. Qin et al. [32]
proposed a large fault diagnosis model for rotating machin-
ery based on a dense connection network with depthwise
separable convolution (DCNDSC). It designed a dense
connection block with depthwise separable convolution to
capture complex features and proposed a diminutive network
fine-tuning strategy to enhance adaptability to new data. Pan
et al. [33] explored applying LMs to machinery fault diag-
nosis for time series analysis. It proposed LLaMA-HFT, a
framework using LLaMA2 as the backbone. A hybrid fine-
tuning strategy was adopted via freezing part of the bottom
blocks while fine-tuning with LoRA on the top blocks. Tao
et al. [34] proposed LM4RUL for bearing RUL prediction
using pretrained LMs for time series. It employed local scale
perception representation to tokenize vibration data into
time-frequency features and uses hybrid embedding learning
with selective freezing/fine-tuning. A two-stage fine-tuning
strategy adapts pretrained knowledge to industrial scenarios,
enabling long-term RUL prediction without heavy manual
feature engineering. Eldele et al. [35] proposed UniFault, a
fault diagnosis foundation model for time series. It tackled
heterogeneous fault diagnosis data via a preprocessing pipe-
line with data normalization, sliding window transformation,
channel unification, and cross-domain temporal fusion. A
Transformer-based backbone with contrastive self-super-
vised learning enabled few-shot adaptation, leveraging 9B+
pretraining data points. Chen and Liu [20] proposed a time
series LM-based regression framework for RUL prediction.
It utilized GPT-2 with self-attention to capture temporal and
spatial correlations in multidimensional industrial signals. A
unified model structure with the same sliding window and all
sensors was adopted.

C. CHALLENGES AND OPPORTUNITIES

1. HIGH-QUALITY AND LARGE-SCALE INDUSTRIAL
DATA. The pretraining of LMs relies heavily on vast
amounts of high-quality and large-scale data, such as

LLMs requiring corpora, while time series LMs demand
raw data. The scaling law for LMs indicates that model
performance is closely tied to dataset size and the number of
model parameters [36]. However, in the field of PHM,
acquiring sufficient fault data remains a significant chal-
lenge. For example, in the fields like wind power and
petrochemical intelligent fault diagnosis, the acquisition
and organization of knowledge and corpus are relatively
straightforward, benefitting from decades of research, accu-
mulated case studies, and industry-standardized documen-
tation. However, for emerging and specialized areas, like
C919 aircraft, corpus collection presents challenges, further
hampering the development of effective LMs. In addition,
while public datasets from fault simulation experiments on
mechanical systems are available, their data volume is often
limited, and the homogeneity of the data hampers the
training of models with strong generalization capabilities.
Meanwhile, enterprises are reluctant to share monitoring
data and maintenance records publicly due to concerns over
commercial confidentiality. Consequently, constructing a
large-scale, high-quality industrial PHM database for pre-
training LMs with robust generalizability poses a formida-
ble obstacle.

2. DIVERSITY AND COMPLEXITY OF INDUSTRIAL
DATA. Industrial systems comprise diverse equipment
and components, each operating under varying conditions
and monitored by multiple sensors that collect data such as
images, vibration, sound, current, and temperature. For
instance, in bearing and gear monitoring, vibration signals
are commonly used to assess health conditions, whereas
pressure signals are typically collected for fuel control
system monitoring. Beyond the inherent heterogeneity of
data, the nonstationary nature of signals, such as vibration,
complicates feature extraction and modeling. Furthermore,
equipment is monitored over extended periods, making it
critical to capture long-term dependencies in the data.
Consequently, the multimodal, nonstationary, and tempo-
rally extended nature of industrial data presents significant
challenges for effective modeling in LMs. Specifically,
multimodal alignment poses challenges due to the com-
plexity of aligning high-dimensional, heterogeneous data
and the absence of a shared semantic space across different
modalities, which hinders the unified learning in the repre-
sentation space.

3. RESOURCE AND TIME CONSTRAINTS IN SYSTEM
DEPLOYMENT. LMs, characterized by their vast param-
eter counts and complex architectures, impose significant
computational demands for both training and inference. In
industrial settings, deploying these models on edge de-
vices presents substantial challenges. The computational
load of LMs typically necessitates high-performance
infrastructure, such as powerful GPUs. However, in
most industrial scenarios, constraints on power, space,
and cost make it impractical to equip edge devices with
such advanced hardware. Furthermore, industrial appli-
cations, particularly in PHM, require rapid response times
to enable early fault detection and timely interventions.
The inherently slow inference speed of LMs, driven by
their computational complexity, struggles to meet the
real-time requirements of industrial systems. Therefore,
achieving a balance between model performance and
inference speed while deploying efficient LMs on
resource-constrained edge devices remains a significant
obstacle.
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4. MODEL GENERALIZATION IN OPEN ENVIRON-
MENTS. Engineering knowledge exhibits strong domain
dependency and contextual coupling. Diverse industrial
systems exhibit unique data distributions and physical
principles, creating significant gaps between them. Even
within a single system, varying operating conditions and
failure modes tightly coupled with operational contexts
hinder models from adapting to new environments without
retraining or fine-tuning. For instance, a model trained
under stable conditions may fail under different loads or
environmental factors. Furthermore, the absence of a uni-
fied framework for encoding engineering knowledge limits
the integration of domain-specific insights into LMs, re-
stricting their ability to generalize learned patterns across
domains. Thus, designing LMs with robust generalization
capabilities in open, dynamic engineering environments
poses a critical challenge.

5. LIMITED ADAPTABILITY OF GENERAL-PURPOSE LMs
FOR PHM. General-purpose LMs, such as ChatGPT and
DeepSeek, are trained on vast datasets of text and images
scraped from the internet, offering strong generalizability.
However, their applicability to PHM tasks is limited due to
a lack of domain-specific knowledge and monitoring data
for industrial equipment, components, and parts. Signals
such as images, vibration, temperature, and pressure are
critical in PHM but are underrepresented in general data-
sets. Moreover, LMs are primarily designed for natural
language processing (NLP), lacking mechanisms for cap-
turing long-term dependencies in time series data or effec-
tively fusing heterogeneous multi-source signals.
Consequently, the incomplete adaptability of general-pur-
pose LMs to industrial PHM tasks poses a significant
challenge.

D. FUTURE RESEARCH DIRECTIONS

1. DATA GENERATION FOR INDUSTRIAL SYSTEMS.
Training LMs relies on extensive high-quality datasets,
which are often scarce in industrial contexts. To overcome
this, advanced data generation techniques, such as simula-
tion modeling, digital twin systems, and diffusion models,
can synthesize high-fidelity data samples. Simulation
modeling can replicate equipment behavior under diverse
conditions, while digital twins provide real-time, system-
specific data through virtual representations. Diffusion
models can generate realistic, diverse signals like vibration
or temperature. These approaches reduce dependency on
real-world data, enhancing LMs usability and robustness in
complex industrial scenarios, particularly for PHM
tasks.

2. FUSION AND REPRESENTATION OF MULTI-SOURCE
DATA. Industrial systems integrate diverse equipment,
sensors, and operating conditions, producing data charac-
terized by strong heterogeneity, non-stationarity, and tem-
poral dependencies. Developing effective feature fusion
and representation methods for multi-source heterogeneous
data is thus critical. For long-term time series data such as
vibration, temperature, and pressure, models like Trans-
former can capture long-range dependencies. However,
misaligned features in the fusion process may lead to
information loss or feature redundancy, ultimately degrad-
ing model generalization. To mitigate this, hierarchical
alignment strategies can be adopted, aligning data at multi-
ple levels—such as sensor, feature, and semantic space

levels—to ensure coherent fusion. In addition, LMs or
intelligent agents can be leveraged to manage multi-agent
systems, such as swarm robotics, thereby promoting
unified and adaptable data representations that effectively
handle complex industrial data and enhance PHM
performance.

3. LIGHTWEIGHT AND EDGE-OPTIMIZED INDUSTRIAL
LMs. To deploy LMs in resource-constrained industrial
edge environments, research into model compression tech-
niques, such as knowledge distillation, pruning, and quan-
tization, is vital. These methods reduce model size and
computational demands, enabling efficient operation on
edge devices. Additionally, exploring hybrid approaches
that distribute computations between edge and cloud sys-
tems can balance real-time requirements with model accu-
racy. By optimizing inference speed while preserving
predictive performance, these techniques enhance the appli-
cability of LMs for real-time PHM tasks in industrial
settings, addressing the challenges of limited computational
resources and stringent latency demands.

4. KGs AND REASONING FOR LMs IN PHM. PHM
knowledge for engineering has strong domain dependency
and contextual coupling, limiting model generalization in
open environments. Building KGs from unstructured data,
such as expert experience, equipment manuals, and main-
tenance records, provides domain-specific data for LMs. By
integrating reinforcement learning-based reasoning, LMs
can transfer knowledge across industrial systems, mitigat-
ing data distribution gaps. This approach reduces issues
from varying operating conditions, enhances generalization
in dynamic PHM tasks, and improves interpretability
through transparent reasoning, offering PHM engineers
reliable decision-making support. In conclusion, aiming
at the prevalent transferability challenges of past diagnostic
methods, future research endeavors to design a LM that
requires no transfer, enabling it to operate efficiently on at
least one category of equipment.

5. DEVELOPMENT OF PHM-SPECIFIC FOUNDATION
MODELS. The limited adaptability of general-purpose
LMs to PHM highlights the need for specialized founda-
tion models designed from the ground up. These models
should integrate domain-specific knowledge and industrial
monitoring data, such as vibration, temperature, pressure,
and images. Tailored architectures, like temporal Trans-
formers or graph-based networks, can capture long-term
dependencies in time series data and fuse multi-source
signals. Moreover, a key direction of exploration lies in
breaking away from the traditional paradigm of merely
outputting the diagnosis result. Instead, future efforts
should aim to expand these models into comprehensive
intelligent maintenance, facilitating end-to-end applica-
tions across maintenance planning, decision-making pro-
cesses, and even robotic detection integration. This whole
approach will enable more proactive and autonomous
industrial maintenance. Meanwhile, the investigation
into the self-learning and self-reasoning capabilities of
these PHM foundation models, especially in handling
complex and rare industrial cases or anomalies. By em-
powering models to continuously adapt and reason
through challenging scenarios, the industry can achieve
higher accuracy in fault detection, enhanced predictive
maintenance capabilities, and ultimately, more robust and
reliable industrial systems.
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III. OPPORTUNITIES AND
CHALLENGES IN LMs-ENABLED
MACHINE FAULT DIAGNOSIS

A. A BRIEF INTRODUCTION

In recent years, LLMs such as ChatGPT, Qwen, and Deep-
Seek have emerged as transformative technologies in the field
of artificial intelligence [37]. These models, often containing
billions or even trillions of parameters, are usually pretrained
on massive data and fine-tuned for a wide range of down-
stream tasks.With abilities such as ICL, instruction following,
and chain-of-thought prompting, LLMs have demonstrated
exceptional generalization capabilities across diverse NLP
tasks, including but not limited to dialogue systems, text
generation, and expert-knowledge-based reasoning.

As the field progresses, LLMs have evolved from
language-only models to multimodal large languagemodels
(MLLMs), capable of understanding and integrating infor-
mation across multiple data modalities. Pioneering frame-
works such as CLIP [38], BLIP-2 [39], and LLaVA [40]
have demonstrated the feasibility of aligning visual and
textual inputs within a unified semantic space. These
advances enable practical applications in cross-modal learn-
ing and are starting to reshape vertical industrial fields. In
particular, LLMs and MLLMs show immense potential in
industrial intelligence, enabling new capabilities for
machine fault diagnosis [41–43].

Fault diagnosis of industrial machinery plays a vital
role in maintaining the safety, reliability, and operational
efficiency of modern industrial systems [44]. It involves
detecting, identifying, and classifying failure modes in
equipment by analyzing data collected from sensors,
such as vibration, temperature, acoustic emission, etc.
The general goal is to enable early detection of potential
failures to support condition-based maintenance and reduce
machine downtime. Over the years, a wide range of fault
diagnosis methods have been developed, including signal-
processing-based methods [45], model-based methods [46],
and data-driven methods [47,48]. In particular, the rapid
advancement of deep learning has enabled end-to-end fault
diagnosis through automatic feature learning and classifi-
cation, using models such as convolutional neural net-
works, recurrent neural networks, and Transformer.

While these neural network-based methods have
achieved encouraging results in various applications,
they also face several limitations. For instance, many
models are built with fixed architectures that are specifically
tailored to certain operating conditions. As a result, their
adaptability may be limited in scenarios such as cross-
condition or small-sample learning situations [49]. In addi-
tion, a common concern lies in their limited interpretability.
These models often function as “black boxes,” offering
relatively limited insight into the reasons behind their
predictions [50]. Therefore, it is difficult for engineers to
fully assess the reliability of diagnostic results, particularly
in cases where interpretability is important for practical
implementation.

To address the aforementioned limitations of deep
neural network-based methods, researchers have begun
exploring how the capabilities and core principles of
LLMs can be leveraged to enhance machine fault diagnosis
[51]. Although LM-enabled machine fault diagnosis is
still in its early stages, current studies have demonstrated

its potential to overcome the limitations by taking advan-
tage of the merits of generalization [9,51–53], interpretabil-
ity [10,54,55], and interactivity [56,57]. The current
research efforts can be broadly categorized into three
directions:

1. ENHANCING GENERALIZATION VIA PRETRAINED
FOUNDATION MODELS. Inspired by the generalization
capability of LLMs, some studies have begun to explore the
construction of foundation models for fault diagnosis.
These approaches adopt a pretraining-then-fine-tuning par-
adigm. In such framework, models are first pretrained on
large-scale and heterogeneous fault-related datasets and
then adapted to specific diagnostic tasks through light-
weight fine-tuning. The goal is to learn generalized feature
representations that are resilient to variations in operating
conditions, machine types, and data sources. Such models
hold promise for enabling cross-machine, cross-condition,
and cross-dataset fault diagnosis with minimal additional
training. Qin et al. proposed a pretrained large fault diag-
nosis model based on a densely connected network with
DCNDSC, enabling accurate and generalized diagnosis
across various rotating machines and fault types through
effective feature extraction and fine-tuning [52]. Tao et al.
proposed an LLM-based bearing fault diagnosis framework
that textualizes vibration features and uses fine-tuning to
improve cross-condition, small-sample, and cross-dataset
generalization [9]. Lei et al. proposed a Transformer-based
foundation model for intelligent maintenance that unifies
multimodal data and supports condition monitoring, fault
diagnosis, and RUL prediction across components like
bearings and gears, with strong generalization and adapt-
ability [53].

2. IMPROVING INTERPRETABILITY WITH KNOWLEDGE
INTEGRATION AND REASONING. Another aspect of
research focuses on enhancing the interpretability of diag-
nostic results. By incorporating domain knowledge, signal
processing techniques, and structured knowledge represen-
tations, these models leverage LLMs’ chain-of-thought
reasoning abilities. Beyond the diagnostic results, they
strive to provide transparent reasoning paths that make
the diagnostic logic understandable to human users. Liu
et al. proposed a knowledge-enhanced model that embeds
aviation assembly KGs into LLMs via prefix tuning,
achieving 98.5% accuracy in industrial fault localization
and troubleshooting [54]. Men et al. introduced the To-FD-
EKG framework, integrating LLMs with fault diagnosis
event KGs to enable traceable reasoning through structured
knowledge and digital twins [55].

3. ENABLING INTERACTIVE AND MULTIMODAL FAULT
DIAGNOSIS. With the significant progress in MLLMs,
researchers are also exploring interactive, and end-to-end
diagnostic systems. The corresponding models are designed
to process and align multiple data modalities, including
vibration signals, textual descriptions, and maintenance
logs. Human-in-the-loop diagnostics are supported by these
systems, enabling engineers to interact with the model using
natural language and to receive contextualized and multi-
modal explanations. Lin et al. proposed a multimodal LLM
approach with modal alignment, fuzzy semantic embed-
ding, and learnable prompts to improve accuracy in com-
plex equipment fault diagnosis of time series data [21].
Chen et al. introduced FaultGPT, i.e., a vision-language
model that generates fault diagnosis reports from raw
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vibration signals via instruction tuning and cross-modal
decoding [56].

In summary, the aforementioned exploratory directions
illustrate how LLM-based technologies could provide a
new foundation for more adaptable, explainable, and user-
centric machine fault diagnosis systems in complex indus-
trial environments.

B. OPPORTUNITIES AND CHALLENGES

There have been growing interests in applying LMs to
machine fault diagnosis, offering promising potential to
revolutionize traditional diagnostic paradigms. However,
this research direction is still in its early stage, with only
limited exploratory work reported. Most existing studies are
conceptual or conducted under controlled laboratory con-
ditions, and they cannot fully reflect the complexity and
variability of real-world industrial environments [57]. As a
result, LM-enabled machine fault diagnosis is still far from
being practically deployed at scale. To bridge the gap
between theoretical exploration and industrial application,
several critical challenges should be addressed in future
research.

1. LACK OF HIGH-QUALITY TEXTUAL CORPORA IN
FAULT DIAGNOSIS. A fundamental bottleneck in devel-
oping LM-based solutions for machine fault diagnosis is the
limited availability of high-quality and domain-specific
corpora [11]. Unlike general-purpose MLP tasks, which
benefit from massive, diverse, and richly annotated data-
sets, the fault diagnosis domain faces significant data
limitations. It lacks large-scale, standardized textual and
multimodal resources that capture expert knowledge, diag-
nostic procedures, signal interpretations, and causal rela-
tionships. Most existing datasets are small, task-specific,
and often lack detailed annotations or contextual metadata,
making them insufficient for training LMs that require
extensive input. Furthermore, much of the critical knowl-
edge in this field exists in the minds of domain experts or is
embedded in unstructured formats such as maintenance
reports, logbooks, and research papers. Such knowledge
is often difficult to access and formalize for use in model
training and inference.

2. COMPLEX FAULT MECHANISMS AND CHALLENGES
IN REASONING. Another key challenge in applying LMs
to machine fault diagnosis lies in the complexity of fault
mechanisms [58]. Unlike classification tasks in other do-
mains, where distinct features can be directly mapped to
specific categories, machine fault diagnosis presents greater
challenges. Faults such as inner race, outer race, or rolling
element defects in bearings often do not exhibit a single and
clear indicator. Instead, their signatures are typically subtle,
overlapping, and highly context-dependent. These charac-
teristics make reasoning in fault diagnosis particularly
challenging, as it often requires inferring latent fault types
from ambiguous, indirect, and context-sensitive evidence.

3. DIFFICULTY IN APPLYING EXISTING METHODS FROM
OTHER DOMAINS TO FAULT DIAGNOSIS. While LLMs
and MLLMs have achieved remarkable success in domains
such as NLP and computer vision, directly applying these
models to machine fault diagnosis remains a significant
challenge. Existing approaches like CLIP rely on aligning
well-structured and semantically intuitive modalities. For
example, images paired with textual descriptions often
exhibit a clear and direct correspondence between visual

and linguistic representations. However, this paradigm
cannot easily transfer to the fault diagnosis domain.

Vibration or other time series signals carry complex
and implicit information that is not readily interpretable.
Extracting meaningful insights from such data typically
requires extensive domain knowledge and comprehensive
understanding of the signal’s temporal and spectral char-
acteristics. Unlike images which offer intuitive patterns, the
semantics of signals are abstract and context-dependent. As
a result, simple signal-text alignment strategies fall short in
capturing the underlying diagnostic knowledge.

Moreover, many current MLLM fine-tuning techni-
ques rely heavily on instruction tuning, which often prior-
itizes similarity over actual comprehension. In such
scenarios, the model cannot well learn how to analyze
the features of signals. Instead, it tends to generate re-
sponses based on superficial similarities to previously seen
examples, leading to inaccurate fault diagnosis. This high-
lights the demands for domain-adapted strategies that can
incorporate signal-specific representations and expert
knowledge into the learning process.

IV. LLMs FOR MONITORING AND
DIAGNOSTICS: FUTURE

OPPORTUNITIES
A. OVERVIEW

Monitoring in an engineering context includes a wide range
of activities to ensure the correct operation of machinery.
This consists of activities ranging from diagnostics, fault
detection, and condition monitoring. Diagnostics involve
investigating a known problem to determine the cause, fault
detection is concerned with recognizing the presence of a
problem, and condition monitoring is the continuous
assessment of the system to predict potential performance,
informing maintenance strategy to mitigate and predict
problems [59]. These practices are fundamental in Engi-
neering disciplines where system reliability is critical. For
example, machinery in energy generation needs careful
monitoring to prevent failure.

Traditionally, monitoring has relied on structured, and
mostly numeric data, from sensors and control systems,
analyzed using data-driven analytical approaches such as
machine learning and statistical methods. These approaches
have proven to be very useful in identifying and predicting
subtle changes in device behavior. Engineers performing
monitoring and diagnostic tasks will be familiar with
approaches such as neural networks, fuzzy logic, support
vector machines, etc [60]. Each approach has characteristics
that make it more appropriate for specific monitoring tasks,
depending on data types and analysis aims. While these
approaches have proven effective in many scenarios, they
often require structured data, domain-specific feature engi-
neering, and extensive manual parameter tuning to yield the
best results. Furthermore, these methods often struggle with
unstructured data which contain rich contextual originating
from maintenance logs, operator notes, and technical man-
uals, for example.

Recent advances in NLP, most notably in LLMs, have
presented techniques capable of understanding and reason-
ing with data sources, exhibiting human-like output. Mod-
els such as GPT-3 and LLaMA are trained on vast corpora
of text and exhibit strong capabilities in language
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processing tasks such as comprehension, summarization,
translation, and reasoning. Their ability to process unstruc-
tured textual data opens new avenues for enhancing
monitoring systems, particularly in interpreting human-
generated content and integrating it with sensor-based
diagnostics. This potential is being witnessed in many other
domains where monitoring is an essential task, such as
security [61] and safety compliance [62]. These recent
works demonstrate the potential for LLMs in monitoring.
In addition to using traditional condition monitoring on
structured data, they introduce processing of unstructured
data, enabling more comprehensive analysis that goes
beyond identifying something of interest to explaining its
significance and even how to mitigate identified challenges
[63]. Furthermore, through using LLMs, engineers can gain
deeper insight from historical records and support decision-
making. This is especially valuable in complex systems
where human expertise and machine data must be
synthesized for effective diagnostics and maintenance
planning.

B. ADVANCE OF LLMs

LLMs represent a paradigm shift in artificial intelligence.
These models are built on transformer architectures and
trained on large corpora of text data, enabling them to learn
complex language patterns and semantic meaning. They
work by having large amounts of adjustable parameters
(weights and biases) that can be changed during training.
For example, GPT-3 contains 175 billion parameters. This
large size enables them to be able to learn and store a large
amount of relationship knowledge.

The key innovation of LLMs lies in their ability to
generalize across tasks and domains using different learning
strategies. For example, “few-shot” learning is where the
model is trained on a small number of labeled instances to
guide its prediction, whereas “zero-shot” learning requires
the model to perform tasks without any labeled examples,
relying only on pretrained knowledge. This makes them
particularly attractive for engineering applications where
labeled data is seldom available or where the monitoring
context evolves. Unlike traditional machine learning mod-
els that require retraining for each new task, LLMs can
adapt to new inputs with minimal additional data.

Emerging research has started to explore the applica-
tion of LLMs in domains related to engineering monitoring.
In predictive maintenance, LLMs have been used to analyze
maintenance logs, technician notes, and service records to
identify patterns that precede equipment failure [64]. In
anomaly detection, LLMs can process textual alerts, error
codes, and operator feedback to flag unusual behavior based
on semantic similarity [65]. In industrial automation, LLMs
assist in interpreting procedural documents, generating
troubleshooting steps, and even translating between tech-
nical languages and natural language instructions [66].

Despite these promising developments, the application
of LLMs in core engineering monitoring tasks is still
underexplored. Most existing studies focus on natural
language tasks or general-purpose analytics, with limited
attention to the integration of LLMs into real-time moni-
toring systems or their interaction with sensor-based data
streams [19]. Furthermore, the potential of LLMs to bridge
structured and unstructured data, such as combining sensor
readings with maintenance narratives, could provide useful
functionality and warrants further investigation. In this

work, we examine how LLMs can be used in monitoring
and what opportunities and challenges exist in future
work.

C. USE CASES OF LLMs IN MONITORING

The use of LLMs beyond traditional AI methods presents
new functionality to improve how data is processed, ana-
lyzed, and interpreted. In this section, five key use cases are
presented based on early emerging work.

Data Interpretation and Fusion: Engineering sys-
tems generate large volumes of heterogeneous data, includ-
ing structured sensor outputs and unstructured sources such
as maintenance logs, technician notes, and incident reports.
Traditional monitoring systems are often limited to focus-
ing only on the former as adopted algorithms are limited to a
single data type. LLMs, however, have demonstrated good
capabilities for processing unstructured text and can extract
actionable insights from these sources [67]. For instance,
an LLM can analyze a corpus of maintenance logs to
identify recurring fault descriptions, correlate them with
specific components or environmental conditions, and flag
emerging issues. In addition to interpretation, LLMs can
perform data parsing and fusion tasks [68]. This involves
integrating information from multiple modalities
(e.g., textual logs, sensor metadata, and operational param-
eters) to construct a holistic view of a system’s condition.
This integration provides additional context for monitor-
ing tasks.

Anomaly Detection and Fault Diagnosis: LLMs can
enhance traditional anomaly detection by identifying pat-
terns in textual data that is related to faults detected in
numeric data analysis [65]. For example, subtle shifts in the
language used in operator notes, such as negative sentiment
regarding the machine’s operating condition, may indicate
deteriorating conditions before analytical tools detect the
fault. In fault diagnosis, LLMs can serve as intelligent
assistants that retrieve and analyze relevant historical cases.
When presented with an error message or fault code, an
LLM can search through records to find similar instances,
summarize the root causes, and suggest corrective actions.
This capability is particularly valuable in complex systems
where fault signatures are complex or evolve, with the
utilization of unlabeled data mentioned as an open chal-
lenge [69].

Human-in-the-Loop Monitoring: Monitoring is not
solely a technical process; it often involves human judg-
ment, especially in high-stakes or uncertain scenarios.
LLMs can enhance human-in-the-loop monitoring by act-
ing as collaborative partners that summarize diagnostics,
highlight anomalies, and propose remedial action. For
example, an LLM can generate concise summaries of daily
maintenance activities, flag unresolved issues, and recom-
mend follow-up actions. Research undertaken in human-in-
the-loop for manufacturing with collaborative robots
(widely named cobots) for manufacturing and assembly
has demonstrated the potential [70]. Furthering research in
human-in-the-loop for monitoring tasks can help prevent
unresolved issues from being missed. There is a large body
of applicable research in human-in-the-loop with machine
learning [71] and early work using LLMs [72]. This has the
potential to reduce cognitive load and accelerate decision-
making.

Knowledge Extraction and Reasoning: Engineering
organizations accumulate vast repositories of knowledge in
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the form of manuals, service bulletins, and historical main-
tenance records. Much of this knowledge remains separate
from widely implemented monitoring approaches due to its
unstructured nature. However, LLMs have proven capabil-
ities in extracting key insights, identifying trends, and
surfacing best practices. Beyond extraction, LLMs can
perform reasoning tasks, such as inferring causal relation-
ships or generating preventive maintenance strategies. For
instance, by analyzing a decade of maintenance logs, an
LLM might infer that a specific fault tends to occur after a
certain sequence of events or under specific environmental
conditions [73]. This reasoning capability supports proac-
tive maintenance planning and continuous improvement.
Monitoring tasks in engineering can leverage best practices
from security monitoring processes, where appropriate
mitigation action will be undertaken once an event
has been identified. However, as with the cyber security
discipline, the communication of capabilities [74] and
their standardization [75] would emerge as future
challenges.

MultimodalMonitoring:Modernmonitoring systems
increasingly rely on multimodal data sources, including
data types coming from visual inspections, acoustic signals,
time series sensor data, and textual reports. While LLMs are
inherently text-based, they can be integrated into multi-
modal frameworks to interpret and contextualize non-tex-
tual data [75]. For example, an LLM can be paired with a
computer vision model that detects surface cracks in equip-
ment. For example, using LLMs and computer vision to
detect issues with material extrusion [76]. The LLM can
then correlate these findings with recent maintenance logs
to assess severity, suggest causes, and recommend actions.
Similarly, audio anomalies detected by signal processing
models can be contextualized using LLMs that analyze
technician feedback or historical fault narratives.
This multimodal synergy enhances the robustness and
interpretability of monitoring systems, especially in
complex environments where no single data source pro-
vides a complete picture. However, there is also the signifi-
cant challenge that LLMs and other forms of generative AI
can produce realistic replica datasets, which means that
monitoring systems need to be robust to adversarial
attacks [77].

D. CHALLENGES AND FUTURE WORK

The integration of LLMs into engineering monitoring
systems presents beneficial opportunities, but there are a
range of challenges and limitations that must be addressed
to ensure effective and responsible deployment. This sec-
tion outlines the key challenges and proposes future
research directions to overcome them. Table I provides a
summary to complement the discussion.

One of the foremost concerns is data privacy and
security. Engineering systems often generate sensitive
operational data, maintenance records, and failure logs.
When such data are used to train or interact with LLMs,
there is a risk of unintended exposure or misuse [78].
Moreover, compliance with data protection regulations
such as GDPR or industry-specific standards is critical for
organizations, both to prevent future attacks and ensure
adequate security compliance should an attack occur.
Future work must focus on developing privacy-preserv-
ing techniques, such as federated learning or differential
privacy, and establishing robust governance frameworks
for LLM deployment in industrial contexts.

Another significant limitation is the absence of domain-
specific training data. Most LLMs are trained on the general-
purpose corpus, which lacks the technical depth required for
focused monitoring applications. As a result, these models
may misinterpret domain-specific terminology or fail to
capture subtle fault patterns. Addressing this requires ap-
proaches using RAG where domain-specific information is
retrieved from documentation and forms part of the LLM
query [61]. The curation of high-quality, domain-specific
corpora, such as annotated maintenance logs, sensor narra-
tives, and technical enables RAG approaches to retrieve
relevant information and improve query response.

The interpretability and trustworthiness of LLM out-
puts also pose a challenge. Although LLMs can generate
sensible and realistic responses, the underlying reasoning is
often opaque making it difficult for the recipient to under-
stand any reasoning or find evidence. In safety-critical
environments, engineers must be able to understand and
justify the basis of any recommendation or insight. Future
research should prioritize the development of explainable
AI techniques tailored to LLMs, enabling users to trace
outputs back to source data or model logic.

Table I. Summary of Challenges, Limitations, and areas of Future work

Challenge/Area Limitation Future Work

Data privacy and security Risk of exposing sensitive data; regula-
tory compliance requirements

Explore developing privacy-preserving techniques and
compliance frameworks

Lack of domain-specific
training data

General-purpose models lack technical
depth

Collection of domain-specific training data for anon-
ymization and sharing within the research community

Interpretability and trust Opaque reasoning behind LLM outputs
limits user confidence

Develop and leverage explainable AI techniques for
LLMs

Real-time performance and
deployment constraints

High computational demands restrict
edge deployment and low-latency use

Optimize LLMs for real-time and resource-constrained
environments

Hybrid models between LLMs
and traditional ML models

LLMs alone may lack a mechanistic
understanding of system behavior

Create test datasets and use case studies to serve as
benchmarks with hybrid model implementation and
evaluation

Benchmarking and evaluation
frameworks

Lack of domain-specific benchmarks for
LLM performance in monitoring

Establish standardized practices, datasets, and evalua-
tion protocols

Integration with edge comput-
ing and IoT

Limited support for on-device inference
in industrial settings

Explore real-time, localized monitoring through edge
deployment of LLMs either through efficient API calls
or small local hosting
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Real-time performance and deployment constraints
further complicate the use of LLMs in monitoring. Many
industrial applications require low-latency responses
and operate in environments with limited computational
resources [79]. Current LLMs, especially those with bil-
lions of parameters, are computationally intensive and may
not be suitable for edge deployment. Research into
model compression, quantization, and efficient inference
architectures is essential to enable real-time, on-device
monitoring. In some work, authors focus on improving
the efficiency of function calls from edge devices [80]. In
other recent works, authors focus on embedding LLMs in
FPGAs for signal processing tasks; however, in some
sensitive applications, there is a need to host the LLM
within the organization’s control to ensure that there is no
unintended exposure.

Beyond these core challenges, several opportunities
exist. One promising direction is the development of hybrid
models that combine LLMs with physics-based or signal
processing models. While LLMs excel at interpreting
unstructured data and language, physics-based models offer
precise, mechanistic insights into system behavior. Inte-
grating these approaches can yield more robust and inter-
pretable monitoring systems.

Another area of focus should be the creation of bench-
marking and evaluation frameworks specific to LLMs in
engineering monitoring. Current benchmarks are often
geared toward general NLP tasks and do not reflect the
unique demands of industrial diagnostics. Establishing
standardized datasets, metrics, and evaluation protocols
will facilitate meaningful comparisons and accelerate prog-
ress in the field [81]. However, there is a need to ensure that
LLMs are trained and benchmarked on datasets where the
correct permissions have been granted; otherwise, there is a
potential for copyright infringement [82].

Finally, the integration of LLMs with edge computing
and IoT infrastructure represents a significant challenge. By
deploying optimized LLMs on edge devices, organizations
can enable localized, real-time analysis without relying on
cloud connectivity and minimize security and privacy
concerns. This is particularly valuable in remote or band-
width-constrained environments, where latency and data
ownership are key concerns.

V. LLM FUTURE DIRECTION
Recent advances in large vision-language models (LVLMs)
and LLMs have brought transformative opportunities to
industrial visual monitoring and PHM. Wang et al. intro-
duced DefectGLM, the first LVLM tailored for wafer defect
detection, which significantly improved semantic under-
standing and domain-specific text generation through large-
scale multimodal data and contrastive domain adaptation
[83]. Building on this, they developed IVMMF, an intelli-
gent monitoring and maintenance framework integrating
local knowledge bases with vision-language models to
enable end-to-end automation from image recognition to
maintenance recommendation [84]. Li et al. systematically
reviewed the application of foundational models like
ChatGPT in PHM, proposing a roadmap for the AI 2.0
era that emphasizes transitions from single-task to multi-
modal systems and from offline modeling to real-time
intelligence [85]. In digital twin systems, Sun et al. em-
ployed an LLM-driven multi-agent architecture to enhance
perception of global temporal features, improving decision-

making intelligence and traceability [86]. Liu et al. devel-
oped a fault diagnosis system combining an aerospace
assembly KG with LLMs, using prefix tuning for efficient
knowledge integration and inference, demonstrating strong
performance in complex industrial scenarios [54].
Together, these studies highlight how LMs are overcoming
traditional bottlenecks in industrial AI, driving PHM sys-
tems toward greater efficiency, intelligence, and autonomy.

LLMs have demonstrated significant potential in the
field of PHM, offering a novel approach to overcoming the
limitations of traditional methods in generalization,
interpretability, and verification. Leveraging their strengths
in generalization, logical reasoning, and natural language
generation, researchers have proposed a three-stage pro-
gressive paradigm for LLM-driven PHM. The first stage,
knowledge-enhanced PHM, integrates LLMs with enter-
prise knowledge bases, expert rules, and historical mainte-
nance data, substantially improving equipment state
understanding and fault diagnosis accuracy. The second
stage, task-driven PHM, highlights LLMs’ capabilities in
task planning, resource allocation, and decision support,
enabling the generation of executable maintenance strate-
gies from natural language inputs. The third stage, self-
learning PHM, envisions systems capable of continual
adaptation and evolution across new equipment, conditions,
and tasks through LLM-based continuous learning and
optimization. Collectively, LLMs are emerging as the
core engine driving PHM systems from knowledge inte-
gration and intelligent decision-making toward autonomous
evolution, laying the foundation for the next generation of
cognitively capable and self-governing intelligent assur-
ance systems.

Despite the promising potential of LLMs in industrial
PHM, their widespread adoption faces several critical
challenges and technical bottlenecks. Most existing
LLMs are trained on general-purpose corpora, lacking
deep modeling capabilities for industrial scenarios, special-
ized terminology, and heterogeneous data sources. This
limits their ability to accurately interpret high-dimensional,
weakly supervised signals embedded in equipment states,
particularly when dealing with unstructured or temporal
data such as vibration signals, thermal images, and system
logs. Moreover, industrial PHM tasks are often highly
customized and context-specific, yet current LLMs struggle
to tightly integrate with domain-specific KGs and expert
rule systems, leading to limited interpretability and verifi-
ability of their inferences in engineering practice—particu-
larly problematic for safety-critical systems. Additionally,
industrial data are typically private and highly distributed,
posing challenges in balancing data isolation, privacy
protection, and model generalization during training and
deployment. Issues of computational cost and latency
remain pressing, especially in edge or resource-constrained
environments, where LLMs often fall short in inference
efficiency and lightweight deployment. More fundamen-
tally, current LLMs lack true “industrial memory” and
“evolutionary cognition”—they are unable to continually
update their knowledge base or construct causal under-
standing of novel fault patterns as human experts do.
Addressing these limitations will require breakthroughs
in domain-specific knowledge injection, enhanced causal
reasoning, multimodal temporal modeling, and adaptive
model compression, paving the way toward industrial-
grade LLMs with integrated cognitive, decision-making,
and self-evolution capabilities.
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The future development of LLMs in industrial PHM
will evolve toward greater specialization, intelligence, and
deployability. This evolution is expected to follow several
key trajectories:

A. INTEGRATION OF INDUSTRIAL
KNOWLEDGE AND EXPERT CAPABILITIES

Future LLMs will shift from general corpus-based train-
ing toward deep integration with industrial ontologies,
manuals, fault databases, maintenance logs, and expert
knowledge. By incorporating structured KGs, symbolic
rules, and few-shot learning mechanisms, these knowl-
edge-enhanced LLMs will move beyond surface-level
language understanding to model causal fault chains
and maintenance logic in a traceable and interpretable
way. This will empower LLMs with expert-level cogni-
tive capabilities—enabling analogical reasoning, root
cause analysis, fault localization, and maintenance rec-
ommendation—thus serving as reliable knowledge part-
ners for engineers.

B. DEEP MODELING OF MULTIMODAL AND
HETEROGENEOUS INFORMATION

Industrial PHM inherently involves diverse modalities
such as images, audio, vibration signals, text, and logs.
Next-generation LLMs must evolve into multimodal per-
ception-fusion-reasoning systems capable of processing
time series, thermographs, and structural diagrams within
a unified semantic space. Leveraging temporal and spatial
encoding mechanisms in transformer architectures, these
models can perform long-term modeling of dynamic
system behaviors under noisy, nonlinear, and variable-
load conditions—enhancing robustness and stability in
real-world scenarios.

C. EXPLAINABILITY, SAFETY, AND
TRUSTWORTHINESS ASSURANCE

As LLMs assume increasingly critical roles in industrial
decision-making, their outputs must be explainable and
trustworthy to ensure system safety. A comprehensive
assurance framework must be established, incorporating
causal graph-based decision explanations, confidence
scoring and anomaly detection modules, and human-in-
the-loop mechanisms for high-risk interventions. Addi-
tionally, to address privacy concerns, privacy-preserving
architectures based on federated learning, encrypted com-
putation, and localized fine-tuning should be developed to
enable secure cross-enterprise and cross-system model
collaboration.

D. INDUSTRIAL-GRADE DEPLOYMENT AND
RESOURCE-CONSTRAINED OPTIMIZATION

Real-world industrial settings demand lightweight, real-
time, and scalable models. Advancements in efficient infer-
ence engines, model compression and distillation, and
heterogeneous computing support will be essential for
deploying LLMs on edge nodes, control terminals, and
embedded platforms. Modular design and microservice
packaging will further enable flexible integration and rapid
iteration, promoting the transition from lab-scale feasibility
to production-grade control.

E. AUTONOMOUS LEARNING AND
SELF-EVOLUTION

As industrial environments and task demands evolve, static
LLMs struggle to keep pace with emerging knowledge
needs. The future lies in models that learn independently,
adapt proactively, and improve continuously—shifting
from tool-like intelligence to long-term companion-like
systems. Key advancements would focus on feedback-
driven learning (e.g., ReAct, Reflexion) for self-reflection
and iterative optimization. Lifelong learning frameworks
will enable knowledge accumulation and adaptation across
dynamic domains in PHM. Integrating cognitive architec-
tures and world models will further enhance reasoning and
environmental understanding. Ultimately, the shift from
models that “answer questions” to those that can “think,
learn, and evolve” will mark a fundamental leap forward in
the path toward truly intelligent PHM systems.

Through these multi-faceted advancements, LLMs will
continue to enhance their intelligence, domain specificity,
and practicality in industrial PHM, ultimately evolving
from cognitive assistants to autonomous operation partners
and powering the next generation of intelligent manufactur-
ing and maintenance ecosystems.
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