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Abstract: Most accidents of centrifugal compressors are caused by fluid pulsation or unsteady fluid excitation.
Rotating stall, as an unstable flow phenomenon in the compressor, is a difficult point in the field of fluid machinery
research. In this paper, a stack denoising kernel autoencoder neural network method is proposed to study the early
warning of rotating stall in a centrifugal compressor. By collecting the pressure pulsation signals of the centrifugal
compressor under different flow rates in engineering practice, a double hidden layer sparse denoising autoencoder
neural network is constructed. According to the output labels of the network, it can be judged whether the rotation
stall occurs. At the same time, the Gaussian kernel is used to optimize the loss function of the whole neural network
to improve the signal feature learning ability of the network. From the experimental results, it can be seen that the
flow state of the centrifugal compressor is accurately judged, and the rotation stall early warning of the centrifugal
compressor at different speeds is realized, which lays a foundation for the research of intelligent operation and
maintenance of the centrifugal compressor.
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I. INTRODUCTION
Centrifugal compressor has the advantages of compact
structure, durability, and high-pressure ratio, and there is
a lot of research on targeted applications in the correspond-
ing fields [1,2]. In the past, the research on centrifugal
compressors mainly focused on aerodynamic aspects, and
the main goal of this research work was to improve
efficiency, pressure ratio, and operating range [3]. How-
ever, with the improvement of aerodynamic performance,
the limitation of mechanical capacity in the design of
centrifugal compressors has appeared concurrently. There-
fore, while achieving higher aerodynamic performance, it is
also very important to ensure the safe operation of the
machine and avoid mechanical failure.

Rotating stall is an important fault during the operation of
a centrifugal compressor [4,5].When the operating point is far
away from the design working condition, the airflow can be
separated in the flow channel, resulting in an unstable flow of
the working fluid. Aerodynamic pressure pulsation in the
machine flow channel and pipeline may follow and lead to a
flow-induced vibration of impeller, causing great harm to the
machine [6,7]. Therefore, it is of great significance to study the
critical flow value of rotating stall of centrifugal compressor to
improve the stability of industrial centrifugal compressor.

At present, the research on compressor rotating stall state
identification mainly focuses on time-domain analysis, fre-
quency domain analysis, polar graph, time-frequency analy-
sis, and chaos theory analysis. Ali Zamiri et al. [8] used the
scale-adaptive simulation method to predict and capture the
key characteristics of rotating stalls in transonic high-pressure
centrifugal compressors. By comparing the unsteady pressure
signal with the measured data, the reliability of the proposed

numerical model for rotating stall prediction is verified.
Zhang et al. [9] processed the pressure signals using the
coherence analysis method, and the unsteady evolution
principle of the rotating stall is revealed in more detail.
The experimental results reveal that the rotating stall has a
major impact on the unsteady pressure signal, which is
mainly manifested in the increase of pressure pulsation.
Adel Ghenaiet et al. [10] demonstrated the potential of
numerical simulation to plot the whole flow field and evalu-
ated some criteria for predicting the onset of stall. The
determination of the flow value of the rotating stall plays
an important role in the safety and control of a centrifugal
compressor operating under a high-pressure ratio. Lu et al.
[11] explained the generation mechanism and inducement of
the rotating stall. At the same time, a vibration method based
onflow state identification (FSIV) is presented to discover the
flow instability in a centrifugal pump. Zhao et al. [12] used a
strain gauge and tip timing sensor to monitor blade vibration,
and the pressure sensor based on circumferential distribution
and stall parameter identification method is explored. At
present, most of the research on rotating stalls of a centrifugal
compressor is in time-frequency domain numerical analysis
such as the coherence analysis method. With the develop-
ment of intelligent manufacturing, the analysis ability of
these models is obviously insufficient in the face of massive
engineering data in actual processing [13].

In this paper, a stacked denoising kernel autoencoder
neural network is proposed to identify the rotating stall state
of a centrifugal compressor. The deep learning method is
used to deeply extract the pressure signal of a centrifugal
compressor by constructing a multi-hidden layer autoenco-
der neural network. The Gaussian kernel is adopted to
modify the loss function term to accurately judge the critical
value of the rotating stall. Through analyzing the pressure
signals of 11 different flow conditions, the critical flow
value of the rotating stall is accurately determined.Corresponding author: Hongkun Li (e-mail: lihk@dlut.edu.cn)
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II. PROPOSED METHOD
Autoencoder is a model that automatically learns features
from the collected data and provides a better feature repre-
sentation to replace the raw signals [14]. In practical
application, the features extracted by a sparse encoder
can be used to replace the original signals, which can often
bring better results [15]. For a data sample size m×n
dimensional, X = ½X1,X2, · · · Xn� ∈ Rm×n, among them
Xi = ½x1,x2, · · · xm� ∈ Rm×1. The information of the hidden
layer H = ½h1,h2, · · · hd� ∈ Rd×1 is represented as:

h = f ðWxþ bÞ (1)

where f is a neuron nonlinear function, and sigmoid func-
tion is commonly used. W is a weight parameter size d ×m
dimension. b is the offset value size d × 1 dimension. The
output layer reconstruction signals Z can be written as:

z = f ðW 0hþ b 0Þ (2)

where W 0 and b 0 are the parameter-connected hidden layer
and the output layer, respectively. The size of parameterW 0
is m × n dimension, and b 0 is m × 1 dimension.

The number of input and output nodes of the auto-
encoder model is the same, and if the number of nodes in the
hidden layer is smaller than the number of input nodes, the
sample is compressed, that is, the features of the sample are
extracted. Meanwhile, the output of the neural network is
required to restore the input layer as much as possible, that
is, the difference between output and input is as small as
possible [16,17]. So the loss function can be expressed as:

EðpÞ = 1
2

Xm
i=1

ðzi − xiÞ2 (3)

In order to enhance the feature extract ability of neural
networks and reduce the interference of environmental
noise on processing signals, the function of signals noise
reduction is added to the autoencoder model [18]. Mean-
while, the sparsity limitation of neural network is to repre-
sent the test samples with the least elements as much as
possible. Therefore, the sample signals will be randomly
assigned 0. Sparsity can be expressed as [19]:

KLðρkbρjÞ = ρ log
ρbρj þ ð1 − ρÞ log 1 − ρ

1 − bρj (4)

bρj = 1
m

Xm
i=1

½að2Þj Xi� (5)

where að2Þj indicates the activation degree of hidden neuron j
when the input data is X. bρj is the average activated data. In
order to make the average activation degree a small value, ρ
is introduced, which is called sparsity parameter and sa-
tisfies bρj = ρ, so that the activity of hidden layer nodes can
be small.

A. IMPROVED LOSS FUNCTION

Based on the fault identification principle, the linearly non-
separable sections in low-dimensional space could be line-
arly separable if mapping into the high-dimensional space.
Nevertheless, if this technology is directly applied for
identification and classification, there will exist many pro-
blems, like determining the dimension of feature space and

the parameters of nonlinear mapping function [20]. The
biggest challenge is the “dimension disaster” in the high-
dimensional space operation. Kernel function technology
gives an elegant solution. Supposing x ∈ X, samples in R(n)
space. There is a nonlinear function φ that maps input
sample X to feature space F. Where the dimension of F is R
(m), which is satisfied n ≪ m. This transformation process
can be written as:

Kðx,zÞ = hφðxÞ,φðzÞi (6)

where h,i is a function of inner product. From the formula
(6), inner product is used by the kernel function to cleverly
handle the problems of “dimensionality disaster” in the
high-dimensional feature spaces.

The kernel function has the following properties [21]:
(1) the use of the kernel function effectively avoids the
problem of “dimension disaster” of high data and greatly
reduces the amount of calculation. Therefore, kernel func-
tion model can effectively handle high-dimensional input
data problems. (2) It does not even need to acquaint the
form and parameters value of the function Φ. (3) Kernel
technology combined with other classification algorithms
can form different methods based on kernel function tech-
nology to apply to different applications, and the construct
of these two sections can be carried out separately.

Gaussian kernel, also known as radial basis function
(RBF), is a commonly used kernel function [22]. It can map
finite-dimensional data to high-dimensional space. For any
two random signal samples x = ½x1,x2, · · · ; xN �T and
z = ½z1,z2, · · · ; zN �T , the function of Gaussian kernel is
expressed as:

kσðxi,ziÞ =
1ffiffiffiffiffi
2π

p
σ
exp

�
−
ðxi − ziÞ2

2σ2

�
(7)

where σ is the kernel size. Thus, the final loss function with
a Gaussian kernel can be reconstructed as:

EðpÞ = 1
m

Xm
i=1

kσðxi − ziÞ (8)

To avoid the over-fitting problem in the feature learn-
ing process, a weight attenuation function Jweight is used to
restrict the loss function, and its expression is as follows:

Jweight =
λ

2

X2
l=1

Xsl
i=1

Xslþ1

i=1

ðWðlÞ
ji Þ2i (9)

where λ is the weight adjust parameter and sl is the unit
number of l layers.

Therefore, the whole loss function of the proposed
method is as follows:

LðpÞ = EðpÞ þ JweightðpÞ þ KLðρkbρjÞ (10)

B. GENERAL PROCEDURE

In this paper, SDKAE is proposed to intelligently diagnose
the critical flow of rotating stall of centrifugal compressor.
SDKAE belongs to an unsupervised deep learning method.
It can effectively extract features from raw signals and
provide better feature information than the original data.
The main goal of unsupervised learning is to deeply mine
the structure and internal information of data group.
According to the length of the collected signals, the pressure
fluctuation signals at each flow rate is transformed into
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200 samples, and each sample contains 2048 signal points.
The total number of samples at 11 flow rates is 2200.
Therefore, the final sample size of the neural network is
2200 × 2048. The flowchart of the proposed method is
displayed in Fig. 1. The main implementation steps can
be concluded as follows:

1. The pressure signals of 11 different flows of centrifugal
compressor are collected. Through the pressure signal
processing, the one-dimensional time-domain signal is
made into 2200 × 2048 signal samples, including 11
flow conditions

2. A stack denoising kernel autoencoder neural network
with two hidden layers is constructed, leveraging the
learning capability of unsupervised learning models for
signal feature information. The loss function is modi-
fied with Gaussian kernel function, and white noise is
added to initialize the parameters of the network.

3. The softmax classifier is added to the end of the network
in the previous step to form a supervised model. The
pressure pulsation signals are used as the input sample of
neural network. Through multiple iterative learning, the
flow state of the pressure pulsation signal is identified
and the rotating stall flow is determined.

III. EXPERIMENTAL SETUP
A. COMPRESSOR TEST RIG

Experiments were conducted using a single-stage centrifu-
gal compressor facility. This compressor was designed and

built to allow detailed investigations of the fundamental
flow physics and aeromechanical interaction within centrif-
ugal compressors. Figure 2 demonstrates the test rig and
flow path of the compressor.

The major components of the facility include the inlet
and outlet ducting, blade sections, electric motor, drive
train, and instrumentation. The facility is operated in an
open cycle. The air is first sucked in from long pipe system
and the inlet flow boundary corresponds to ambient con-
ditions. Afterward, the flow is guided and entered into the
compressor. Along the flow path, variable inlet guide vanes
(VIGVs), a full-size unshrouded impeller, diffuser vanes
(DVs), and return channel vanes can be seen. The blade
count of each component is listed in Table I. The tested
impeller is a typical unshrouded one and normally operates
at high tip speed and large volume flow. With 2.1 MW
electric motor, the impeller is driven to the required oper-
ating speed via a 2.93 ratio gearbox. The nominal rotor
blade tip gap is 0.5% of the leading edge (LE) impeller
blade span.

B. INSTRUMENTATION AND OPERATION
POINT MEASUREMENT

Total pressure rakes and total temperature rakes are in-
stalled in the inlet and outlet ducting. These instruments
provide important tools for configuring and monitoring the
operating conditions of the compressor stage. A flow meter
is installed on the outlet pipe to monitor the operating mass
flow rate. The characteristic map for compressor stage at

Fig. 1. The proposed method implementation steps.
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different constant rotating speeds was tested in detail during
previous study. Any mass flow point on the performance
line is tested for a long period to well attain the performance
with low relative error and uncertainty. Considering the
inlet condition change due to open cycle facility, the
corrected mass flow is used and can be calculated from

ṁcor = ṁ
Pref

Pt,0

ffiffiffiffiffiffiffiffi
Tt,0

T ref

s
with Pref = 1.01325 bar, T ref = 288.15K (11)

where ṁ is the mass flow rate, Pt,0 is the total pressure, and
Tt,0 is the total temperature at the compressor inlet, and Pref
and T ref are a reference pressure and reference temperature,
respectively. Then, the stage total pressure ratio and isen-
tropic efficiency are written by:

Πt−t =
�Pt,7
�Pt,1

, ηis =
Πt−t κ−1κ − 1

Tt,7

Tt,1
− 1

(12)

as a function of the corrected mass flow in Eq. (11). Due to
confidentiality restrictions, the design quantities and some
compressor parameters will not be listed here, and only
normalized values are provided, which is enough for current
research. The normalized operating speed Ωnorm of the
centrifugal compressor is defined as a percent of normal
speed ΩNn which corresponds to the first speed line and is
also denoted in Fig. 3(a) with N100:

Ωnorm = Ωrot=ΩNn (13)

where Ωrot is the rotational speed of the impeller. The
compressor characteristic curve is illustrated in Fig. 3.
Performance parameters are normalized by the designed
mass flow rate ṁdesign, total pressure ratio Πt−t

design, and
isentropic efficiency ηis,design (aerodynamic design point
at N100).

C. TRANSIENT WALL PRESSURE
MEASUREMENT

Unsteady instrumentation is also utilized for this work.
High-frequency wall pressure transducers are inserted into
the shroud casing for flow field measurements. These

pressure sensors used in the experiments are piezoelectric
sensors made by PCB Piezotronics (Model 106B52). A
circumferential array of five high-frequency pressure sen-
sors (P1–P5), located upstream of the diffuser vane LE, are
flush-mounted to the flow surface of the shroud. Additional
sensors are uniformly distributed within one diffuser flow
passage from vane inlet (LE, 0% location) to outlet (TE,
100% location) at the middle region (50%VP location) of
the diffuser channel. Detailed spatial locations of the sen-
sors can be found in Fig. 4.

All pressure signals are recorded synchronously using
a dedicated acquisition card, which is used for multichannel

TABLE I Blade counts of the tested compressor rig

Row VIGVs IMP DV RC

Number 11 19 20 18

(a)

(b)

Fig. 3. Performance map for compressor rig and tested operating
points.

Fig. 2. Schematic diagram of test bench.

Fig. 4. Wall pressure transducer arrangement within the
compressor flow passage.
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high-precision measurement. The pressure fluctuation sig-
nals from multiple wall pressure sensors are acquired
simultaneously during the experiment. In order to well
resolve the characteristic frequency and the timescale of
interest, the sampling rate is 20.48 kHz, which provides
enough signals to resolve the rotating stall frequency (RSF)
and the blade passing frequency (BPF) The accuracy of the
dynamic measurement is verified from the perspective of
reproducibility using redundancy tests. These pressure
signals are then used to study the rotating stall and further
predict the internal flow condition.

IV. RESULT AND ANALYSIS
In this paper, a stack denoising kernel autoencoder neural
network method is proposed to intelligently determine the
operating condition of the investigated centrifugal com-
pressor, especially the rotating stall. The training process
parameters and data samples of the proposed model are
shown in Table II. As stated before, 11 different mass flow
points in total are measured which mostly covers the entire
operating flow range. At each speed line (N100 and N87),
five operating points from system choked flow to stall
boundary, namely near choke (NC), near design (ND),
near stall (NS), intermediate (IM), and rotating stall
(RS), respectively, are investigated. These operation points
are also denoted in Fig. 3. Attribute to the variation of blade
aerodynamic loading condition, the internal unsteady flow
changes accordingly, leading to different wall pressure
fluctuation characteristics. The surge point followed by a
rotating stall at N100 speed is also considered, which
represents the 11th operating condition. With these mea-
surement dates, the compressor flow condition along the
flow path can be well described.

In order to avoid the contingency of one experimental
result, five repeated experiments were carried out, and the
experimental accuracy is shown in Table III. It can be seen
from Table III that only at the speed N100, the identifica-
tion accuracy of RS flow is 70%–80%, the other flow
identification accuracy is more than 80%, and the highest
flow identification accuracy can reach 100. The recogni-
tion accuracy of RS at N87 speed with rotating stall is

TABLE II Parameters of the proposed model

Parameters Value

Input size 2048

Hidden sizeL1 400

Hidden sizeL2 200

Sparsity 1

Weight decay 3e-5

weight penalty 1

Noise intensity 0.3

Training samples 130

Testing samples 70

TABLE III Identification accuracy of each flow rate in five tests

Operation points

N100 N87

Surge RS IM NS ND NC RS IM NS ND NC

Class 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%) 11 (%)

Test 1 82 84 79 97 99 79 100 96% 80 92 82

Test 2 82 80 78 100 97 78 100 97% 89.5 91.5 94

Test 3 80.5 82 88 97.5 99 81 100 94.5% 84 96 96

Test 4 87 86.5 80.5 96.5 98.5 82.5 100 95.5% 88 95 95

Test 5 80 83 79.5 97.5 100 80.5 100 95 84% 97 97

Fig. 6. Confusion matrix between the predicted value and real
value of flow state of pressure pulsation signal.

Fig. 5. Three-dimensional clustering results of pressure
fluctuation signals.
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97%. The average accuracy reaches 90.75%, meeting the
needs of production and processing. It provides a basis for
knowing the signal of the rotating stall of centrifugal
compressor.

In order to more intuitively show the identification of
pressure pulsation signals at different flow rates, the three-
dimensional graph clustering method is adopted to show the
aggregation of pressure pulsation signals at different flow
rates. The experimental results are shown in Fig. 5. In
Fig. 5, the balls of each color represent the pressure pulsa-
tion signal under one flow rate. It can be seen from the figure

that the signal aggregation effect under five flow rates is the
best, almost completely separated, and the remaining pres-
sure pulsation signals, despite individual mixing, still
achieve a good classification effect.

A confusion matrix, usually called error matrix, is the
most intuitive and concise method to evaluate accuracy.
Diagonal elements are usually used to represent the differ-
ence between the predicted value and the real value of the
model. This paper also uses the confusion matrix method to
show the comparison between the prediction results of the
pressure pulsation signal flow state and the real value. The
results are shown in Fig. 6, and the diagonal number is the
accuracy of the prediction results. From the results, it can be
concluded that the model predicted results of other flow
states are more than 80%, and the highest predicted value of
flow state is 100%.

In order to verify the effectiveness of Gaussian kernel
function in enhancing the performance of a neural network,
the method of comparative experiment is adopted. The
standard SDAE network without Gaussian kernel function
is selected as the comparative method. The comparative
experimental results are shown in Fig. 7. It can be seen from
the experimental results that the accuracy of SKDAE is
higher than that of SDAE for the identification of pressure
fluctuation signals under 11 flow conditions, which proves
that Gaussian kernel function has an obvious effect on
signal feature extraction.

In order to verify the accuracy of this method in
identifying the flow state of pressure pulsation signal of
a centrifugal compressor, a comparative experimental
method is adopted. The typical extreme learning machine
(ELM) model and backpropagation (BP) neural network
are selected for the comparison methods. The identifica-
tion results of each flow state are shown in Fig. 8.
Also, the comparison research with the current widely
used frontier methods including convolutional neural net-
works (CNNs), long- and short-term memory networks
(LSTMs), and online extreme learning machines
(OSELMs) was conducted, and the experimental results
are shown in Table IV. All comparative experiments need
to emphasize that all the data processed by the comparative
methods and the proposed model in this paper are the
collected original signals. The process of making input
samples is exactly the same, and there is no human
intervention in the experiment. In order to ensure the
reliability of the experimental results, all the listed results
are the average accuracy.

The experimental results show that the accuracy of the
proposed model is higher than that of the comparison
methods, which further demonstrated the advantages of
stacked denoising kernel autoencoder neural network in
pressure pulsation signal flow identification.

TABLE IV Comparison of experimental results

Flow

Method 1 2 3 4 5 6 7 8 9 10 11

SDKAE 87 86.5 80.5 96.5 98.5 82.5 100 95.5 88 95 95

CNN 56.5 65.2 62.5 70.5 71 65 70.5 68 62.5 67 65

LSTM 89 82 78 94.5 96.5 78 95 92 82 89 92.5

OSELM 83 80 78 92 83.5 82 93.5 87 79.5 78 86

Fig. 8. Accuracy comparison results of different methods.

Fig. 7. Comparison results of SKDAE and SDAE.
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V. CONCLUSION
In this manuscript, a stacked denoising kernel autoencoder
neural network is proposed to identify the rotating stall state
with pressure pulsation signals of centrifugal compressor.
Gaussian kernel function is applied to reconstruct the whole
loss function of the proposed model, and Gaussian white
noise is added to enhance the feature extraction ability to
pressure pulsation signals. Through the state identification
of the pressure pulsation signals collected under two rotat-
ing speeds and 11 flow conditions, the flow state of the
pressure pulsation signal can be accurately judged. The
recognition accuracy of rotating stall is 97%. The accurate
identification of rotating stall of centrifugal compressor is
realized, which lays a foundation for the intelligent opera-
tion and maintenance of centrifugal compressor.

The identification accuracy of the proposed method for
similar flow conditions is about 85%. Future research will
further enhance the performance of the proposed method,
and the parameter will be further optimized.
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