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Abstract:As industrial systems become increasingly complex, the significant research interest has been devoted to
intelligent fault diagnosis approaches leveraging deep learning. However, existing methods still face two critical
challenges in practical applications: 1) the extracted features often fail to maintain robustness in nonstationary
conditions; 2) deep neural networks generally exhibit a black box nature, offering limited interpretability in their
feature extraction process. To solve the above issues, an interpretable wavelet Kolmogorov–Arnold convolutional
Long Short-Term Memory (WKAConvLSTM) is proposed, which mainly consists of two key components: 1) a
wavelet Kolmogorov–Arnold kernel (WKAK) with learnable scale and translation parameters is designed and
then embedded into convolutional layers to enable the extracted spatial features interpretable; 2) a multi-head
attention-enhanced Long Short-Term Memory (MHA-LSTM) is proposed to effectively capture crucial temporal
dependencies in sequential data. In order to verify its effectiveness, the proposed model is tested on bearing and
gearbox datasets under complex conditions, including noise interference, nonstationary operating conditions, and
data class imbalance. The experimental results demonstrate that it not only achieves superior diagnostic accuracy
compared with advanced baseline models but also enhances the interpretability of the extracted features.
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I. INTRODUCTION
With the fast-paced growth of industrial systems, how to
efficiently supervise and diagnose equipment condition has
gained significant importance. [1]. Prognostics and Health
Management (PHM) system [2], as a key component in
achieving intelligent operation and maintenance of equip-
ment, can effectively reduce losses caused by equipment
failures and shutdowns through the application of advanced
technologies such as signal processing and artificial intelli-
gence [3–5]. Therefore, how to improve the accuracy of
intelligent fault diagnosis (IFD) is one of the research
focuses in PHM systems [6,7].

Currently, existing IFD methods are typically grouped
into machine learning (ML)-driven methods [8] and deep
learning (DL)-driven methods [9,10]. The former belongs to
shallow models, and its performance depends heavily on
feature engineering, making it difficult to apply to industrial
big data mining, such as Support Vector Machine (SVM)
[11] and random forest [12]. The latter, through end-to-end
learning, can adaptively extract fault features from industrial
big data and therefore has become the mainstream IFD
method, for example, graph neural networks and convolu-
tional neural networks [13,14].

Although DL-based IFD methods have demonstrated
significant effectiveness, they still faces two major chal-
lenges: 1) the complex operating conditions of the equip-
ment, with continuously changing speed and load, hinder
the IFD method to effectively extract robust fault features,
resulting in poor actual diagnostic results; 2) the black box

property of deep neural networks hinders understanding of
how the model extracts features, resulting in a lack of
credibility in the diagnostic results.

To achieve robust fault feature extraction, some works
propose extracting the spatial-temporal features of monitor-
ing signals from both the temporal and spatial dimensions
[15]. For example, Bao et al. [16] utilized a graph convolu-
tional network to model the spatial features in the multivari-
ate data, followed by a sliding window for temporal feature
extraction. Li et al. [17] leveraged kernel principal compo-
nent analysis for modeling spatial features and employed
complementary ensemble empirical mode decomposition to
characterize temporal dependencies. However, the above
methods still belong to the black box model and cannot
solve the problem of poor interpretability in IFD methods.

In recent years, scholars in the field of IFD have been
committed to making the decision-making mechanism of DL
models transparent and gradually formed the idea of using
fault diagnosis domain knowledge to guide the construction of
deep networks [18]. The pioneer work is WaveletKernelNet
[19], which combined the knowledge of continuous wavelet
transform into convolutional neural network, thus designing a
specific wavelet kernel convolution for multi-scale feature
extraction. Wang et al. [20] combined the discrete wavelet
transform with a deep neural network for hierarchical fre-
quency analysis and interpretable feature extraction. The
above research offers a potential avenue for enhancing model
interpretability; however, how to extract interpretable robust
fault features remains an open topic.

To solve these issues, this paper proposes an interpret-
able wavelet Kolmogorov–Arnold convolutional LSTM
(WKAConvLSTM) for spatial-temporal feature extraction
and IFD. The proposed WKAConvLSTM mainly consistsCorresponding author: Tianfu Li (e-mail: tianfu.li@kust.edu.cn).
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of two parts, that is, the wavelet Kolmogorov–Arnold
convolutional layer (WKAConv) for interpretable spatial
feature extraction and the multi-head attention-enhanced
LSTM (MHA-LSTM) for temporal feature extraction. In
WKAConv layer, the wavelet basis function is constructed
into a wavelet Kolmogorov–Arnold kernel (WKAK) with
learnable scale factor and translation factor through the
Kolmogorov–Arnold representation theorem and then
embedded into the traditional convolution layer for inter-
pretable feature extraction. MHA-LSTM leverages a multi-
head attention mechanism to perform weighted fusion on
the features extracted by LSTM to fully mine the important
temporal features in sequence data. The proposed approach
is assessed using three datasets, with the findings demon-
strating its effectiveness and superiority, and the primary
contributions of this study are summarized as follows:

1) The WKAK with learnable scale and translation
parameters is designed and embedded into the con-
ventional convolution layer for interpretable spatial
feature extraction.

2) MHA-LSTM is proposed to effectively capture cru-
cial temporal features in sequential data by perform-
ing weighted fusion of LSTM outputs across multiple
attention subspaces.

3) WKAConvLSTM is constructed to extract robust
spatial-temporal features through fusing interpretable
spatial feature extraction with attention-guided tem-
poral modeling.

The remainder of this paper is laid out as follows:
Section II briefly reviews the related works. Section III
elaborates the proposed methods and its key components.
Section IV describes the experiments. Section V discusses
the effects of each model module and the choice of mother
wavelet (MW) on performance. And the propose method’s
interpretability is analyzed in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORKS
A. SPATIAL-TEMPORAL FEATURE
EXTRACTION METHODS

At present, the spatial-temporal feature extraction methods
used for robust feature mining are mostly two-stage methods
[21]. That is, in the first stage, the convolutional operation or
graph convolutional operation is leveraged to capture the
spatial features of the monitoring signal. Then, in the second
stage, recurrent neural networks, such as LSTM, Gated
Recurrent Unit (GRU), and other models, are used to model
the temporal features, such as Zhao et al. [22] used an
adaptive multiscale CNN to capture intricate spatial features
and a highway LSTM to model global temporal dependen-
cies. Singh et al. [23] leveraged a graph attention network to
extract spatial features of multisensory data and then used an
LSTM to model temporal patterns. Although this two-stage
spatiotemporal feature extraction can effectively obtain
robust fault features, the interpretability of the extracted
features is still unclear.

B. INTERPRETABLE INTELLIGENT FAULT
DIAGNOSIS METHODS

Interpretable IFD methods are currently generally distin-
guished as ante-hoc and post-hoc interpretable approaches

[18]. The ante-hoc interpretable approaches introduce phys-
ical models or other priors to constrain the IFD model’s
construction and learning process, thereby improving the
model’s self-interpretability, such as WPConvNet [24]
incorporates the wavelet packet transform to the convolu-
tional layer and some research constructed an learnable
wavelet operator [25] for fault feature extraction. LGSC-
Net [26] embeds the sparse coding optimization algorithm
into the network structure to achieve ante-hoc interpretabil-
ity and noise-robustness. In the contrary, the post-hoc
interpretable methods require constructing additional mod-
els or techniques to explain the learning process of the IFD
model, such as Grad-CAM [27] and Shapley-value [28].
Although interpretable techniques can help open the black
box of IFD methods, how to extract robust fault features
with interpretability requires further research.

III. PROPOSED METHOD
As depicted in Fig. 1, WKAConvLSTM integrates a WKA-
Conv layer to extract spatial features and an MHA-LSTM
layer to model temporal dependencies. In the following
subsections, theWKAConv layer andMHA-LSTMmodule
will be introduced in detail.

A. WAVELET KOLMOGOROV–ARNOLD
CONVOLUTIONAL LAYER

The traditional convolution operation can be defined as:

h = w ∗ x + b (1)

wherew is convolutional kernel, x is input, b is bias, and h is
the output.

If we understand convolution operations from the per-
spective of inner product matching, we can conclude that the
reason why traditional convolution operations lack interpret-
ability is because the randomly initialized convolution kernels
lack physical meaning, which makes it difficult to extract
interpretable fault features from vibration signals [19].

In order to overcome the above difficulties, we use the
Kolmogorov–Arnold representation theorem to construct
the traditional wavelet basis function into a WKAK with
learnable scale factor a and translation factor b [29], where
the wavelet basis function ψ can be expand to the wavelet
dictionary with the scale factor a and translation factor b,
that is,

ψa,bðtÞ =
1ffiffiffi
a

p ψ

�
t − b

a

�
(2)

where ψa, b denotes the wavelet dictionary, a determines the
dilation or compression of the wavelet, thereby affecting its
frequency resolution, and b controls the central position of
the wavelet on the time axis, which is used to locate signal’s
local features.

After that, with the help of Kolmogorov–Arnold repre-
sentation theorem, every continuous function may be
approximated by an inner function and an outer function,
which is defined as:

f ðtÞ =
X2n+1
q=1

Φq

 Xn
p=1

ϕq,p

�
tp
�!

(3)

whereΦq is the outer function and ϕq,p is the inner function.
Furthermore, as depicted in Fig. 2, if we replace the inner
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function and the outer function with one learnable function
ψa, b, thereby, the WKAK can be constructed, that is,

WKAKðtÞ = ψL °ψL−1 ° · · · °ψ1ðtÞ (4)

where ψL denotes the L-th layer learnable wavelet dictio-
nary, which means we can use several wavelet dictionaries
to approximate the WKAK.

Then, by replacing the traditional convolution kernel
with the learnable WKAK, the WKAConv layer can be
defined as:

h = ψL °ψL−1 ° · · · °ψ1 ∗ x + b (5)

As can be seen in (5), when the number of learnable
functions grows, the WKAConv layer experiences a sharp

rise in computational burden; therefore, only two learnable
wavelet dictionaries are used.

B. MHA-LSTM LAYER

In a standard LSTM structure, information flow is regulated
through three gates, namely the forget, input, and output
gates [30], and its core calculation can be briefly expressed
as:

ot = σðWo · ½ht−1, xt� + boÞ (6)

ct = f t⊙ct−1 + it⊙ tanhðWC · ½ht−1,xt� + bCÞ (7)

ht = ot⊙ tanhðctÞ (8)

where xt is the current input, and ht and ct denote the hidden
state and the memory cell, respectively. σ(·) indicates the
sigmoid activation function, and ⊙ denotes point-by-point
multiplication. Although LSTM can effectively capture the
temporal dependencies, it struggles to distinguish the rela-
tive importance of information across different time steps.

To overcome the above issue, the conventional LSTM
is augmented with a multi-head attention module, thereby
improving its ability to capture important features within
time series. The central idea is to enable the model focus on
diverse representation subspaces in parallel through multi-
ple attention heads, defined as:

AttnðQ,K,VÞ = softmax

�
QK˙ffiffiffiffiffi
dk

p
�
V (9)

where Q, K, and V denote query, key, and value matrices
projected from input sequence, respectively. Then, the
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multi-head attention expands the above process to k parallel
heads, that is,

headi = Attn

�
HWQ

i ,HWK
i ,HWV

i

�
(10)

MAttnðHÞ = Concat

�
head1, : : : ,headk

�
WO (11)

where H = ½h1, h2, h3� denotes the input sequence of the
multi-head attention, WQ

i , W
K
i , and WV

i ∈ ℝd×dk are learn-
able weights. In MHA-LSTM layer, the hidden state M of
LSTM is dynamically weighted through the multi-head
attention mechanism to strengthen the discriminative con-
tribution of key time steps in the overall sequence repre-
sentation, and the weighted results are fused with the
original hidden state to improve the feature expression
ability. The above process can be defined as:

Mattn = MAttnðMÞ⊙M (12)

Mfinal = ConcatðM,MattnÞ (13)

During the training phase, the cross-entropy loss
Lðr, pÞ is adopted to quantify the discrepancy of the pre-
dicted probability distribution p from the ground-truth
labels r, formulated as:

Lðr, pÞ = −
Xn
i=1

rðxiÞ log pðxiÞ (14)

where i denotes the number of categories.

C. WKAConvLSTM-BASED INTELLIGENT
FAULT DIAGNOSIS

The IFD framework based onWKAConvLSTM is depicted
in Fig. 1. To ensure comparability across different measure-
ments, the vibration data obtained from sensors are first
normalized, mapping their amplitude values into the inter-
val of [0, 1]. Subsequently, the continuous vibration signal
is divided into fixed-length segments via a non-overlapping
sliding window, and these subsamples are provided as input
to the model. In the training phase, spatial-temporal features
are extracted and then supplied to a classification module
for fault recognition and categorization. The above process
is summarized into Algorithm I.

IV. EXPERIMENTS
To assess the effectiveness of the proposed WKA-
ConvLSTM, a series of experiments are performed across
three widely used benchmark datasets, where the first and
third datasets are obtained from a bearing fault simulation
experiment and the second dataset is collected from a
gearbox system operating under variable conditions. All
experiments are implemented on Windows 11 with an
AMD R9 7945HX CPU and an RTX4060 GPU.

A. FAULT DIAGNOSIS UNDER NOISY
CONDITIONS

In this experiment, rolling bearing dataset is leveraged for
model verification which is collected from a fault simula-
tion test rig for rotating machines operated by Shandong
University of Science and Technology [31], as depicted in
Fig. 3. The dataset is primarily composed of 10 bearing
states: normal condition (NC), inner-race fault (IF), outer-
race fault (OF), and rolling element fault (RF), where the
last three fault categories are categorized into three severity
levels (slight, medium, and severe) to reflect different
damage scales, as shown in Table I.

For data preparation, Gaussian noise with signal-to-
noise ratios (SNRs) between 0 and –5 dB is injected into the
original signal to simulate different degrees of noise inter-
ference, which can be defined:

SNR = 10 lg

�
Psignal

Pnoise

�
(15)

where Psignal denotes the signal power and Pnoise is the noise
power. As the SNR levels decrease, the noise power
gradually increases. When the SNR drops to –5 dB, the
noise amplitude exceeds three times that of the signal.

After that, the noise signals are mapped to the interval
of [0, 1] through using the min-max normalization method,

Algorithm I. WKAConvLSTM for Fault Diagnosis

Input: vibration signal X = ½x1, x2, : : : , xn�, fault label
y1, y2, : : : , yn
Output: Machine fault type �y and its diagnostic accuracy.

Data preparation:

1) Min-Max normalization.

2) Subsample generation.

3) Random data splitting strategy.
Model training:

1) �ytrain ←WKAConvLSTM ðXtrainÞ.
2) Updated iteratively by using the Adam optimizer to

minimize (14).
Model validation:

�ytest ←WKAConvLSTMðXtestÞ

1
2 3

4
5

1 Motor 2 Rotor 3 Bearing seat 4 Gearbox 5 Brake 6 Sensor

6

Fig. 3. Planetary gearbox fault simulation test rig.

Table I. Detailed descriptions of SDUST bearing dataset

Fault Description Label

NC No fault in rolling bearing 0

IF Inner-race defect (0.2 mm) 1

Inner-race defect (0.4 mm) 2

Inner-race defect (0.6 mm) 3

OF Outer-race defect (0.2 mm) 4

Outer-race defect (0.4 mm) 5

Outer-race defect (0.6 mm) 6

RF Fault located on the rolling element (0.2 mm) 7

Fault located on the rolling element (0.4 mm) 8

Fault located on the rolling element (0.6 mm) 9
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and then a sliding window is applied without overlap to
divide the signals into segments of 1024 points each. For
every health status, 820 subsamples are generated, with
80% (656 samples) allocated to the training dataset and the
remaining 20% (164 samples) to the testing dataset. This
results in 6,560 training samples and 1,640 test samples
in total.

To confirm the performance of WKAConvLSTM, five
existing advanced baseline models are leveraged for com-
parison in our research, including CNN [32], KANConv
[33], xLSTM [34], CNN-LSTM [21], and ConvFormer
[35]. For fairness, all comparison models are designed
with comparable network depth, and their detailed descrip-
tions are depicted in Table II.

During the experiment, all models are trained for 100
epochs with Adam optimization, initialized at a learning
rate of 0.001. To mitigate the influence of randomness, the
training and evaluation are repeated five times for each
model, and the accuracy of the final epoch in each run is
recorded. The average accuracy over the five runs is
reported as the final evaluation metric. The experimental
performance evaluation of all baseline models at various
SNR levels are provided in Table III.

As shown by the experiments, the WKAConvLSTM
consistently outperforms baseline models, exhibiting higher
classification accuracy and greater robustness under diverse
SNR scenarios. Notably, under moderate noise levels
(e.g., –2dB and –3dB), the model maintains performance
comparable to that in noise-free environments. Even in the
presence of severe Gaussian noise at –5 dB, the classifica-
tion accuracy drops by only 2.53%, while still exceeding the
lowest-performing baseline by a substantial margin
of 23.74%.

To intuitively demonstrate feature extraction differ-
ences between the proposed method and baseline models,

t-SNE is leveraged to display the feature distribution of the
testing dataset from the last classification layer. It can be
seen from Fig. 4 that theWKAConvLSTM reaches the most
compact clustering among all baseline models, indicating
its superior capability in noise-robust and discriminative
feature learning. In contrast, other models exhibit varying
feature overlap, with xLSTM showing the most severe class
confusion. While the majority of categories are well sepa-
rated by the proposed method, boundaries between a few
classes (i.e., #0, #3, and #7) appear relatively close. This
may be attributed to Gaussian noise reducing inter-class
distinctions, causing confusion in distinguishing these
specific signals.

B. FAULT DIAGNOSIS UNDER
NONSTATIONARY CONDITION

The MCC5-THU gearbox dataset [36] is collected by
Tsinghua University under nonstationary conditions, with
time-varying speed and load, as illustrated in Fig. 5.

This dataset provides vibration signals measured along
the X, Y, and Z axes, covering normal condition, tooth-
related defects (missing, worn, pitted, cracked, and broken)
and compound fault of gear fracture combined with inner
or outer ring bearing failure. Except for the normal condi-
tion and broken tooth fault, the remaining four single
faults and two compound faults are classified into three
levels of severity (slight, medium, and severe), with a
total of 20 classification tasks. In this experiment, the signal
in X direction with a rotation speed of 3000 rpm and a
load of 0∼10 A is used to evaluate the proposed
model’s adaptability and robustness in complex operating
conditions.

In this experiment, the data preprocessing method,
hyperparameters, and comparison models as in the previous
experiments are adopted. From the dataset, 11,984 sub-
samples are generated, with 9,587 assigned to the training
dataset and 2,397 to the testing dataset. The outcomes of the
experiments are presented in Table IV, and the accuracy of
each trial of the six models is depicted in Fig. 6.

The analysis of the results indicates that the
WKAConvLSTM consistently reaches the highest diagnos-
tic accuracy across all experiments, with an average of
91.74%, and observed extremes between 90.35% and
92.76%. This narrow range demonstrates strong robustness
and stability under variable operating conditions. In con-
trast, the conventional approaches (e.g., CNN and xLSTM)
achieve significantly lower average accuracies of 87.68%
and 80.61%, respectively, indicating their limited generali-
zation capability in nonstationary environments. Although
KANConv reaches a comparable average accuracy to the
proposed method, its stability is slightly worse.

Table II. The detailed descriptions of the comparison
models

Model Description

CNN Extract fault features using convolution
operations.

KANConv Use learnable functions instead of fixed kernels
to extract nonlinear features.

xLSTM An LSTM variant can enhance the performance
of sequence modeling.

CNN-LSTM Combine CNN for feature extraction and LSTM
for sequence modeling.

ConvFormer Extract local features through convolution and
integrate global information via the transformer
encoder.

Table III. The average accuracy (%) under Gaussian noise

Models

SNR level (dB)

Noise-free–5 –4 –3 –2 –1 0

CNN 95.99 97.83 98.57 98.60 98.83 99.09 99.81

KANConv 96.30 97.93 98.37 98.81 99.16 99.45 99.87

xLSTM 73.68 75.43 78.69 79.56 81.10 83.56 97.42

CNN-LSTM 94.61 96.61 97.83 98.28 98.65 99.37 99.74

ConvFormer 95.17 96.93 97.32 97.11 97.41 97.92 99.71

WKAConvLSTM 97.42 98.81 99.33 99.54 99.74 99.83 99.95
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To provide an intuitive view, t-SNE is employed on the
post-classification features, projecting them into a lower-
dimensional space for visualization. This approach facil-
itates an intuitive examination of the spatial distribution and
grouping of various categories, highlighting the model’s
ability to distinguish between different classes. It can be
found form Fig. 7 that WKAConvLSTM can effectively
separate the most fault categories compared with other
baseline models. However, the dynamically changing
load causes the signal exhibiting highly complex nonlinear

characteristics, which increases the fuzziness of feature
boundaries and the overlap between categories, thereby
inevitably leading to classification errors on minority sam-
ples for the model.

C. FAULT DIAGNOSIS UNDER DATA
IMBALANCE CONDITIONS

In practical industrial applications, fault samples often
exhibit significant imbalanced distributions, which
mainly attributed to the complexity of operating conditions
and differences in fault occurrence probabilities. To evalu-
ate the robustness and diagnostic performance of
WKAConvLSTM under such imbalanced conditions, the
time-varying data provided by HUSTBearing dataset is
leveraged for experimental validation [37]. This dataset
simulates inner-race defects, outer-race defects, rolling
element defects, and their combined defects of rolling
bearing based on the Spectra-Quest test rig. Each fault
type includes two severity levels: medium and severe, as
depicted in Figs. 8 and 9.

For this study, two datasets with different imbalance
degrees are designed based on HUSTbearing dataset. The

)c()b()a(

)f()e()d(

Fig. 4. The t-SNE visualizations of all models under the condition of SNR= –5dB. (a) CNN. (b) KANConv. (c) xLSTM. (d) CNN-
LSTM. (e) ConvFormer. (f) WKAConvLSTM.

Fig. 5. The gearbox test rig.

Table IV. The diagnostic accuracy (%) of gearbox
under nonstationary conditions

Model Min Max Avg

CNN 85.28 90.29 87.68

KANConv 86.35 92.62 90.13

xLSTM 78.00 81.71 80.61

CNN-LSTM 82.58 85.35 84.25

ConvFormer 81.74 86.65 83.93

WKAConvLSTM 90.35 92.76 91.74

Fig. 6. Diagnostic accuracy of gearbox of each trial.
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details are shown in Table V. It can be observed that the
Dataset 1 is balanced and designed to serve as a baseline for
the experiments, with an equal number of samples in both
the training and testing dataset. Datasets 2 and 3 maintain
the same number of testing dataset configuration as Dataset
1. However, their training dataset is constructed by

randomly sampling each fault category according to a
specified proportion to introduce data class imbalance.

Furthermore, the baseline models, hyperparameters,
and evaluation metrics are maintained as in the previous
experiments. The outcomes of these experiments are

)c()b()a(

)f()e()d(

Fig. 7. The t-SNE visualizations of all models for gearbox fault diagnosis. (a) CNN. (b) KANConv. (c) xLSTM. (d) CNN-LSTM.
(e) ConvFormer. (f) WKAConvLSTM.

Fig. 8. Test rig of HUSTBearing dataset.
Fig. 9. The fault types of rolling bearing.

Table V. The details of the three datasets

Health status Label

Proportion of training samples

Proportion of testing samplesDataset 1 Dataset 2 Dataset 3

Normal 0 50% 50% 50% 50%

Severe inner 1 50% 30% 25% 50%

Severe outer 2 50% 30% 20% 50%

Severe ball 3 50% 20% 15% 50%

Severe combo 4 50% 20% 10% 50%

Medium outer 5 50% 15% 7.5% 50%

Medium inner 6 50% 10% 5% 50%

Medium ball 7 50% 7.5% 2.5% 50%

Medium combo 8 50% 5% 1% 50%

Interpretable Wavelet KAN-CNN-LSTM for Fault Diagnosis 189
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summarized in Table VI and Fig. 10. For a clearer illustra-
tion of the WKAConvLSTM’s performance, the confusion
matrices and t-SNE visualizations of the learned feature
representations for all three datasets are illustrated in
Figs. 11 and 12.

The analysis of the results indicates that the WKA-
ConvLSTM attains superior average accuracy compared

with all benchmark models across the three datasets. Nota-
bly, as the degree of class imbalance increases, the accuracy
of all model decreased to varying extents, among which
WKAConvLSTM shows the smallest performance degra-
dation, with only a 3.51% drop even under highly imbal-
anced conditions, fully demonstrating its robustness in
feature extraction. However, as shown in Figs. 11 and

Table VI. Diagnostic results (%) under data imbalance conditions

Dataset Models Min-acc Max-acc Avg-acc�Std

Dataset A CNN 96.44 99.08 98.13 ± 1.23

KANConv 98.35 98.70 98.56 ± 0.15

xLSTM 65.00 71.53 67.50 ± 2.89

CNN-LSTM 96.44 98.18 97.53 ± 0.69

ConvFormer 98.18 98.87 98.56 ± 0.29

WKAConvLSTM 98.70 99.22 98.94 ± 0.23

Dataset B CNN 94.10 94.39 94.28 ± 0.13

KANConv 91.41 93.84 92.00 ± 1.04

xLSTM 53.09 59.72 57.45 ± 2.70

CNN-LSTM 95.75 96.61 96.11 ± 0.32

ConvFormer 94.18 96.88 95.99 ± 1.10

WKAConvLSTM 97.92 98.52 98.16 ± 0.24

Dataset C CNN 83.78 84.20 84.04 ± 0.16

KANConv 78.73 80.38 79.93 ± 0.68

xLSTM 47.83 48.87 48.33 ± 0.40

CNN-LSTM 89.41 92.62 91.75 ± 1.34

ConvFormer 90.19 91.93 91.04 ± 0.66

WKAConvLSTM 96.09 87.66 95.43 ± 0.64

Fig. 10. Diagnostic accuracy under data imbalance conditions. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3.

(a) (b) (c)

Fig. 11. Confusion matrix of WKAConvLSTM. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3.
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12, the model still exhibits a certain degree of misclassifi-
cation for several fault categories (e.g., #1 vs. #3, #2 vs. #8),
which can be mainly attributed to the extreme data imbal-
ance resulting in a severe shortage of training samples for
some classes, thereby limiting the model’s discriminative
capability for minority categories.

V. FURTHER DISCUSSION
A. ABLATION STUDY

To assess the impact of individual components within
WKAConvLSTM on overall performance, an ablation
study is performed in this part. Based on the
WKAConvLSTM, three comparative models are addition-
ally constructed for verification: 1) Model 1: remove the
multi-head attention mechanism; 2) Model 2: replace the
WKAConv layer with a conventional convolutional layer;
3) Model 3: remove both the multi-head attention

mechanism and the WKAConv layer, making the model
degenerate into CNN-LSTM. The outcomes of the experi-
ments are presented in Table VII.

It can be found from these experimental results that
removing the multi-head attention mechanism or replacing
the WKAConv layers with traditional convolutional layers
results in lower accuracy on both datasets than the complete
WKAConvLSTM but still significantly outperforms Model
3. This indicates that both the multi-head attention mecha-
nism and the WKAConv layer can effectively enhance the
model’s capabilities of feature extraction and classification,
while their synergy is crucial and irreplaceable to the overall
performance of the WKAConvLSTM.

B. THE INFLUENCE OF MOTHER WAVELET

To investigate how the selection of different MWs impacts
the effectiveness of WKAConvLSTM, three variants are
constructed using the Mexican Hat (Mexhat), Laplace, and
Derivative of Gaussian (DoG) wavelets shown in
Table VIII, denoted as Model_M, Model_L, and Model_D,
respectively. Their performance is compared with the stan-
dard WKAConvLSTM based on the Morlet wavelet, and
the outcomes of the experiments are presented in Table IX.

The examination of the outcomes reveals that the
choice of MW has a significant impact on the performance
of the WKAConvLSTM, due to certain wavelet functions
lack universal applicability. For instance, the Laplace
wavelet performs well on the SDUSTBearing and

(a) (b) (c)

Fig. 12. T-SNE visualization of feature extracted byWKAConvLSTM under the data imbalance conditions. (a) Dataset 1. (b) Dataset 2.
(c) Dataset 3.

Table VII. Diagnostic accuracy (%) of ablation experiments

Model WKAConv MHA MCC5-THU HUSTBearing

Model 1
p

× 90.20 ± 1.28 97.66 ± 0.22

Model 2 ×
p

88.38 ± 2.76 98.40 ± 1.40

Model 3 × × 87.33 ± 1.75 95.52 ± 2.04

WKAConvLSTM
p p

91.74 ± 1.11 98.94 ± 0.23

Table VIII. The formulas of four mother wavelets

MW Formula

Morlet ψðtÞ = Ce−
t2
2 cosð5tÞ

Mexhat ψðtÞ = 2ffiffiffiffi
3σ

p
π1=4

�
1 − t2

σ2

�
e−

t2

2σ2

Laplace ψðtÞ = Ce
−ξffiffiffiffiffiffi
1−ξ2

p ωðt−uÞ
sinð2πf ðt − uÞÞ

DoG ψðtÞ = − d
dt ðe−

t2
2 Þ

Table IX. Diagnostic accuracy (%) of ablation experiments

Model MW SDUSTBearing MCC5-THU HUSTBearing

Model_M Mexhat 99.61 ± 0.52 89.63 ± 1.39 98.14 ± 2.03

Model_L Laplace 98.41 ± 0.43 39.65 ± 2.85 93.98 ± 1.73

Model_D DoG 99.81 ± 0.11 88.42 ± 3.91 98.86 ± 0.98

WKAConvLSTM Morlet 99.95 ± 0.06 91.74 ± 1.11 98.94 ± 0.23
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HUSTBearing datasets, but its performance deteriorates
significantly under nonstationary conditions (MCC5-
THU gearbox dataset), reaching only 39.65%. Moreover,
the Mexhat and DoG wavelets consistently underperform
compared to the Morlet wavelet across all three datasets. In
summary, the WKAConvLSTM based on the Morlet wave-
let can achieve the best overall performance.

VI. THE INTERPRETABILITY OF THE
PROPOSED METHOD

To further discuss the interpretability of the
WKAConvLSTM, three vibration signals with distinct
impact components corresponding to outer-race defect,
inner-race defect, and rolling element defect are selected
from bearing dataset and used as inputs to the model.
For the same input, feature maps are extracted from the
WKAConv layer, the conventional convolutional layer, and
the KANConv layer. The differences in their feature extrac-
tion capabilities are then comparatively analyzed, as illus-
trated in Fig. 13.

The analysis of these results indicates that the
WKAConv layer demonstrates significant advantages in
extracting fault-related features. Specifically, its activation
responses are highly aligned with the impact components in
the original vibration signals, and the resulting feature maps
display sharp boundaries and strong contrast in high-
response regions. In comparison, traditional CNN and
KANConv layers tend to produce numerous irrelevant or
spurious activations when processing time-series data, with
the KANConv layer being particularly. Such redundant
activations blur the distinction between fault features and
background information, which to a certain extent interferes
with the accuracy of subsequent fault pattern recognition
and classification results.

VII. CONCLUSIONS
In this article, an interpretable WKAConvLSTM is pro-
posed for spatial-temporal feature extraction, where the
WKAK with learnable scale factor and translation factor
is embedded into traditional convolutional layer to extract
interpretable spatial features, and the MHA-LSTM is de-
signed for capturing crucial temporal features of vibration

signal. Experimental findings indicate that the WKA-
ConvLSTM outperforms the compared baseline models
under both noisy, nonstationary and data imbalance con-
ditions. Moreover, its effectiveness is further verified
through interpretability analysis.
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