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Abstract: Rotating machinery is critical to industrial systems, necessitating robust anomaly detection (AD) to
ensure operational safety and prevent failures. However, in real-world scenarios, monitoring data is typically
unlabeled and often consists of normal samples contaminated with a small proportion of unknown anomalies. To
address this, this paper proposes a diffusion-based AD method, Anomaly Detection Denoising Diffusion
Probabilistic Model (AD-DDPM) for robust AD. The method employs a U-attention-net to capture local and
global features and introduces a filtered contrastive mechanism to mitigate the impact of contaminated training
data. By leveraging the probabilistic nature of diffusion models, AD-DDPM effectively models normal data
distributions, achieving superior AD even with polluted samples. Experimental validation on fault simulation
datasets demonstrates the method’s exceptional performance, outperforming traditional machine learning and
deep learning baselines. The proposed approach offers a promising solution for reliable health monitoring in
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industrial settings.

Keywords: anomaly detection; contaminated data; diffusion model; rotating machinery

I. INTRODUCTION

Rotating machinery is a cornerstone of modern industry,
integral to complex systems such as aero-engines, wind
turbines, tracked vehicles, and nuclear pumps. Ensuring the
operational safety of these systems and preventing cata-
strophic failures require real-time monitoring of the ma-
chinery’s health status [1]. Anomaly detection (AD), as the
initial step in such monitoring systems, identifies deviations
from normal operational behavior and alerts users to poten-
tial issues [2]. Therefore, developing accurate and robust
AD methods is essential for reliable equipment perfor-
mance and timely maintenance.

A straightforward approach to AD involves setting a
threshold for a health index and triggering an alarm when
this threshold is exceeded [3]. However, extracting a precise
health index and determining an appropriate threshold pose
significant challenges. To address these limitations,
machine learning algorithms like k-means clustering [4]
and one-class support vector machines (OCSVMs) [5] have
been proposed for AD. Nevertheless, these methods often
rely on distance-based similarity measures, which become
less effective in high-dimensional spaces due to the curse of
dimensionality. Moreover, they typically lack the ability to
capture temporal dependencies and dynamic patterns inher-
ent in time-series data. Deep learning has recently gained
prominence as it extracts complex features layer by layer
through neural networks, achieving superior performance.

Deep AD methods falls into three broad classes:
supervised, semi-supervised, and unsupervised. Supervised
AD treats AD as a classification task, relying on labeled data
to learn the distinction between normal and anomalous
instances. Semi-supervised AD combines limited labeled
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anomalies with abundant unlabeled samples to train mod-
els, while unsupervised AD relies solely on normal data for
training. In industrial settings, where monitoring data is
often unlabeled, unsupervised AD is particularly suitable.
Among unsupervised AD methods, reconstruction-based
approaches using autoencoders are particularly popular [6].
Autoencoders are trained on unlabeled data, employing an
encoder—decoder architecture to reconstruct input signals.
During testing, a signal is fed into the model, and a large
reconstruction error indicates a potential anomaly.

Despite the advancements in deep learning-based AD,
particularly with reconstruction-based methods like auto-
encoders, several challenges persist in industrial applica-
tions such as polluted data and noise attack [7].
Autoencoders assume that normal data can be accurately
reconstructed, while anomalies yield high reconstruction
errors. However, in real-world industrial environments,
unlabeled anomalies frequently exist within the training
data. It degrades the model performance as autoencoders
tend to learn detailed pattern from point-to-point recon-
structions and overfit the anomalies.

To model the monitoring long-term signals, generative
modeling approaches such as diffusion models may be a
promising method for unsupervised AD. Diffusion models
operate by iteratively adding noise in a forward process and
recover the data distribution in a reverse phase. The unique
mechanism allows diffusion models to learn robust repre-
sentations of normal data, even in the presence of contami-
nated samples, by modeling the data distribution in a
probabilistic manner.

In particular, the signals from rotating machinery often
contain complex temporal dependencies, periodic patterns,
and subtle deviations. These characteristics pose significant
challenges for conventional autoencoders, which typically
perform pointwise reconstruction and are sensitive to
contamination in the training data. Diffusion models, by
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contrast, leverage a probabilistic generative framework
capable of capturing long-term structure and denoising
capabilities, making them more suitable to detect weak
anomalies in such industrial scenarios.

In this paper, a diffusion-based method for robust AD
in the presence of contaminated samples is proposed. It
contains two parts. First, a Denoising Diffusion Probabilis-
tic Model (DDPM) is trained to learn a robust representation
of signals. Second, the signals are corrupted by iterative
noise addition over fixed steps, followed by a denoising
process that reconstructs an approximation of the healthy
signal. Furthermore, to address the challenge of contami-
nated samples, we designed a filtered contrastive mecha-
nism (FCM) for robust AD. To summarize, the key
contributions are as follows:

1. A diffusion-based AD method for signals is proposed,
incorporating a U-attention-net to jointly capture local
patterns and global dependencies.

2. A FCM for AD is presented to enhance robustness
against the contaminated samples. Pseudo-label filter-
ing is followed by a contrastive penalty that pulls
together similar features while pushing apart
anomalies.

3. The method is validated on two parts-level and com-
ponents-level fault simulation datasets and demon-
strates its superiority.

The article is organized into five sections: a review of
existing literature in Section II, the details of the proposed
methodology in Section III, experiments and result analysis
in Section IV, and concluding remarks in Section V.

Il. RELATED WORKS
A. ANOMALY DETECTION FOR MACHINERY

Methods for machine AD include statistical, machine
learning, and deep learning approaches. Statistical ones
extract health indicator from time-domain feature [8], fre-
quency domain feature [9], or entropy-based feature [10]
and apply rules such as 3-sigma threshold to identify
anomalies. Machine learning methods can be categorized
into distance- and density-based methods. The former, such
as K-nearest neighbors (KNN) [11], OCSVM [12], and
SVDD [13] calculate the distances between data points,
assuming the anomalies are relatively far from normal
points. The latter, including Local Outlier Factor (LOF)
[14] and Isolation Forest (IF) [15], assume that the normal
data clusters densely while the anomalies occupy low-
density regions.

Deep AD methods in machinery are categorized into
reconstruction-based and adversarial-based ones. Recon-
struction-based methods primarily rely on autoencoders,
which consist of an encoder—decoder architecture. Li et al.
[16] constructed a convolutional autoencoder incorporating
dilated casual convolution and skip connection for gearbox
AD. Yang et al. [17] introduced a behavior- and condition-
aware variational autoencoder framework, with the recon-
struction errors used to identify gearbox failure. Adversar-
ial-based methods employ a generator to produce normal
data and a discriminator to distinguish whether abnormal
samples are consistent with the generated distribution [18].

Diffusion-based AD is prevalent in fields like medical
imaging [19] and video analysis [20]. Diffusion-based
models have also been researched for time series. Recent
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literature such as D°R [21], ImDiffusion [22], and DDMT
[23] has successfully adapted diffusion-based approaches
for multivariate time-series AD, with demonstrated advan-
tages in robustness to drift, reconstruction fidelity, and
anomaly scoring accuracy. However, in the field of
PHM, diffusion-based models are mostly employed to
generate new samples in fault diagnosis [24], with limited
application to AD. The proposed method implicitly models
long-term time series from a diffusion perspective, enabling
more accurate and robust AD.

B. ANOMALY DETECTION ON
CONTAMINATED DATA

Handling contaminated training data is a critical challenge
in AD, and a common strategy involves refining the training
dataset. Yoon et al. [25] removed the anomalies in the
polluted dataset by an ensemble of one-class classifiers. The
samples predicted as normal by all classifiers are retained in
the refined data. Ulmer et al. [26] divided data into over-
lapping subsets to train an ensemble of models, assigning
refinement scores based on the contribution of samples. The
method was validated on AD of machine audio recordings
and aeroengine sensor data. Du et al. [27] filtered potential
anomalies in time-series data by comparing generated
signals and original signals, enabling the discriminator to
focus on normal patterns. Shang ef al. [28] considered the
essential self-clean characteristic of autoencoders and de-
signed a weighted gradient updating strategy to prioritize
core samples for AD in acoustic signals in machines and
pressure signals in gear pumps.

Some methods enhance performance by extracting
information from both normal and anomalous data. For
example, Latent Outlier Exposure (LOE) proposed by Qiu
et al. [29] infers pseudo-labels of samples and jointly
optimizes normal and anomalous data via two loss func-
tions with shared model parameters. Mou et al. [30] inte-
grated contrastive learning with one-class classification,
treating original and reconstructed time series as positive
pairs while introducing an outlier exposure term that pushes
anomalous samples away by reversing the objective for
abnormal data. Su et al. [31] proposed CIBiGAN, which
distinguishes between normal samples, generated samples,
and anomalies by leveraging contaminated data to better
characterize the normal data distribution. In addition, other
approaches have been explored, such as combining robust
principal component analysis (RPCA) with autoencoders
[32] or employing self-supervised frameworks to identify
outliers without requiring clean labels [33].

The proposed method integrates data refinement and
the joint utilization of both normal and abnormal informa-
tion within a contrastive learning framework, aiming to
achieve more robust and effective AD.

lll. PROPOSED METHOD

To realize robust AD in the polluted training data, the
method consists of two parts: the AD DDPM (AD-
DDPM) and the FCM as shown in Fig. 1. AD-DDPM
provides the steps for AD in signals. The FCM processes
polluted input data for accurate prediction.

DDPM [34] is a classical diffusion model for generat-
ing samples. It includes two stages: forward process and
reverse process.
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Fig. 1. Proposed AD-DDPM method for robust anomaly detection for rotating machines.

A. FORWARD PROCESS

During the forward process, Gaussian noise is incremen-
tally added to the input signal across several steps, as
illustrated in Fig. 2. The noise strength at each step is
determined by a predefined scheduler. The forward step ¢
produces X' by perturbing the previous signal X~! with
Gaussian noise, thereby establishing a Markov chain where
X' depends solely on X~! and is not influenced by the steps
before. Given the Gaussian noise e~A/(0,I) with variance
controlled by f,, the recursive version of the forward
process is as follows:

=/1-BX"" + /Be (1)

where f3, follows a schedule and ¢ is drawn from a standard
Gaussian distribution. Defining o, = 1 — f;, the forward
process can be rewritten as:

V1—ae 2)

X'= Jax +

X' is a combination of X*~! and added noise e. By
iterating the process, the signal at step ¢ can be expressed
relative to the original data x°:

= Va X’ + 3)

where @, = [[/_; @;. At the final step T, the signal X7 is
distributed according to a standard Gaussian A(0,I).

1—-ae

B. REVERSE PROCESS

The reverse process, depicted in Fig. 2, seeks to denoise the
signal and recover the original data distribution from the
noised output of the forward process. In line with the
Markov chain property, X'~! is predicted conditionally
on X'. The conditional distribution is given by:

P(Xl|Xt_1,X0)P(XI_1 |X0)

P(XZ_I|XZ’XO) = P(X[|X0)
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Fig. 2. Forward noise addition and reverse denoising process in DDPM.
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From the forward process, the distributions are as
follows:

PX'|XLXO)~N (VX /1 = a1)
PX'X0)~N (V&@X0,\/1 - al) )
PO X0~ (/F X0,/ T )
Thus, the distribution P(x'~! |x,x") can be derived from
equations (4) and (5):
P(xt—l |XT,X0)~N(/AI_I ’Gt—l2I)
. V(1 =a )X + a (1 - a)X°
1 —a (6)
(1 —a)(l —a-y)
1-a

Using equation (3), X° = ﬁ(){’ —VT=age), the
mean can be reformulated as:

012 =

W= (- ™)
Vay vi-a

Thus, the reverse distribution becomes

PO XA (% (x _ %) (et = a,_1)>
(3)

The noise term e~gy(x,,t) is approximated by a neural
network 6. During the training stage, Gaussian noise is
added at step ¢, with the loss computed as the mean square
error between the true noise e~A(0,I) and the predicted
noise &4(X’,f):

L(6) = Eyo, [ne N ||2] )

After training, the backward sampling process can be
achieved using the well-trained network. The recursive
version of the reverse process is

X1 = @(X’,t)) + o'z (10)

1 (X’— l—a

where z~A(0,I) is random Gaussian noise.

C. AD-DDPM
A dataset of time series with N samples D =
{X1,X,,.... Xy} is given, where each sample X;=

{x,%3,...xy} is a signal with length W. x,, € R™ repre-
sents a timestamp at time w with channels M. Each sample
X; is associated with an unknown label y; € {0,1}, where 0
represents normal and 1 denotes anomalous. The training
dataset is assumed to be contaminated, with a contamina-
tion ratio 6 = N,/(N| + N,), where N| and N, represent
the counts of normal and anomalous samples, respectively.

During training, input samples are processed by adding
Gaussian noise as part of the forward process of a DDPM.
By minimizing the loss function defined in equation (9), the
network learns to predict noise and approximate the distri-
bution of normal samples, enabling robust representation of
normal signals.

In the testing phase, an input sample is corrupted
through the forward process over S fixed steps, yielding
a noised signal X?. The anomaly score is defined as the

Robust Anomaly Detection in Rotating Machinery 173

difference between the predicted noise &y9(X5,S) at step S
and the actual noise e:

Score = |eg(X5,S) — ¢ (11)

Samples with an anomaly score exceeding a predefined
threshold ¢ are classified as anomalous.

In this paper, a new model structure for predicting
noise called U-attention-net is proposed to enhance the
denoising capabilities of AD-DDPM. As depicted in
Fig. 1, the network architecture follows a U-shaped
encoder—decoder structure [35] that utilizes dilated convo-
lutional neural network (CNN) and self-attention to capture
local details and global dependencies from input time-series
signals, enabling robust representation learning for normal
samples.

Time Step Conditioning: The forward step is embed-
ded by a sinusoidal positional encoding scheme of dimen-
sion 128, followed by a two-layer multilayer perceptron
(MLP) with hidden size 128 and SiLU activation. The
embedding vector modulates the features through Fea-
ture-wise Linear Modulation (FiILM) layers [36], which
generate per-channel scaling and bias terms applied after
group normalization in encoder.

Encoder: It is composed of four downsampling stages.
Each stage contains a residual block with two one-dimen-
sional convolutional layers of kernel size 3, followed by
group normalization with eight groups and SiLU activation.
Dilation factors increase exponentially across the stages,
taking values of 1, 2, 4, and 8, which allows the receptive
field to expand. After each residual block, the temporal
dimension is reduced by a factor of 2 through average
pooling. The number of feature channels doubles from stage
to stage, progressing from 64 in the first block to 128, 256,
512, and finally 1024 channels at the bottleneck input.

Attention Bottleneck: It is inspired by the attention
mechanism in transformers [37]. A 1D convolutional layer
projects the feature map into query Q, key K, and value V,
each of dimension C = 1024. The attention score is the
scaled dot-product Attention(Q,K,V) = softmax(QK”/
V/C)V. The result is projected back via another 1x 1
convolution before being added to the block input through
a residual connection, enabling the model to capture long-
range dependencies and augment the local patterns learned
by convolutions.

Decoder: The decoder mirrors the encoder in reverse.
Each stage begins with nearest-neighbor interpolation that
doubles the temporal dimension, after which the upsampled
feature map is combined with the corresponding skip
connection from the encoder through element-wise addi-
tion. A residual block then processes the merged features,
reducing the channel dimension from 1024 down to 64. The
dilation factors in the decoder decrease in reverse order,
moving from 8§ in the first stage down to 1 in the final stage.
A final one-dimensional convolution with kernel size 3
maps the output of the last decoder block to the channel of
input signals.

D. FILTERED CONTRASTIVE MECHANISM

To deal with the challenge of contaminated training data, a
FCM is proposed, comprising the part of filtering and a
contrastive learning penalty.

In real-world industrial settings, training datasets often
contain a mixture of normal and anomalous samples, with
the latter typically being less prevalent. During preliminary
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training, the model tends to fit the normal samples more,
prioritizing inliers’ loss function [28,33]. Consequently,
the anomaly score for normal samples is generally
lower than for anomalies. Leveraging this property, we
set a threshold based on the (1—o) quantile of the
loss distribution. Samples with losses exceeding this

2 ijein,) XP (S—lm(f'zﬂ)

threshold, corresponding to the o-percentage of the
dataset, are assigned pseudo-labels as anomalous, while
the remainder is labeled as normal. After each training
epoch, the losses from the noise estimation network
at a fixed diffusion step are collected to update these
pseudo-labels:

12)

Lwn == IOg
2ijelp,} eXP( T

Following the filtering process, a contrastive learning
penalty is introduced to further improve the model’s dis-
crimination between normal and abnormal ones. The con-
trastive mechanism operates on the feature representations
extracted after the U-Net bottleneck, denoted as z;. The goal
is to pull the feature representations of pseudo-normal
samples D, closer together while pushing them away
from those pseudo-anomalous samples D,. The contrastive
loss is defined in equation (12) where sim(z;,z;) = ﬁ
represents the cosine similarity between feature vectors, anj(q
7 is a temperature hyperparameter that controls the softness
of the similarity distribution. This loss encourages the
model to learn feature representations to cluster normal
samples tightly in the latent space, while pushing anomalies
apart, enhancing the model’s discriminative power. By
integrating this contrastive penalty with the DDPM loss,
the model achieves greater robustness against contaminated
data, as it learns to focus on the core patterns of normal
samples while marginalizing the influence of anomalies.

In summary, Algorithm 1 illustrates the training and
inference processes.

IV. EXPERIMENTS

This section presents experimental validation of the pro-
posed method through simulations at both the part level and

Algorithm 1. AD-DDPM

sim(z,',z_,')

) + D ieip,}keip,} EXP (—T

sim(z;,2x ))

Train phase

Given dataset D = {X,X5,...,Xy} with pollution o. Initialize
DDPM noise scheduler 3, U-attention-net with weights w,
sample mask m (all ones), trade-off parameter 4

Repeat
Split data D, = m@©D D, = (1 — m)®D
Sample noise e~N(0,1)
Forward X' = /& X" + /T = a,e
Loss L(0) = |le — eg(X' )| + 4+ Leon
Optimize parameters w
Update mask m with percentage 1 — o
Until convergence

Inference phase

Given a sample X

Sample noise e~A/(0,1)

Forward at S step X5 = \/&5X° + /1 — age
Compute Score = |ey(X5,5) — ¢

Label=abnormal if Score > threshold else normal

the component level. One is a SQI planetary gearbox
transmission test rig, referred to as SQI, which focuses
on localized faults, and the other is a helicopter main
gearbox test platform, referred to as MGB, which reflects
system-level faults. The experiments utilized an NVIDIA
RTX 3090 GPU, running Python 3.9 and PyTorch 2.7.

A. DATASET DESCRIPTION

SQI test rig comprises a motor, a controller, a brake, a two-
stage planetary gearbox, and a two-stage fixed-shaft gear-
box, as illustrated in Fig. 3(a). Vibration and acoustic
signals were captured using an acceleration sensor and a
microphone, respectively. To simulate anomalous condi-
tions, a sun gear tooth break fault was introduced by
replacing the component in the test rig. The normal and
tooth break sun gears are shown in Fig. 3(b) and (c). Both
vibration and acoustic signals under normal and tooth break
conditions were collected at 51,200 Hz. The rotating speed
was set to 3000 rpm and the load brake current was set
to 0.4A.

MGB test rig, as shown in Fig. 4(a), is composed of
drive motor, load motor, lubrication and cooling system,
and main gearbox. Figure 4(b) illustrates that the main
gearbox consists of a bevel gear stage, a spur gear stage, and
a planetary gear stage. A gear ring crack in the planetary
gear stage, as shown in Fig. 4(c), is introduced as the
simulated fault for anomaly analysis. Both vibration and
acoustic signals are collected with sampling rate 51,200Hz.

Planetary Gearbox

Acceleration Sensor

(@)

(b

Fig. 3. Experimental platform and the sun gear components.
(a) SQI planetary gearbox transmission test rig. (b) Normal sun
gear. (c) Tooth break sun gear.
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Fig. 4. Experimental platform and the gear ring tooth crack fault
component. (a) MGB helicopter main gearbox test platform.
(b) Transmission chain of the main gearbox. (c) Tooth crack
fault of the gear ring.

The operating condition is set to an input speed of 3000 rpm
with no additional load.

B. EXPERIMENTAL SETUP

The Adam optimizer was employed for 200 training epochs
with a learning rate of 0.0001. The samples are extracted
using a sliding window of size 5120 and step 2560. The
vibration and acoustic signals are integrated at the data
level. They are stacked along the channel dimension to form
a two-channel input matrix of shape 5120 X 2, which pre-
serves the raw temporal correspondence between the two
modalities. To simulate data contamination, the ratio of
fault samples to normal samples in the training and valida-
tion datasets is denoted as o. Sliding windows are first
applied to generate all samples. For normal conditions, we
divide the data in a non-overlapping manner according to
the time order, with the first 80% used for training and the
remaining 20% for testing. For fault conditions, a number of
fault samples equal to ¢/(1-0) times the number of normal
training samples are added to the training set to achieve a
contamination ratio of o. The remaining fault samples are
used for testing. The test set is sampled to maintain a 1:1
ratio between normal and fault samples. Specifically, in the
SQI dataset, the training set contains 927 normal samples
along with a corresponding number of contaminated fault
samples determined by o. The test set includes 232 normal
and 232 fault samples. In the MGB dataset, the training set
consists of 479 normal samples and corresponding contam-
inated fault samples. The test set includes 120 normal
samples and 120 fault samples.

The data is normalized with the mean u(x.,) and
standard deviation o(x. ,) along each channel m:
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xy/v,m =xw,m_ﬂ(-x:,m) (13)
o(x: )

The noise scheduler used in the DDPM follows a linear
schedule with 500 steps, while the step S in the testing
process is 100. The temperature 7 for contrastive penalty is
0.5 and the trade-off coefficient is 0.1. To alleviate the
influence of randomness, each model is trained five times
with different seeds. The reported results include both the
mean and standard deviation.

C. EVALUATION METRICS

The effectiveness of the proposed method is assessed using
several metrics: area under curve (AUC), accuracy (Acc),
F1 score (F1), true positive rate (TPR), and false alarm rate
(FAR). AUC, the area under the ROC curve, provides a
threshold-independent measure of the model’s discrimina-
tive capability. The other metrics depend on a specific
threshold. In this experiment, the threshold was determined
by evaluating anomaly scores for all samples and selecting
the one that maximizes the F1 score. The metrics are defined
as follows:

TP + TN
Acc = (14)
TP + FP + TN + FN
TP . _TP
_ TP+FP  TP+FN
F1=2- T;_i_i‘;l, (15)
TP+FP T TP+FN
TP
TPR = ——— 16
TP + FN (16)
FP
FAR = ——— 17
FP + TN a7

Higher values indicate better performance for AUC,
Acc, F1, and TPR, while lower values are better for FAR.

D. PERFORMANCE COMPARISON

The proposed approach is benchmarked against machine
learning methods (OCSVM [38], IF [39], LOF [40]) and
deep learning methods, autoencoder (AE), and variational
autoencoder (VAE) [41]. Three autoencoder architectures
are implemented, namely CNN-AE [28], GRU-AE [42],
and LSTM-AE [27]. Experiments are implemented under
three contamination levels (¢ =0, 0.1, 0.2) to assess the
robustness of each method to polluted training data.

The evaluation metrics of SQI dataset are summarized
in Table I, with the best performance for each metric
highlighted in bold. The proposed AD-DDPM model con-
sistently outperforms all baseline methods across all metrics
and noise levels, demonstrating its robustness and efficacy
in AD. The machine learning methods exhibit poor perfor-
mance for AD with low accuracy and high FAR. These
methods struggle to deal with high-dimensional data and
fail to capture complex temporal dependencies. The recon-
struction-based autoencoders, regardless of their architec-
ture or whether they use a variational framework (VAE),
outperform most traditional machine learning approaches.
However, their performance remains suboptimal compared
to that of AD-DDPM. Specifically, compared with the next
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Tablel. Performance comparison on the SQI dataset: the proposed method versus machine learning and deep learning
approaches across various evaluation metrics under different contamination ratios
AUC(1) Acc(1) F1(1) TPR(1) FAR(l)
c=0
OCSVM 0.65954 + 0.00000 61.422% +0.000% 70.724% + 0.000% 92.241% + 0.000% 69.397% + 0.000%
IF 0.57351 £ 0.01409 57.457% +0.995% 69.334% +0.325% 95.259% +1.329% 80.345% +3.147%
LOF 0.86151 +0.00000 77.155% + 0.000% 80.300% =+ 0.000% 91.810% = 0.000% 37.500% = 0.000%
AE-CNN 0.91675 +0.01679 85.560% + 1.648% 85.493% +1.689% 85.560% + 1.648% 20.259% + 4.385%
AE-GRU 0.90033 + 0.00696 82.155% + 1.155% 82.092% +1.182% 82.155% + 1.155% 22.155% £ 4.747%
AE-LSTM 0.88796 + 0.00657 81.422% +0.992% 81.185% +0.915% 81.422% +0.992% 29.655% +1.681%
VAE 0.94571 +0.01011 87.414% + 1.814% 87.407% +1.808% 87.414% + 1.814% 13.965% +2.012%
AD-DDPM  1.00000 +0.00000  100.000% +0.000%  100.000% +0.000%  100.000% +0.000%  0.000% = 0.000 %
c=0.1
OCSVM 0.69345 + 0.00000 60.345% + 0.000% 70.813% + 0.000% 95.259% + 0.000% 74.569% + 0.000%
IF 0.61736 + 0.00000 57.112% + 0.000% 69.725% + 0.000% 97.845% + 0.000% 83.621% + 0.000%
LOF 0.88563 + 0.00000 79.741% + 0.000% 81.729% + 0.000% 89.224% + 0.000% 29.741% + 0.000%
AE-CNN 0.89532+0.01380 83.491% + 0.883% 83.451% +0.879% 83.491% + 0.883% 21.293% +1.242%
AE-GRU 0.88266 +0.01169 81.509% + 0.894% 81.492% + 0.881% 81.509% + 0.894% 20.690% +2.301%
AE-LSTM 0.85903 + 0.00675 79.655% +0.657% 79.524% +0.673% 79.655% £ 0.657% 28.276% + 1.542%
VAE 0.92049 +0.01468 84.871% + 1.658% 84.838% +1.670% 84.871% +1.658% 12.328% + 3.263%
AD-DDPM  0.99958 +0.00028  99.353% =+ 0.305% 99.353% =+ 0.305% 99.353% +0.305%  0.603% +0.385%
c=0.2

OCSVM 0.68271 +0.00000 62.500% + 0.000% 71.215% + 0.000% 91.810% = 0.000% 66.810% + 0.000%
IF 0.62238 + 0.00000 59.267% + 0.000% 69.968% + 0.000% 93.966% + 0.000% 75.431% +0.000%
LOF 0.88548 + 0.00000 79.957% + 0.000% 81.890% + 0.000% 89.224% + 0.000% 29.310% = 0.000%
AE-CNN 0.88163 +0.01531 81.078% + 1.164% 81.047% +1.186% 81.078% + 1.164% 20.086% + 4.328%
AE-GRU 0.85713 £ 0.01250 78.879% + 0.927% 78.767% + 0.930% 78.879% +0.927% 27.069% + 4.890%
AE-LSTM 0.82682 + 0.00678 76.897% + 1.060% 76.730% + 1.089% 76.897% £ 1.060% 31.465% +1.928%
VAE 0.89889 +0.01179 83.017% + 1.315% 82.992% +1.315% 83.017% +1.315% 13.448% + 2.076%
AD-DDPM  0.99911 +0.00052  98.879% +0.515% 98.879% +0.515% 98.879% +0.515%  1.379% +1.029%

best model, VAE, our proposed AD-DDPM gets better
accuracy in percentages of 14.4%, 17.1%, and 19.1% for
pollution ratios 0, 0.1, and 0.2. As noise levels increase
from 0 to 0.2, AD-DDPM maintains high performance
across all metrics, with only marginal degradation. F or
instance, AUC drops slightly from 1.00000 to 0.99911,
reflecting robust generalization even under polluted training
conditions. In contrast, baseline models exhibit more pro-
nounced performance declines. AE’s accuracy drops from
85.560% to 81.078% and VAE’s AUC decreases from
0.94571 to 0.89889.

Table II presents the performance comparison on the
MGB dataset under varying levels of label noise. The
proposed AD-DDPM model consistently achieves top
scores across all evaluation metrics and pollution ratios,
demonstrating strong resilience to noisy supervision. Even
as the contamination ratio increases from 0 to 0.2, the
degradation in performance remains marginal, with AUC
only slightly reduced from 1.00000 to 0.98507 and FAR
increasing modestly from 0.000% to 4.167%. This stability
confirms the model’s ability to generalize well under
challenging conditions. In contrast, traditional machine
learning methods such as OCSVM and IF completely
fail across all settings, yielding near-zero AUC, indicating
their inability to handle complex, high-dimensional time-
series data. Although LOF initially performs well when the

dataset is clean, its performance collapses rapidly as noise
increases, with AUC dropping to 0.33056 and then to
0.31090 under 0.1 and 0.2 noise ratios, respectively. AE
models offer moderate improvements over classical base-
lines but are hindered by high FARs and unstable detection
performance, particularly under higher noise levels. For
instance, AE-CNN’s FAR increases to over 50% under a
0.2 pollution ratio. VAE achieves competitive results when
the training data is clean, but its robustness is limited. As
noise is introduced, its performance deteriorates noticeably,
with AUC falling to 0.93335 and FAR rising to 12.667% at
0.2 pollution. Compared to VAE, AD-DDPM consistently
outperforms across all metrics and remains significantly
more robust to data contamination.

The superior performance of AD-DDPM across all
metrics and noise levels highlights its potential for AD
with imperfect data. It achieves near-perfect detection rates
while maintaining extremely low false positives, making it
suitable for industrial monitoring, where both high sensi-
tivity and precision are critical.

E. ABLATION STUDY

To assess the contribution of the U-attention-net for ex-
tracting comprehensive information from high-dimension
data, we conduct an ablation study by removing its key
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AUC(1) Acc(1) F1(1) TPR(1) FAR(!)
c=0
OCSVM 0.00000 = 0.00000 49.583% = 0.000% 66.667% =+ 0.000% 99.167% + 0.000% 100.000% =+ 0.000%
IF 0.00021 +0.00019 49.583% = 0.000% 66.667% = 0.000% 99.167% = 0.000% 100.000% =+ 0.000%
LOF 0.99701 +0.00000 97.500% = 0.000% 97.942% =+ 0.000% 98.333% +0.000% 3.333% = 0.000%
AE-CNN 0.70325 +0.07937 69.083% + 6.630% 67.974% + 6.889% 69.083% + 6.630% 48.333% + 8.720%
AE-GRU 0.72229 +0.03517 68.500% + 3.418% 68.328% +3.367% 68.500% +3.418% 38.333% +3.281%
AE-LSTM 0.73799 + 0.00952 70.167% = 1.369% 69.975% + 1.201% 70.167% = 1.369% 36.500% + 4.346%
VAE 0.99990 + 0.00014 99.750% = 0.373% 99.750% = 0.373% 99.750% + 0.373% 0.333% +0.456%
AD-DDPM  1.00000 +0.00000 100.000% +=0.000%  100.000% +0.000%  100.000% =+ 0.000 % 0.000% = 0.000 %
c=0.1
OCSVM 0.00000 + 0.00000 49.583% = 0.000% 66.667% + 0.000% 99.167% + 0.000% 100.000% + 0.000%
IF 0.00028 + 0.00000 49.583% = 0.000% 66.667% =+ 0.000% 99.167% + 0.000% 100.000% =+ 0.000%
LOF 0.33056 + 0.00000 49.583% = 0.000% 66.667% = 0.000% 99.167% = 0.000% 100.000% = 0.000%
AE-CNN 0.62788 +0.02537 62.333% + 1.807% 62.135% £ 1.610% 62.333% + 1.807% 40.333% +7.327%
AE-GRU 0.69852 +0.03532 66.833% +2.926% 66.754% +2.982% 66.833% +2.926% 36.500% + 6.021%
AE-LSTM 0.70761 £ 0.00416 68.417% + 0.801% 68.164% +0.708% 68.417% +0.801% 40.333% + 1.395%
VAE 0.98954 + 0.00781 96.417% + 1.807% 96.413% + 1.811% 96.417% + 1.807% 3.667% +2.923%
AD-DDPM  0.99999 + 0.00003 99.917% + 0.186 % 99.917% + 0.186 % 99.917% + 0.186 % 0.167% +0.373%
c=02
OCSVM 0.00000 + 0.00000 49.583% = 0.000% 66.667% + 0.000% 99.167% + 0.000% 100.000% + 0.000%
IF 0.00056 + 0.00000 49.583% = 0.000% 66.667% + 0.000% 99.167% + 0.000% 100.000% =+ 0.000%
LOF 0.31090 = 0.00000 49.583% = 0.000% 66.667% + 0.000% 99.167% = 0.000% 100.000% = 0.000%
AE-CNN 0.58150 +0.03364 59.583% +2.483% 59.080% =+ 2.492% 59.583% +2.483% 51.500% +2.312%
AE-GRU 0.65182 +0.03101 63.250% +2.251% 62.999% + 2.440% 63.250% +2.251% 37.667% + 8.066%
AE-LSTM 0.65983 +0.00429 64.583% + 1.179% 64.4449% + 1.177% 64.583% + 1.179% 40.667% =+ 3.604%
VAE 0.93335 +0.04380 88.667% +5.356% 88.654% +5.367% 88.667% +5.356% 12.667% + 6.439%
AD-DDPM  0.98507 = 0.00920 95.500% +1.873% 95.499% +1.874% 95.500% +1.873% 4.167% +2.041%
Table lll. Evaluation metrics of the proposed method with U-attention-net and vanilla U-net under different pollution
ratio in SQI dataset
AUC(1) Acc(1) F1(1) TPR(1) FAR(!)
c=0
U-attention-net ~ 1.00000 = 0.00000 100.000% +0.000% 100.000% +0.000% 100.000% +0.000% 0.000% =+ 0.000 %
Vanilla U-net 0.99999 + 0.00002 99.957% + 0.097% 99.957% + 0.097% 99.957% + 0.097% 0.086% = 0.193%
c=0.1
U-attention-net  0.99958 +0.00028  99.353% =+ 0.305 % 99.353% + 0.305% 99.353% + 0.305% 0.603% = 0.385%
Vanilla U-net 0.99923 +0.00051 99.224% + 0.118% 99.224% +0.118% 99.224% +0.118% 0.431% = 0.305%
=02
U-attention-net  0.99911 +0.00052  98.879% =+ 0.515% 98.879% + 0.515% 98.879% +0.515%  1.379% +1.029%
Vanilla U-net 0.99855 +0.00037 98.491% + 0.341% 98.491% +0.341% 98.491% +0.341% 1.724% + 0.528%

components. The model retains the U-net structure but
replaces the dilated convolutions with standard convolution
and removes the self-attention block, denoted as vanilla U-
net. The metrics under different contamination ratio
are summarized in Tables III and IV for SQI and MGB

dataset.

It can be seen that the U-attention-net outperforms the
vanilla U-Net across most metrics and contamination levels.

Specifically, in the SQI dataset, when polluted ratio ¢ is 0.2,
U-attention-net maintains superior performance with an
AUC of 099911 and FAR of 1.379%, compared to
0.99855 and 1.724% for the vanilla U-Net, respectively.
On the MGB dataset, U-attention-net achieves an AUC of
0.98507 and FAR of 4.167%, while the vanilla U-Net
attains a slightly lower AUC of 0.98299 and a higher
FAR of 6.667%. These findings indicate that the
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Table IV. Evaluation metrics of the proposed method with U-attention-net and vanilla U-net under different pollution
ratio in MGB dataset

AUC(1) Acc(1) F1(1) TPR(1) FAR()
c=0

U-attention-net ~ 1.00000 = 0.00000 100.000% =0.000% 100.000% =0.000% 100.000% +0.000% 0.000% = 0.000%

Vanilla U-net 1.00000 = 0.00000  100.000% = 0.000% 100.000% + 0.000% 100.000% + 0.000% 0.000% = 0.000%
c=0.1

U-attention-net  0.99999 +0.00003  99.917% =+ 0.186 % 99.917% =+ 0.186 % 99.917% +0.186%  0.167% = 0.373%

Vanilla U-net 0.99819+0.00110 98.750% + 0.417% 98.750% + 0.417% 98.750% = 0.417% 0.667% = 0.697%
c=0.2

U-attention-net  0.98507 = 0.00920 95.500% = 1.873% 95.499% +1.874% 95.500% +1.873%  4.167% =2.041%

Vanilla U-net 0.98299 +0.00732 94.167% £ 1.271% 94.166% +1.271% 94.667% = 1.271% 6.667% = 1.728%

Table V. Evaluation metrics of the proposed method with and without filtered contrastive mechanism under different
pollution ratio in SQI dataset

AUC(1) Acc(1) F1(1) TPR(1) FAR(!)
c=0.1
With FCM 0.99958 +0.00028  99.353% =+ 0.305% 99.353% + 0.305% 99.353% =+ 0.305% 0.603% =+ 0.385%
Without FCM  0.99941 +0.00025 99.267% +0.193% 99.267% +0.193% 99.267% +0.193% 0.690% + 0.491%
c=0.2
With FCM 0.99911 +0.00052  98.879% +0.515%  98.879% +0.515%  98.879% +0.515% 1.379% +1.029%
Without FCM  0.99792 + 0.00041 97.974% + 0.327% 97.974% + 0.327% 97.974% + 0.327% 2.155% +0.747%
Table VI. Evaluation metrics of the proposed method with and without filtered contrastive mechanism under different
pollution ratio in MGB dataset
AUC(1) Acc(1) F1(1) TPR(1) FAR(!)
c=0.1
With FCM 0.99999 +0.00003  99.917% +0.186% 99.917% = 0.186 % 99.917 % + 0.186 % 0.167% = 0.373%
Without FCM  0.94290 +0.01448 89.167% +2.412% 89.151% +2.423% 89.167% +2.412% 8.166% =+ 3.084%
=02
With FCM 0.98507 £ 0.00920  95.500% +1.873%  95.499% +1.874%  95.500% +1.873%  4.167% +2.041%
Without FCM  0.87881 +0.02594 80.833% +2.585% 80.789% +2.601% 80.833% +2.585% 17.333% + 5.445%

incorporation of dilated convolution and self-attention me-
chanisms substantially boosts the model’s performance to
identify anomalies in high-dimensional sequences.

To assess the contribution of the FCM, an ablation
study was conducted under contamination ratios 0.1 and
0.2. Tables V and VI report the performance of AD-DDPM
with and without FCM, where the top-performing results
are marked in bold. The inclusion of the FCM consistently
improves performance across all metrics. It can be seen that
the method with FCM performs better both in pollution rate
0.1 and 0.2. On the SQI dataset, for 6 =0.1, AD-DDPM
with FCM achieves an FAR of 1.38%, compared to 2.16%
without FCM. Similarly, on the MGB dataset at a pollution
ratio of 0.2, the use of FCM leads to a substantial improve-
ment in accuracy, reaching 95.50%, while the accuracy
drops to 80.83% when FCM is removed.

The FCM’s effectiveness stems from its dual compo-
nents: filtering and contrastive learning. The filtering pro-
cess identifies pseudo-anomalous samples by leveraging the
higher anomaly score of anomalies during training,

enabling the model to focus on normal patterns. The
contrastive learning penalty further refines the latent repre-
sentations by pulling normal sample features closer together
while pushing anomalous features away, enhancing the
model’s discriminative power.

F. FLOPs AND TIME CONSUMPTION

Floating point operations (FLOPs) represent the total num-
ber of arithmetic operations performed by a model during a
single forward pass. In general, models with higher FLOPs

Table VII. FLOPs, parameter amount, and train/infer
time consumption of AE, VAE, and proposed AD-DDPM
Model name FLOPs Params Train (s) Infer (s)
AE-CNN 11.10G 15.00M 3.29 0.0053
VAE 11.16G  78.24M 3.31 0.0054
AD-DDPM 13.11G 22.33M 6.09 0.0046
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Fig. 5. The anomaly score distribution of (a) AE-CNN and (b) AD-DDPM.

require more computational resources and longer proces-
sing time. We report the FLOPs, parameter counts, training
time per epoch, and inference time per sample for deep
learning methods, as summarized in Table VII. Compared
to AE and VAE, AD-DDPM incurs a slightly higher
computational cost, with 13.11G FLOPs and 22.33M
parameters. AD-DDPM requires a longer training time
per epoch due to the additional overhead of updating
pseudo-labels for FCM. It offers the fastest inference
time as it computes anomaly scores directly from the noise
difference without requiring inverse denoising, which is
favorable for real-time deployment.
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Fig. 6. The loss distribution at training epoch 30 with polluted
data and the threshold setting.
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G. VISUALIZATION

To provide intuitive insights into the AD-DDPM’s perfor-
mance, comprehensive visualizations were conducted in
SQI dataset, encompassing anomaly score distributions,
polluted sample loss distributions, signal reconstructions,
feature embeddings, and generated signal comparisons.

Figure 5(a) and (b) compare the anomaly score dis-
tributions of AE-CNN and the proposed AD-DDPM mod-
els on the test dataset. The anomaly scores of AE model
overlap significantly, indicating its weakness in differenti-
ating anomalies and detecting anomalies. In contrast, AD-
DDPM’s anomaly scores are well separated. The scores of
AE-CNN are mostly lower than 0.0001, suggesting it tends
to overfit both normal and anomalous patterns, failing to
capture fault-specific features, whereas AD-DDPM’s prob-
abilistic modeling of latent distributions ensures robust AD.

The loss distribution of polluted samples during train-
ing at epoch 30 is shown in Fig. 6. The distributions of
normal and anomalous samples are distinctly separated,
with anomalous samples exhibiting higher losses, shifted to
the right of normal samples. This separation validates the
efficacy of the FCM'’s threshold-based filtering, which
accurately distinguishes pseudo-normal and pseudo-anom-
alous samples based on the quantile of the loss distribution.
It accurately filters the probable pollution in the data and
makes the model more robust.

During testing, an input sample is gradually noised
over § steps to obtain X,-S, which is then denoised through
reverse steps to reconstruct X?. Figure 7 visualizes the
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Fig. 7. Comparison of the original simulated abnormal signal with the reconstructed outputs from (a) AE and (b) AD-DDPM.
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Fig. 8. The feature visualization after t-SNE dimension reduction of (a) AE and (b) AD-DDPM.

reconstruction of simulated signals by AD-DDPM com-
pared to the AE model. The simulation signal is a sine signal
with random Gaussian noise as the normal state. Random
segments of sine signal’s frequency are changed as the
anomalies. The figure shows the abnormal signals. The AE
model tends to fit every single detail including anomalous
segments, thus failing to detect anomalies. In contrast, AD-
DDPM reconstructs the inherent sine wave pattern, effec-
tively repairing corrupted segments by leveraging the
learned latent distribution and the generative reverse pro-
cess of the diffusion model. This capability underscores
AD-DDPM’s ability to generalize normal patterns while
identifying deviations as anomalies.

The feature embeddings after model bottleneck after t-
SNE dimension reduction [43] are shown in Fig. 8. The AE
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model’s features for normal and anomalous samples are
heavily mixed, lacking a clear boundary, which reflects its
limited discriminative power. AD-DDPM’s feature map
shows a clear separation between normal and anomalous
samples, with normal features tightly clustered and anoma-
lous features distinctly isolated. It demonstrates the meth-
od’s capability to learn robust and discriminative
representations, even under contaminated conditions.

To illustrate the diffusion model’s generative capabil-
ity, Fig. 9 compares generated vibration signals with real
normal-state monitoring data, including their Fast Fourier
Transform (FFT) spectrum. The generated signals exhibit
frequency bands closely aligned with the input data, with
minor differences in magnitude, indicating that AD-DDPM
effectively captures the latent distribution of normal signals.

Magnitude
N

—

1000 1500

Frequency(Hz)
(b)

0 500 2000

1000 1500

Frequency(Hz)
(d)

0 500 2000

Fig. 9. The generated signals by AD-DDPM compared with collected vibration signals. (a) Time-domain vibration signal under normal
conditions. (b) FFT spectrum of the normal signal. (c) Time-domain signal generated by DDPM. (d) FFT spectrum of the generated

signal.
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This generative ability not only validates the model’s
understanding of normal patterns but also highlights its
potential for data augmentation in PHM applications, where
labeled data is often scarce.

V. CONCLUSION

This paper presents a novel diffusion-based AD method,
AD-DDPM, designed for robust monitoring of rotating
machinery. DDPM probabilistically models the distribution
of normal signals for accurate detection. The introduction of
the U-attention-net, combining convolutional and self-
attention mechanisms, enables the capture of both local
and global patterns, boosting the model’s capability to
represent complex time-series data. Furthermore, the
FCM effectively addresses the challenge of contaminated
training data, ensuring robustness by distinguishing normal
and anomalous samples through pseudo-labeling and con-
trastive learning. Experimental results on fault simulation
datasets validate the superiority of AD-DDPM, achieving
near-perfect detection performance across various contam-
ination levels. Visualizations of anomaly scores, signal
reconstructions, and feature embeddings further confirm
the model’s discriminative capability. Despite these prom-
ising results, several limitations should be acknowledged.
First, the generative capability of the diffusion model has
not yet been fully exploited for refining decision bound-
aries. Leveraging synthetic fault samples generated by the
model could help clarify ambiguous regions in the feature
space, especially under high contamination scenarios. Sec-
ond, the experimental design considers limited operating
conditions, which may challenge the model’s generaliza-
tion ability under multi-condition and variable-condition
scenarios. Future research could address these issues by
incorporating generative diffusion-based augmentation to
refine decision boundaries and extending the method to
multi-domain and cross-condition scenarios using domain
adaptation or invariant representation learning to ensure
robust generalization in real industrial systems.

ACKNOWLEDGMENTS

This project was supported by The National Natural Science
Foundation of China under Grant (5247512) and National Key
Lab of Aerospace Power System and Plasma Technology Foun-
dation (APSPT202304002).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

REFERENCES

[1] W. Jiang, J. Wu, Y. Yang, X. Li, and H. Zhu, “Health
evaluation techniques towards rotating machinery: a system-
atic literature review and implementation guideline,” Reliab.
Eng. Syst. Saf., vol. 260, p. 110924, 2025.

[2] X. Liu, Z. Zhang, Z. Li, J. Wang, Y. Zhu, and H. Ma,
“Advancements in bearing health monitoring and remaining
useful life prediction: techniques, challenges, and future
directions,” Meas. Sci. Technol., vol. 36, no. 3, p. 032003,
2025.

Robust Anomaly Detection in Rotating Machinery 181

[3] F. Pittino, M. Puggl, T. Moldaschl, and C. Hirschl, “Auto-
matic anomaly detection on in-production manufacturing
machines using statistical learning methods,” Sensors,
vol. 20, no. 8, p. 8, 2020.

[4] E. Vanem and A. Brandszter, “Unsupervised anomaly detec-
tion based on clustering methods and sensor data on a marine
diesel engine,” J. Mar. Eng. Technol., vol. 20, no. 4, pp. 217—
234, 2021.

[5] K. Vos, Z. Peng, C. Jenkins, M. R. Shahriar, P. Borghesani,
and W. Wang, “Vibration-based anomaly detection using
LSTM/SVM approaches,” Mech. Syst. Signal Process.,
vol. 169, p. 108752, 2022.

[6] M. Rao, M. J. Zuo, and Z. Tian, “A speed normalized
autoencoder for rotating machinery fault detection under
varying speed conditions,” Mech. Syst. Signal Process.,
vol. 189, p. 110109, 2023.

[7] Z. Zhao et al., “Model-driven deep unrolling: towards inter-
pretable deep learning against noise attacks for intelligent
fault diagnosis,” ISA Trans., vol. 129, pp. 644-662,
2022.

[8] A. Klausen, H. Van Khang, and K. G. Robbersmyr, “RMS
based health indicators for remaining useful lifetime estima-
tion of bearings,” Model. Identif. Control Nor. Res. Bull.,
vol. 43, no. 1, pp. 21-38, 2022.

[9] T. Yan, D. Wang, J.-Z. Kong, T. Xia, Z. Peng, and L. Xi,
“Definition of signal-to-noise ratio of health indicators and its
analytic optimization for machine performance degradation
assessment,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-16,
2021.

[10] T. Yan, D. Wang, T. Xia, M. Zheng, Z. Peng, and L. Xi,
“Entropy-maximization oriented interpretable health indica-
tors for locating informative fault frequencies for machine
health monitoring,” Mech. Syst. Signal Process., vol. 198,
p. 110461, 2023.

[11] J. Qi, Z. Chen, Y. Uhlmann, and G. Schullerus, “Sensorless
robust anomaly detection of roller chain systems based on
motor driver data and deep weighted KNN,” IEEE Trans.
Instrum. Meas., vol. 74, p. 3502613, 2025.

[12] C. Tutivén, Y. Vidal, A. Insuasty, L. Campoverde-Vilela, and
W. Achicanoy, “Early fault diagnosis strategy for WT main
bearings based on SCADA data and one-class SVM,” Ener-
gies, vol. 15, no. 12, p. 4381, 2022.

[13] K. Shao, Y. He, Z. Xing, and B. Du, “Detecting wind turbine
anomalies using nonlinear dynamic parameters-assisted
machine learning with normal samples,” Reliab. Eng. Syst.
Saf., vol. 233, p. 109092, 2023.

[14] Q. Xie, G. Tao, C. Xie, and Z. Wen, “Abnormal data
detection based on adaptive sliding window and weighted
multiscale local outlier factor for machinery health monitor-
ing,” IEEE Trans. Ind. Electron., vol. 70, no. 11, pp. 11725—
11734, 2023.

[15] Y. Lv, X. Guo, S. Shirmohammadi, L. Qian, Y. Gong, and X.
Hu, “Intelligent cross-working condition fault detection and
diagnosis using isolation forest and adversarial discriminant
domain adaptation,” IEEE Trans. Instrum. Meas., vol. 73,
pp. 1-15, 2024.

[16] W. Li, Z. Shang, J. Zhang, M. Gao, and S. Qian, “A novel
unsupervised anomaly detection method for rotating machin-
ery based on memory augmented temporal convolutional
autoencoder,” Eng. Appl. Artif. Intell., vol. 123,
p. 106312, 2023.

[17] L. Yang and Z. Zhang, “Wind turbine gearbox failure
detection based on SCADA data: a deep learning-based
approach,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-11,
2021.

JDMD Vol. 4, No. 3, 2025



182 Jingcheng Wen et al.

[18] H. J. Park, S. Kim, S.-Y. Han, S. Ham, K. J. Park, and J.-H.
Choi, “Machine health assessment based on an anomaly
indicator using a generative adversarial network,” Int. J.
Precis. Eng. Manuf., vol. 22, no. 6, pp. 1113-1124, 2021.

[19] J. Wolleb, F. Bieder, R. Sandkiihler, and P. C. Cattin,
“Diffusion models for medical anomaly detection,” In Medi-
cal Image Computing and Computer Assisted Intervention —
MICCAI 2022, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel,
and S. Li, Eds. Cham: Springer Nature Switzerland, 2022,
pp- 35-45.

[20] Z. Wang, X. Gu, J. Hu, and X. Gu, “Ensemble anomaly score
for video anomaly detection using denoise diffusion model and
motion filters,” Neurocomputing, vol. 553, p. 126589, 2023.

[21] C. Wang et al., “Drift doesn’t matter: dynamic decomposition
with diffusion reconstruction for unstable multivariate time
series anomaly detection,” in Proc. 37th Conf. Neural Inf.
Process. Syst. (NeurIPS 2023), New Orleans, LA, USA, Dec.
2023, pp. 10758-10774.

[22] Y. Chen et al., “ImDiffusion: imputed diffusion models for
multivariate time series anomaly detection,” Proc. VLDB
Endow., vol. 17, no. 3, pp. 359-372, 2023.

[23] C. Yang, T. Wang, and X. Yan, “DDMT: denoising diffusion
mask transformer models for multivariate time series anom-
aly detection,” arXiv preprint arXiv:2310.08800, Oct. 2023.

[24] X. Xu, X. Yang, Z. Qiao, P. Liang, C. He, and P. Shi, “Multi-
source domain adaptation using diffusion denoising for
bearing fault diagnosis under variable working conditions,”
Knowl.-Based Syst., vol. 302, p. 112396, 2024.

[251 J. Yoon, K. Sohn, C.-L. Li, S. O. Arik, C.-Y. Lee, and T.
Pfister, “Self-trained one-class classification for unsupervised
anomaly detection,” arXiv preprint arXiv:2106.06115, Jun.
2021.

[26] M. Ulmer, J. Zgraggen, and L. G. Huber, “A generic machine
learning framework for fully-unsupervised anomaly detec-
tion with contaminated data,” Int. J. Progn. Health Manag.,
vol. 15, no. 1, pp. 1-12, 2024.

[27] B. Du, X. Sun, J. Ye, K. Cheng, J. Wang, and L. Sun, “GAN-
based anomaly detection for multivariate time series using
polluted training set,” IEEE Trans. Knowl. Data Eng.,
vol. 35, no. 12, pp. 12208-12219, 2023.

[28] Z. Shang, Z. Zhao, R. Yan, and X. Chen, “Core loss: Mining
core samples efficiently for robust machine anomaly detec-
tion against data pollution,” Mech. Syst. Signal Process.,
vol. 189, p. 110046, 2023.

[29] C. Qiu, A. Li, M. Kloft, M. Rudolph, and S. Mandt, “Latent
outlier exposure for anomaly detection with contaminated
data,” in Proc. 39th Int. Conf. Mach. Learn. (ICML), PMLR,
Jun. 2022, pp. 18153-18167.

[30] X. Mou et al., “RoCA: robust contrastive one-class time
series anomaly detection with contaminated data,” arXiv
preprint arXiv:2503.18385, 2025.

[31] Q. Su, B. Tian, H. Wan, and J. Yin, “Anomaly detection
under contaminated data with contamination-immune bidi-
rectional GANs,” IEEE Trans. Knowl. Data Eng., vol. 36, no.
11, pp. 5605-5620, 2024.

[32] C. Zhou and R. C. Paffenroth, “Anomaly detection with
robust deep autoencoders,” in Proc. 23rd ACM SIGKDD Int.
Conf. Knowl. Discov. Data Min. (KDD ’17), New York, NY,
USA: ACM, Aug. 2017, pp. 665-674.

[33] S. Wang et al.,, “E3 outlier: a self-supervised framework
for unsupervised deep outlier detection,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 45, no. 3, pp. 2952-2969,
2023.

[34] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabi-
listic models,” Adv. Neural Inf. Process. Syst., vol. 33,
pp. 6840-6851, 2020.

[35] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” In
Medical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2015: 18th International Conference, Mu-
nich, Germany, October 5-9, 2015, Proceedings, Part III,
vol. 9351. Cham: Springer, 2015, pp. 234-241.

[36] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A.
Courville, “FiLM: visual reasoning with a general condition-
ing Layer,” Proc. AAAI Conf. Artif. Intell., vol. 32, no. 1,
2018.

[37] A. Vaswani et al., “Attention is all you need,” Adv. Neural
Inf. Process. Syst., vol. 30, 2017.

[38] Z. Wang, Y. Fu, C. Song, P. Zeng, and L. Qiao, “Power
system anomaly detection based on OCSVM optimized by
improved particle swarm optimization,” IEEE Access, vol. 7,
pp. 181580-181588, 2019.

[39] S.Zhong, S. Fu, L. Lin, X. Fu, Z. Cui, and R. Wang, “A novel
unsupervised anomaly detection for gas turbine using isola-
tion forest,” in Proc. IEEE Int. Conf. Prognostics Health
Manag. (ICPHM), Jun. 2019, pp. 1-6.

[40] Z. Cheng, C. Zou, and J. Dong, “Outlier detection using
isolation forest and local outlier factor,” in Proc. Conf.
Research in  Adaptive and  Convergent  Systems
(RACS ’19), New York, NY, USA: ACM, Sep. 2019,
pp. 161-168.

[41]1J. Wu, C. Hu, C. Sun, Z. Zhao, R. Yan, and X. Chen,
“Helicopter transmission system anomaly detection in vari-
able flight regimes with decoupling variational autoencoder,”
Aerosp. Sci. Technol., vol. 144, p. 108764, 2024.

[42] W. Guan, J. Cao, Y. Gu, and S. Qian, “GRASPED: a GRU-
AE network based multi-perspective business process anom-
aly detection model,” IEEE Trans. Serv. Comput., vol. 16, no.
S, pp. 3412-3424, 2023.

[43] L. Van der Maaten and G. Hinton, “Visualizing data using t-
SNE.,” J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579-2605,
2008.

JDMD Vol. 4, No. 3, 2025



