Journal of Dynamics, Monitoring and Diagnostics, 2025, 4, 203-212
https://doi.org/10.37965/jdmd.2025.871

Interpretable Fault Diagnosis for Liquid Rocket Engines
via Component-Wise MLP-Based Granger Causality
Feature Extraction

Longfei Zhang,"? Zhi Zhai,"? Chenxi Wang,"?> Meng Ma,"'? Jinxin Liu,'?
and Chunmin Wang'??
'School of Mechanical Engineering, Xi'an Jiaotong University, Xi‘an 710049, P.R. China
National Key Lab of Aerospace Power System and Plasma Technology,
Xi'an Jiaotong University, Xi'an 710049, P.R. China
3Xi'an Aerospace Propulsion Institute, Xi'an 710100, P.R. China

(Received 15 July 2025; Revised 15 August 2025; Accepted 14 September 2025; Published online 16 September 2025)

Abstract: Liquid rocket engine (LRE) fault diagnosis is critical for successful space launch missions, enabling
timely avoidance of safety hazards, while accurate post-failure analysis prevents subsequent economic losses.
However, the complexity of LRE systems and the “black-box” nature of current deep learning-based diagnostic
methods hinder interpretable fault diagnosis. This paper establishes Granger causality (GC) extraction-based
component-wise multi-layer perceptron (GCMLP), achieving high fault diagnosis accuracy while leveraging GC
to enhance diagnostic interpretability. First, component-wise MLP networks are constructed for distinct LRE
variables to extract inter-variable GC relationships. Second, dedicated predictors are designed for each variable,
leveraging historical data and GC relationships to forecast future states, thereby ensuring GC reliability. Finally,
the extracted GC features are utilized for fault classification, guaranteeing feature discriminability and diagnosis
accuracy. This study simulates six critical fault modes in LRE using Simulink. Based on the generated simulation
data, GCMLP demonstrates superior fault localization accuracy compared to benchmark methods, validating its
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efficacy and robustness.
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I. INTRODUCTION

In recent years, major spacefaring nations have proposed
significant aerospace initiatives, including satellite constel-
lations [1], deep space exploration, and manned lunar
landings [2]. Liquid rocket engines (LREs) are positioned
as strategic priorities for current and future aerospace
systems [3], with goals centered on high reliability, low
cost, and reusability. Characterized by structural complex-
ity, extreme operating conditions, and intricate dynamic
behaviors, LREs constitute a failure-prone component in
launch vehicles. Any malfunction could induce catastrophic
impacts on space missions [4]. Consequently, comprehen-
sive research on LRE fault diagnosis is imperative to
enhance operational safety and ensure mission success.
Currently, prevalent fault diagnosis methods for LREs
primarily fall into three categories: model-driven, data-
driven, and knowledge-driven approaches [5]. The
model-driven approaches establish mathematical or physi-
cal models of the engine system based on its operational
principles under normal working conditions. Fault identifi-
cation is achieved by analyzing residuals between the
model’s output values and the engine’s actual measure-
ments under identical input conditions. Kawatsu et al. [6]
developed a fault detection method for LRE electrome-
chanical actuators based on multi-physics system-level
modeling and simulation combined with the Dynamic
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Time Warping (DTW) algorithm. Cha et al. [7] proposed
a fault detection and diagnosis algorithm based on nonlinear
Kalman filtering for open-cycle LREs, enabling reliable
transient-state fault localization. Xu et al. [8] employed the
Unscented Kalman Filter (UKF) to achieve accurate iden-
tification of three types of faults in a LRE. Sun et al. [9]
proposed a multiple-model-based fault sensor isolation
method for LRE that integrated model identification tech-
niques and particle filter bank, enabling effective isolation
of open-circuit faults and drift faults in sensors.

Knowledge-based fault diagnosis methods rely on
fault patterns, failure modes, and expert experience sum-
marized from historical anomaly cases to determine the
operating state of the engine. Representative of this cate-
gory are expert systems, which are typically composed of a
knowledge base, an inference engine, and an interpreter.
The knowledge base is responsible for storing knowledge,
the inference engine derives conclusions based on the
stored knowledge, and the interpreter explains the sys-
tem’s behavior to users. In the context of LRE, expert
systems applied in engineering practice include Aerojet
Propulsion’s Titan system, SPARTA embedded expert
system, and Rocketdyne’s turbopump fault diagnosis sys-
tem. The primary advantage of such methods lies in their
strong interpretability and independence from precise
mathematical models; however, their main limitation is
the difficulty of acquiring expert knowledge and main-
taining rule sets.

Data-driven approaches bypass the need to compre-
hend the inherent complexity of engines, instead,
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identifying faults and locating their sources by analyzing
correlations between engine measurement signals and fault
manifestations. For LREs with intricate structures and
operational processes, where establishing concise and accu-
rate system models is often infeasible, data-driven methods
remain the predominant approach in the field of LRE fault
detection and diagnosis. Sun ef al. [10] achieved real-time
fault detection for LREs by determining fault-characteristic
frequency bands through spectral analysis and using the
Root-Mean-Square (RMS) values of these bands as detec-
tion indicators. Deng et al. [11], in their study on main-stage
fault diagnosis for a high-thrust hydrogen—oxygen staged-
combustion cycle engine, designed a real-time fault detec-
tion method based on an autoregressive moving average
(ARMA) model for the steady-state phase and verified its
reliability via a hardware-in-the-loop simulation platform.

Recent breakthroughs in big data and artificial intelli-
gence (Al) have enabled deep learning-based intelligent
fault diagnosis methods to leverage hidden information in
data, which demonstrates significant advantages across
domains. Chen et al. [12] developed a physics-informed
deep neural network for bearing remaining useful life
prediction. Wu et al. [13] proposed CA-DenseNet for fault
diagnosis in linear guideways. Such methods have also
gained significant traction in LRE diagnostics. Park et al.
[14] proposed a fault detection and diagnosis method for
liquid-propellant rocket engine tests during startup transient
based on a convolutional neural network-long short-term
memory (CNN-LSTM). Wang et al. [15] addressed the
scarcity of fault patterns in LREs during actual operation by
leveraging a pre-training and fine-tuning framework based
on a CNN. Yan et al. [16] combined a bidirectional RNN
and attention assistance based on multi-granularity refer-
ence to achieve fault localization in the launch vehicle test
and launch process.

Analysis of LRE systems and associated fault diagno-
sis methodologies reveals three fundamental challenges: (1)
LRE sensor data exhibit three defining characteristics:
temporal dependencies reflecting sequential patterns in
sensor evolution, high dimensionality arising from complex
multivariate measurements across numerous sensors, and
nonlinear interactions where interdependencies violate lin-
ear assumptions. These characteristics collectively impede
high-precision fault diagnosis in LRE. (2) Model-driven
diagnostic methods for LREs rely on accurate physical or
mathematical models, which can provide physically mean-
ingful information and effectively detect unknown fault
modes. However, these methods demand a model with high
precision, a significant challenge due to the difficulty in
constructing high-fidelity LRE models. Moreover, varia-
tions between individual engines necessitate separate
modeling or adjustments for each engine to ensure accu-
racy, resulting in poor generalizability and robustness of
models. (3) In recent years, Al-powered data-driven diag-
nostic methods demonstrate powerful feature learning capa-
bilities, strong nonlinear fitting capacity, and adaptability
independent of specific systems or devices. Yet, as neural
networks inherently function as black-box models, they fail
to incorporate human-interpretable semantics into the fea-
ture space, leading to limited interpretability of diagnostic
results. This poses a potential risk for LREs, where high
reliability is paramount.

To address the aforementioned challenges, Granger
causality (GC) [17]-based causal learning provides a solu-
tion. GC defines causality from a predictive perspective: if

variable a contributes statistically significant improvement
in predicting variable b, then a is regarded Granger causal
for b. GC inherently depends on the activity of the entire
system of time series under study, making it more appro-
priate for understanding high-dimensional complex data
streams [ 18], and thus applicable to fault diagnosis in LRE.
Constructing GC models among time series could circum-
vent the stringent requirement of model-driven methods for
high-precision mathematical or physical models of LRE.
Simultaneously, GC structure inherently characterizes
directional dependencies between temporal variables,
thereby eliminating the opacity of conventional deep learn-
ing methods and establishing explainable diagnostic rea-
soning. Ma et al. [19] proposed attention-based random
disturbance gated recurrent unit (ARDGRU) for nonlinear
dynamic GC analysis, achieving root cause analysis in
manufacturing processes. Han et al. [20] proposed a novel
autoencoder-based framework for root cause analysis
(AERCA) leveraging GC discovery to achieve root cause
analysis in multivariate time series anomalies. Zhang et al.
[21] proposed a graph neural network method based on the
GC test for bearing fault detection, achieving accurate fault
classification. The application of GC-based deep learning in
diverse fields provides methodological insights for addres-
sing the aforementioned challenges in LRE fault
diagnostics.

Therefore, this paper proposes a GC-based deep
learning method for fault classification in LREs. Since
distinct faults correspond to unique propagation pathways
[22], manifested as divergent GC relationships, we extract
GC as discriminative features for fault classification. To
address the strong coupling among LRE variables, a
component-wise strategy is adopted; therefore, GC effects
on individual variables are separately extracted and inte-
grated to form a complete GC model. Combined with the
above analysis, considering that many scholars have uti-
lized MLP to extract GC and achieved good results in
subsequent tasks [23-25], this paper employs MLP as the
backbone of the network and proposes GC extraction-
based component-wise multi-layer perceptron (GCMLP)
for LRE fault diagnosis. By utilizing data influenced by
GC for prediction, enhanced forecasting accuracy vali-
dates the rationality and correctness of extracted GC
features; employing GC characteristics for fault classifi-
cation ensures discriminability across different faults
through improved diagnostic accuracy, while imposing
sparsity constraints on the extracted GC structure aligns
with the intrinsic sparse connectivity characteristics of
causal models. The primary contributions of this work are
summarized as follows:

(1) Methodological innovation: we propose a novel
GC-MLP framework based on an encoder—decoder
structure, enabling both accurate classification and
interpretable feature extraction.

(2) Causality-enhanced diagnosis: we introduce GC-
based features to capture failure propagation mechan-
isms in LREs, bridging data-driven learning with
physical interpretability.

(3) Comprehensive validation: we demonstrate the effec-
tiveness on LRE simulation data, compare with mul-
tiple baseline models (GRU, BiGRU, LSTM,
BiLSTM, CNN, and MLP), and analyze the effect
of different sparsity constraints on diagnostic
accuracy.
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Il. PRELIMINARY KNOWLEDGE

This section will introduce GC and explain how sparsity
constraints are imposed on the GC matrix during the
extraction process, which serves as the foundational frame-
work for the proposed method.

A. GRANGER CAUSALITY

Granger defined causality based on whether past values of a
time series x, contribute to predicting future values of
another time series y,. Let H_, denote all relevant informa-
tion available up to time ¢ — 1, and P(y,|H _,) represent the
prediction of y, on the basis of H_,. If

Var[.Yr - P(yt|H<z)] < Var[yt - P()’tlH«\ x<t)} (1)

x, is Granger causal for y,, where H_\ x, denotes all
information in H_, excluding the past values of the time
series x;.

Early GC was defined based on linear relationships
among variables. Given a time series vector x =
(x1,%3,....x7) in  dimensions of (p,T), where
x,= (x} 2, ... x%)T where p denotes the number of sensors,
T denotes the length of time series, and ¢ denotes the #-th
time point. The components satisfy the following linear

relationship:
d
Ay, = E Akx,_i+ e, )
k=1

where A° AL, ... A4 is a causal coefficient matrix of dimen-
sions p X p, representing GC relationships. A% # 0 indicates
that time series ¥ is Granger causal for x', d denotes lag, and
e, denotes noise. Taking the GC graph among the four time
series variables shown in Fig. 1 as an example, the GC
effects vary across different time lags where lag=2. The
corresponding causal adjacency matrix for a specific time
lag is shown in Fig. 2. This formulation can also display
nonlinear GC relationships.

B. LASSO

For high-dimensional time series data, the causal structure
among variables typically exhibits sparsity. When employ-
ing neural networks to capture GC between multiple time
series variables, a sparsity-based regularization term is
commonly introduced into the loss function. This ensures
sparse connectivity between variables, thereby obtaining a
reasonable causality estimation. Fujita ef al. [26] introduced

Fig. 1. GC diagram.
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Fig. 2. GC matrix.

lasso penalty to enforce sparsity in the GC matrix, driving
most elements to zero. The formulation is given by:

Q(A'A%, ... AY) = AZ Z Z AL )

where Q is a penalty term restricting the sparsity of GC.
Shojaie et al. [27] proposed the truncating lasso penalty,
which computes weights based on causal matrices from
prior lags to adjust the sparsity penalty for subsequent lag
matrices, The penalty is defined as below, where ¥* is the
weight corresponding to GC at lag k, M is a large constant,
and p is the user-specified tolerable false negative rate:

d i V4
QA'A%,. .. AY) =2 Z wk Z Z AFl @)
k=1 =1 j=1

wl— 1 k= pIA" lo<p®p/(d-R)}  f > 2 5)

Lazano et al. [28] introduced group lasso penalty:

4 P
Q(A'A%,.. AY) = /IZ Z |(Aj-AG -
=1 j=1

I;

ADl, ©)

Basu et al. [29] proposed a more generalized group
lasso penalty incorporating relationships between variables.
Unlike grouping across lags, their approach treats arbitrary
subsets of variables or entire matrices as a single group for
L2 norm computation. The formulation is expressed as:

d p
QAL A =AY ) (A AL), ()
k=1 =l

Nicholson et al. [30] proposed hierarchical group lasso
penalty based on decay assumption. This approach enforces
that if all elements in the causal matrix at lag k are zero, then
elements in causal matrices for larger lag are also entirely
zeros, formally:

AK=0=A"=0, Vm >k ®)

lll. DESCRIPTION OF THE METHOD
A. MODEL ARCHITECTURE

The proposed network employs an integrated Encoder—
Decoder architecture to extract GC of LRE variables and
achieve fault classification. Therefore, the core focus of this
network lies in GC acquisition, with the objective of
achieving accurate classification across diverse fault types.
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The framework consists of three core modules: the Encoder,
serving as the GC Extracting Module, the Decoder, acting
as the Predictor, and the Fault Classifier. The network
architecture is illustrated in Fig. 3.

(1) The GC Extracting Module (Encoder) is designed to
capture GC between variables in LRE multivariate
time series. Adopting a component-wise approach, a
separate MLP is designed for each variable to avoid
the influence of inter-variable coupling on GC extrac-
tion. The resulting GC reflects the causal relationships
between various variables in the LRE and serves as
input features for subsequent fault localization.

(2) The role of Predictor (Decoder) is to predict the next-
time-step values of each variable based on LRE time
series data influenced by the GC matrix. During back-
propagation, it provides prediction errors to assist the
GC Extracting Module in parameter updating, ensur-
ing the correctness of the extracted GC matrix so that it

can accurately reflect inter-variable interactions.

(3) The Classifier performs fault localization using the GC
extracted by the GC Extracting Module as input
features and serves as the final output component of
the fault diagnosis task. During backpropagation, it
provides classification errors, which not only enhances
the Classifier’s ability to distinguish between different
faults but also assists in optimizing the GC Extracting
Module, prompting it to extract GC matrices with
discriminability for different fault data. By improving
the separability of input features, the accuracy of
Classifier’s classification could be improved.

The GC Extracting Module employs an intricately
tailored component-wise architecture built upon MLP

foundations. The module is designed to distill GC relation-
ships across multivariate time-lagged data (with maximum
lag d) and to encode these relationships into GC matrices
systematically. And the obtained matrices serve as both a
structured input for the downstream Predictor and the
discriminative input features for the Fault Classifier.
Preprocessed data entering the GC Extracting Module
is X € R*P*d_where n,, denotes the count of samples in a
batch, p denotes the number of sensors, and d is the
maximum time lag. The component-wise paradigm man-
ifests through p specialized GC extractor groups. Each
group focuses on analyzing GC effects from all variables
(including autoregressive effects) on a single-target LRE
variable—generating one row of the GC matrix. Concate-
nation of these row vectors yields the complete GC matrix
for a specific time lag. To account for temporal variations in
GC across different time lags, each GC extractor group
incorporates d specialized extractors that separately quan-
tify GC effects received by a target variable at each lag step
where lag = 1,2, ... ,d. The module comprises d X p paral-
lel GC extractors, each designed to capture the GC effects of
p variables across d time lags. The output is a tensor with
dimensions d X p X p, where each slice along the lag
dimension corresponds to a GC matrix at a specific time lag.

B. OPTIMIZATION OBJECTIVE

Since the GC between LRE sensors is established on
whether lagged data from each channel contributes to
predicting future values, the training process requires quan-
tifying the discrepancy between the Predictor’s outputs and
the ground-truth sensor measurements. This discrepancy
should progressively decrease during training to ensure the
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Fig. 3. Description of the method.
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accuracy of the GC matrix. The mean squared error (MSE)
is a widely adopted metric for quantifying prediction
accuracy and is defined as:

P
1 2 : L
Lpred =- (x;_x;)Z )
P

where p denotes the number of sensors, x} denotes measured
value of the i-th sensor at time point #, and X denotes
predicted value of the i-th sensor at time point # generated by
Predictor.

In LREs, sensor monitoring points are typically numer-
ous, yet for any individual sensor, only a few other sensors
exhibit GC relationships with it. To ensure sparsity of GC
matrix in high-dimensional data, the group lasso penalty is
introduced to constrain the GC matrix output by the GC
Extractor. This regularization is formally defined as:

(10)

where p denotes the number of sensors and A;. denotes the
elements in the i-th row of the GC matrix, physically
indicating whether other variables are Granger causal for
the i-th variable.

Additionally, as the model’s core task involves fault
classification, the classification accuracy of the Fault Classi-
fier serves as a critical performance metric. To optimize this
component, a cross-entropy loss function is applied during
training. This approach simultaneously enhances the classi-
fier’s diagnostic precision and boosts the discriminability
of GC matrices extracted by the GC Extractor across
diverse fault types ensuring distinct GC matrix patterns
emerge for different failure modes. The classification loss
is defined as:

Lclass = —ylogj} - [(1 _y) log(l _5})] (11)

Synthesizing above considerations, the training pro-
cess must simultaneously balance GC matrix accuracy,
topological sparsity, inter-fault distinguishability, and fault
classification precision. This yields a consolidated loss
function integrating all objectives:

L= ﬂlered+ AZLspar"' /13Lclass
p
1

=) *— (Xi—x)2+ 4y

12)

+ 43+ {=y logy — [(1 —y) log(1 - y)]}

where 4;, 4,, and 13 denote the regularization weight for
Lyreq (prediction accuracy constraint), Lgpy,, (sparsity loss),
and L., (classification penalty), respectively.

IV. EXPERIMENT VERIFICATION
A. DATA DESCRIPTION

The experimental data are obtained from an LRE simulation
model of a specific type, acquiring six distinct fault datasets
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through fault injection techniques. This LRE model com-
prises multiple hierarchical subsystems, including an oxi-
dizer supply system, valve control system, turbopump
assembly system, and so on, with a schematic diagram
illustrating its operational principles provided in Fig. 4.

The LRE of this specific model is decomposed into
core components, including pumps, turbines, combustion
chambers, and pipelines, where the strong dynamical cou-
pling between numerous subsystems necessitates strategic
simplification. A modular modeling methodology is
adopted. First, physics-based dynamic models is con-
structed for each critical component in MATLAB/Simulink
according to their underlying operational principles. Sub-
sequently, these subsystems are integrated through system-
atic coupling and debugging of input—output relationships
to derive the integrated system-level LRE model, as illus-
trated in Fig. 5.

Based on the aforementioned Simulink model, the
experimental data is constructed through the follow-
ing steps:

(1) Fault simulation: Faults are simulated using fault
injection techniques [31] introducing specific failure
modes artificially into the system during operation.

(2) Data normalization: Sensor data undergo min-max
normalization to eliminate dimensional discrepancies
and prevent skewed feature extraction during GC
construction. The formula is as follows:

x* — min(x?)

xi_

"~ max(x') — min(x')’ (13)

i=12...p

(3) To emulate real-world environmental interference
and enhance model robustness, white Gaussian noise
with a 20 dB SNR is injected into normalized data.

Following data preprocessing, a dataset encompassing
six distinct fault types is established, involving main turbine
fault, oxygen pump fault, stage-1 fuel pump fault, thrust
chamber throat ablation, oxygen booster pump fault, and
fuel booster pump fault. Each fault was simulated at two
severity levels, resulting in 12 distinct datasets. Every
dataset contains 10 sensor channels sampled at 1 kHz
over a 5-second duration, with specific sensor configura-
tions detailed in Table I.

D Oxidizer tank

Oxidizer booster
turbo-pump

D Fuel tank

Fuel booster
turbo-pump

>

Oxidizer valve Gas generator
Main combustion

chamber

Oxidizer pump XThrottle -
Fuel stage-1

pump

Throttle valve

Flow regulator
Fuel stage-2 pump

Fig. 4. Schematic diagram of a specific LRE model.
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Fig. 5. Simulink model of a specific LRE type.

Table .  Sensor ID and measured parameters

-4
°

Sensor

Oxidizer pump inlet pressure
Oxidizer pump outlet pressure
Oxidizer pump flow rate

Fuel stagel pump inlet pressure
Fuel stagel pump outlet pressure
Fuel stagel pump flow rate

Fuel stage2 pump outlet pressure
Main turbo rotational speed

O 0 3 N L AW~

Main turbo flow rate

—_
(=)

Gas generator pressure

The operational timeline consists of three phases:
normal LRE operation at 0-2.5 seconds, a precise 200-
millisecond fault injection window at 2.5-2.7 seconds, and
sustained fault-state operation at 2.7-5 seconds. Prepro-
cessed sensor data for the main turbine efficiency degrada-
tion fault is partially illustrated in Fig. 6.

During dataset construction, data from the 0.5-1s
interval are selected as the normal state samples. For fault
data selection, the post-injection transition period (2.5-3s)
is adopted. This interval captures dynamic characteristics of
the LRE model during fault initiation and stabilization,
facilitating effective GC extraction by GCMLP. Conse-
quently, the 2.5-3s data represent the fault state. The raw
data were segmented using sliding windows with a window
length of 10 and step size of 5, yielding a final dataset
comprising 1,274 samples.

B. EXPERIMENT RESULT

Table II presents the fault classification performance of
various methods on the established dataset, with all accu-
racy values averaged over five independent experimental
trials to ensure statistical stability. The proposed GCMLP
method is benchmarked against six widely adopted
approaches: CNN, MLP, and time series specialized

Normalization results of partial sensors under main turbine fault

1.0 ﬁ —— Oxidizer pump outlet pressure
—— Fuel stage-1 pump outlet pressure
—— Main turbine rotation speed
2 081 —— Main turbine flow rate
= —— Gas generator pressure
s
=
2 0.6
o
w
o=
o
N 0.4 1
E
5
Z
0.2 1
0.0 1
T T T T T T
0 1 2 3 4 5
Time/s

Fig. 6. Normalization results of partial sensor data under main
turbine fault.

Table Il.  Fault classification accuracy of baseline
models and GCMLP

Model Accuracy Precision Recall
CNN 92.25% 88.28% 88.87%
GRU 88.22% 82.49% 86.50%
BiGRU 83.88% 74.17% 83.70%
LSTM 86.05% 78.32% 82.61%
BiLSTM 92.56% 85.83% 88.69%
MLP 89.77% 84.35% 87.47%
GCMLP 95.50% 93.03% 94.71%

architectures including gated recurrent unit (GRU), bidi-
rectional gated recurrent unit (BiGRU), LSTM, and bidi-
rectional long short-term memory (BiLSTM). GCMLP
achieves superior metrics of 97.67% accuracy, 96.70%
precision, and 96.39% recall—collectively outperforming
all comparative methods and demonstrating enhanced

JDMD Vol. 4, No. 3, 2025
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TABLE lll.  Fault types and corresponding labels in
confusion matrices

Label Fault type

0 Normal

1 Main turbine fault

2 Oxidizer pump fault

3 Fuel stage-1 pump fault

4 Thrust chamber throat ablation
5 Oxidizer booster pump fault

6 Fuel booster pump fault

capability in precise fault identification and false alarm
mitigation.

The confusion matrices (label indices mapped to fault
types in Table III) in Fig. 7 reveal that GCMLP and five
comparative methods all maintain over 90% recognition
accuracy for Faults 2—-6. Notably, GCMLP demonstrates
exceptional performance in identifying both healthy states
and fuel booster pump fault (Label 6), whereas the bench-
mark methods exhibit significant deficiencies in diagnosing
these two categories: their accuracy for healthy states
hovers around 50%, with BiLSTM achieving only 12%
accuracy for fuel booster pump fault (effectively failing to
detect it), while LSTM and MLP reach approximately 50%,
and CNN/GRU attain 84%. In stark contrast, GCMLP
achieves 100% accuracy for fuel booster pump fault. Col-
lectively, the recognition rates across all fault types and the
holistic analysis of the confusion matrix conclusively vali-
date the efficacy of the proposed method.

209

The innovation of this paper lies in incorporating GC
extraction, which enables causal interpretation for feature
extraction and fault localization while maintaining classifi-
cation accuracy. Taking thrust chamber throat ablation
faults as a case study, we analyze the rationality of causal
features extracted by GCMLP and the interpretability of
fault diagnosis results. Figure 8 shows GC relationships
among sensors during throat ablation faults in the dataset
mentioned above. Figure 9 visualizes GC relationships
derived from the GC matrix extracted by GCMLP. Subse-
quent analysis compares these relationships sequentially
from left to right.

Derived from physical connections and equilibrium
relationships among engine variables:

PCOm NPIUT

(14)

Pey1e= Prpo; (15)

where P, denotes combustion chamber pressure, Py,
denotes main turbine outlet pressure, Pg, . denotes fuel
stage-1 pump outlet pressure, and Pg,»; denotes fuel stage-2
pump inlet pressure.

(1) The fuel stage-1 pump is connected to the combustion
chamber via a valved pipeline, establishing topologi-
cal linkage. Here, P, serves as an approximation for
P.on. Thrust chamber throat ablation manifests
through three correlated effects: throat area enlarge-
ment reduces combustion chamber pressure P, and
simultaneously decreases main turbine outlet pressure
P, due to parametric equilibrium; the consequent
turbine pressure ratio elevation increases rotational
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Fig. 7. Confusion matrices of fault classification results across comparative methods: (a) BiLSTM, (b) CNN, (c) GRU, (d) LSTM,

(e) MLP, and (f) GCMLP.
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Fig. 8. GC diagram of variables in throat ablation process of LRE
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Fig. 9. GC-derived mapping of critical variables in LRE thrust
chamber throat ablation from GCMLP.

speed Ny,. These causal relationships confirm Pgy.
and N, as exogenous variables.

(2) The coaxial integration of the main turbine, oxidizer
pump, and fuel stage-1 pump forces synchronous
rotational speed elevation. This speed synchronization
increases flow rates in both the oxidizer pump and fuel
stage-1 pump. Concurrently, reduced fuel stage-1
pump outlet pressure Py, . diminishes the booster
turbine’s driving capability, thereby lowering the
fuel stage-1 pump inlet pressure. Furthermore, per
mass conservation principles: oxidizer pump flow pre-
dominantly enters the main turbine through the gas
generator, while fuel flow remains unchanged under
regulator control. Consequently, oxidizer flow varia-
tions directly modify main turbine flow characteristics.

(3) The oxidizer booster pump derives power from the
main turbine’s exhaust gas. Within the gas generator,
increased oxidizer flow combined with constant fuel
flow elevates the mixture ratio. This mixture enrich-
ment lowers gas temperature, subsequently reducing
the temperature of the exhaust gas driving the oxi-
dizer booster turbine. The diminished thermal energy
impairs the oxidizer booster pump’s head generation,
decreasing the oxidizer pump’s inlet pressure, conse-
quently impacting oxidizer flow dynamics and outlet
pressure. Since sensors cannot monitor all variables in

Table IV. Fault classification accuracy of different
sparsity penalty

Sparsity Precision Recall Accuracy
Group lasso 89.90%  91.30%  91.78%
General group lasso 89.90%  91.30%  91.78%
Hierarchical group lasso 96.98%  97.51%  97.67%
Group sparse group lasso  93.03%  94.71%  95.50%

this process, the propagation path is incompletely
illustrated and represented through exogenous vari-
ables encapsulating latent factors.

Based on the obtained GC graph, we approximate the
direct and indirect influences between nearly equivalent
variables during comparison and equivalize adjacent vari-
ables in the LRE system according to Equation 14 and 15. It
is observed that the GCMLP can extract GC matrices
characterized by separability and interpretability, which
largely align with the actual GC values and fundamentally
correspond to the underlying fault mechanisms. Therefore,
GCMLP demonstrates its ability to enhance the credibility of
diagnostic results by extracting physically meaningful fea-
tures that endow the diagnostic model with interpretability.

C. DISCUSSION

As noted earlier, sparsity preservation is required through-
out the GC extraction process. To explore how different
sparsity constraints influence fault localization accuracy, an
additional experiment was conducted. The experiment
primarily evaluated the following sparsity penalties: group
lasso penalty, general group lasso penalty, hierarchical
group lasso penalty, and group sparse group lasso. Quanti-
tative analysis includes metrics for fault classification
accuracy, including precision, recall, and accuracy.
Comparative results are summarized below:

It can be observed that the fault localization accuracy of
GCMLP is 91.78% when using group lasso and general
group lasso as sparsity losses to constrain GC extraction.
When hierarchical group lasso and group sparse group lasso
are employed as sparsity losses, the fault localization
accuracies increase to 96.67% and 95.50%, respectively.
Through analyzing different lasso penalty computation
approaches and GC matrices, we can observe that group
lasso groups together elements of the GC matrix with the
same index across different lags, ensuring sparsity of the
GC matrix in the lag dimension. General group lasso groups
the GC effects of other variables on a specific variable,
ensuring sparsity of the matrix in the variable dimension. In
contrast, group sparse group lasso and hierarchical group
lasso simultaneously address the sparsity of the GC matrix
across both different lags and different variables, which
allows them to concurrently obtain a sparse set of GC time
series and a subset of relevant lags. Therefore, group sparse
group lasso and hierarchical group lasso are more beneficial
for extracting GC related to LRE and facilitating fault
diagnosis. When designing new sparsity constraints, spar-
sity across multiple dimensions should be considered.

V. CONCLUSION

This study constructs an Encoder—Decoder architecture
with dedicated feature extractors for distinct LRE
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variables. Specifically, we design a Component-wise
MLP-based GC Extractor to derive GC relationships as
diagnostic features. The correctness of GC extraction is
validated through next-time-step variable prediction accu-
racy, while its discriminative power is verified via fault
localization performance. Key results are summarized as
follows:

(1) This study established a novel fault localization
methodology that utilizes an Encoder—Decoder-struc-
tured MLP network to extract GC relationships
among variables in LREs, achieving over 95% local-
ization accuracy through GC-based diagnostic
features.

(2) By analyzing GC interactions extracted by GCMLP
in specific fault scenarios, we demonstrated strong
conformance between the identified causal patterns
and fundamental engine operational principles and
fault propagation mechanisms, thereby providing
physically interpretable diagnosis results.

(3) The proposed approach surpasses widely implemen-
ted models, including MLP, CNN, and time series
optimized architectures (GRU, BiGRU, LSTM, and
BiLSTM)—in fault localization accuracy while main-
taining robust performance across varied sparsity
penalty implementations.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

REFERENCES

[1] H. W. Lee et al., “Satellite constellation pattern optimization
for complex regional coverage,” J. Spacecr. Rockets, vol. 57,
no. 6, pp. 1309-1327, 2020.

[2] M. Thangavelu, “USC ARTEMIS Project: Maximum Impact
Moon Mission(MAXIM) Tribute to Apollo,” AIAA 2020-
4098. ASCEND 2020. November 2020.

[3] S. Yang et al., “Application issues of data-driven intelligent
fault diagnosis technologies for liquid rocket engines,” Acta
Aeronautica Astronaut. Sin., vol. 46, no. 15, p. 131427, 2025.

[4] Y. Guo et al., “Progress and development considerations on
fault diagnosis techniques for solid rocket motor,” J. Solid
Rocket Technol., vol. 45, no. 1, pp. 4-12, 2022.

[5] S. Kanso er al., “Remaining useful life prediction with
uncertainty quantification of liquid propulsion rocket engine
combustion chamber,” IFAC-PapersOnLine, vol. 55, no. 6,
pp. 96-101, 2022.

[6] K. Kawatsu et al., “Model-based fault diagnostics in an
electromechanical actuator of reusable liquid rocket engine,”
AIAA 2020-1624. AIAA Scitech 2020 Forum. January
2020.

[71 J. Cha et al., “Fault detection and diagnosis algorithms for
transient state of an open-cycle liquid rocket engine using
nonlinear Kalman filter methods,” Acta Astronaut, vol. 163,
pp. 147-156, 2019.

[8] L. Xu et al., “Fault diagnosis of liquid rocket engine based on
unscented kalman filter,” Manned Spaceflight, vol. 30, no. 4,
pp. 516-525, 2024.

[9]1 R B. Sun et al., “Fault sensor isolation method for liquid
rocket engines based on multi-model,” Mech. Syst. Sig.
Process., vol. 225, p. 112278, 2025.

[10] B. Sun and C. Tian, “The fault real-time monitoring method
for engine based on RMS value of characteristic frequency
band,” J. Rocket Propul., vol. 45, no. 4, pp. 74-78,
2019.

[11] C. Deng et al., “Study on real-time diagnosis method of the
main stage working condition of rocket engine based on
improved ARMA Model,” Comput. Meas &Control, vol. 28,
no. 2, pp. 33-38, 2020.

[12] X. Chen et al., “Physics-informed deep neural network for
bearing prognosis with multisensory signals,” J. Dyn. Monit.
Diagn., vol. 1, no. 4, pp. 200-207, 2022.

[13] Y. Wu et al., “Fault diagnosis of linear guide rails based on
SSTG combined with CA-DenseNet,” J. Dyn. Monit. Diagn.,
vol. 3, no. 1, pp. 1-10, 2024.

[14] S. Y. Park and J. Ahn, “Deep neural network approach for
fault detection and diagnosis during startup transient of
liquid-propellant rocket engine,” Acta Astronaut, vol. 177,
pp. 714-730, 2020.

[15] C. Wang et al., “Dynamic model-assisted transferable net-
work for liquid rocket engine fault diagnosis using limited
fault samples,” Reliab. Eng. Syst. Saf., vol. 243, p. 109837,
2024.

[16] Y. Yan et al., Fault diagnosis method of launch vehicle based
on sequential neural network[C]//2023 2nd International
Symposium on Aerospace Engineering and Systems
(ISAES). 2023: 208-212.

[17] C. W. J. Granger, “Investigating causal relations by econo-
metric models and cross-spectral methods,” Econometrica,
vol. 37, no. 3, pp. 424, 1969.

[18] A. Tank et al., “Neural granger causality,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, 8, pp. 4267-4279, 2022.

[19] L. Ma, M. Wang, and K. Peng, “Nonlinear dynamic granger
causality analysis framework for root-cause diagnosis of
quality-related faults in manufacturing processes,” [EEE
Trans. Autom. Sci. Eng., vol. 21, no. 3, pp. 3554-3563, 2024.

[20] X. Han et al., Root Cause Analysis of Anomalies in Multi-
variate Time Series through Granger Causal Discovery[C]/
The Thirteenth International Conference on Learning Repre-
sentations. 2024.

[21] Z. Zhang and L. Wu, “Graph neural network-based bearing
fault diagnosis using Granger causality test,” Expert Syst.
Appl., vol. 242, p. 122827, 2024.

[22] P. Tang, K. X. Peng, and J. Dong, “A novel method for deep
causality graph modeling and fault diagnosis,” Acta Autom.
Sin., vol. 48, no. 6, pp. 1616-1624, 2022.

[23] C. Fan et al., Interpretable Multi-Scale Neural Network for
Granger Causality Discovery[C]/ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2023: 1-5.

[24] R. Marcinkevic¢s and J. E. Vogt, Interpretable Models for
Granger Causality Using Self-explaining Neural Networks
[A]. arXiv, 2021.

[25] P. Schwab, D. Miladinovic, and W. Karlen, “Granger-causal
attentive mixtures of experts: Learning important features
with neural networks,” Proc AAAI Conf. Artif Intell, vol. 33,
no. 01, pp. 4846-4853, 2019.

[26] A. Fujita et al., “Modeling gene expression regulatory net-
works with the sparse vector autoregressive model,” BMC
Syst Biol, vol. 1, no. 1, p. 39, 2007.

[27] A. Shojaie and G. Michailidis, Discovering graphical
Granger causality using the truncating lasso penalty.

[28] A. C. Lozano et al., “Grouped graphical Granger modeling
for gene expression regulatory networks discovery,” Bioin-
formatics, vol. 25, no. 12, pp. i110-i118, 2009.

JDMD Vol. 4, No. 3, 2025



212 Longfei Zhang et al.

[29] S. Basu and G. Michailidis, “Regularized estimation in sparse with exogenous variables,” Int. J. Forecast., vol. 33, no.
high-dimensional time series models,” Annals Statistics, 3, pp. 627-651, 2017.
vol. 43, no. 4, pp. 1535-1567, 2015. [31] J. V. Carreira, D. Costa, and J. G. Silva, “Fault injection spot-
[30] W. B. Nicholson, D. S. Matteson, and J. Bien, “VARX-L: checks computer system dependability,” [EEE Spectr.,
Structured regularization for large vector autoregressions vol. 36, no. 8, pp. 50-55, 1999.

JDMD Vol. 4, No. 3, 2025



