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Abstract

Machinery condition monitoring is beneficial to equipment maintenance and has been receiving much attention from

academia and industry. Machine learning, especially deep learning, has become popular for machinery condition

monitoring because that can fully use available data and computational power. Since significant accidents might be

caused if wrong fault alarms are given for machine condition monitoring, interpretable machine learning models,

integrate signal processing knowledge to enhance trustworthiness of models, are gradually becoming a research

hotspot. A previous spectrum-based and interpretable optimized weights method has been proposed to indicate faulty

and fundamental frequencies when the analyzed data only contains a healthy type and a fault type. Considering that

multiclass fault types are naturally met in practice, this work aims to explore the interpretable optimized weights

method for multiclass fault type scenarios. Therefore, a newmulticlass optimized weights spectrum (OWS) is proposed

and further studied theoretically and numerically. It is found that the multiclass OWS is capable of capturing the

characteristic components associated with different conditions and clearly indicating specific fault characteristic

frequencies (FCFs) corresponding to each fault condition. This work can provide new insights into spectrum-based

fault classification models, and the new multiclass OWS also shows great potential for practical applications.

Keywords: Machinery condition monitoring; Optimized weights spectrum; Spectrum analysis; Softmax classifier;

Interpretable machine learning model

1. Introduction

Machinery condition monitoring [1] could provide machinery health information, such as incipient fault time,

fault types, and remaining useful life, which are beneficial to avoiding sudden machinery breakdown and human injury,

increasing industrial economic profits, etc. Therefore, machinery condition monitoring has received much research

attention from both academia and industry. The essence of machinery condition monitoring is to extract key fault

information by analyzing monitored data [2]. Vibration signals contain much health state information, and they might

be the most common data type to be analyzed [3]. A variety of rotating components, such as bearings and gears, are

mailto:bingchanghou@cqu.edu.cn
mailto:wangyusjtu2022@sjtu.edu.cn


2

employed to support mechanical rotating bodies or to transmit torque. Thus, these rotating parts are prone to faults, and

more research attention has been put on them. In general, monitoring strategies fall into two major categories: signal

processing approaches and data-driven learning approaches.

Signal processing methods mainly use techniques including the Fourier transform, Hilbert transform[4],

time-frequency analysis, bandpass filtering, and signal decompositions [5]. Due to the periodic impacts between

defective and intact rotating elements, the vibration signals under fault conditions often exhibit repetitive impulsive

transients, which are regarded as typical fault-related features. The impulsive repetitive transients introduced by

rotating mechanical faults have several significant features that could be utilized to design signal processing methods:

(i) If a rotating part works under a constant speed, the time distance of each transient in repetitive fault transients is

approximately periodic, and the reciprocal of the time distance represents the appearance frequency of each transient.

Since impulsive fault transients of different rotating mechanical faults usually have unique appearance frequencies, this

appearance frequency is called the fault characteristic frequency (FCF) and could be calculated from mechanical

structural parameters. In addition, the signal processing method known as order tracking [6] has been developed for

analyzing fault vibration signals obtained under variable-speed operating conditions, where the corresponding

frequency manifestation is referred to as the fault characteristic order (FCO). Through the application of a Hilbert

transform–based envelope demodulation technique [4], the FCF or FCO, together with their harmonics, can be

extracted from the envelope spectrum or the squared envelope spectrum (SES). Spectral correlation [7] and its fast

implementation [8] are also studied and applied to the identification of FCFs. (ii) When fault vibration signals are

transformed to the frequency domain using the Fourier transform, the impulsive repetitive transients are usually located

in some specific frequency bands (being called informative frequency bands), so methods having a bandpass filtering

property are often designed to filter raw signals containing other interferential components. Two pioneering works for

this purpose are fast Kurtogram [9] and minimum entropy deconvolution [10], respectively. Later, improved variants

of the two pioneering works gradually became a hot research topic [11], [12]. General signal decomposition methods

having a bandpass filtering property, such as the empirical mode decomposition (EMD) and variational mode

decomposition (VMD), are also introduced for machinery condition monitoring. However, researchers recently noticed

the performance restriction of these general decomposition methods [13], [14], and more tailored signal decomposition

methods are being developed for machinery condition monitoring. For instance, Miao et al. proposed a feature mode

decomposition [15] by improving a maximum correlated kurtosis deconvolution (MCKD), and Hou et al. designed an

impulsive mode decomposition (IMD) [16] by using new cycle-embedded sparsity measures (CESM) [17] as the

objective function of a new iterative frequency band searching model. Signal-processing-based methods are usually

designed according to the characteristics of the analyzed machinery fault signals, so their interpretability is strong.

However, the restriction of signal processing methods lies in that they are designed to analyze specific kinds of data,

but they lack the ability to handle variable tasks. Signal components/features extracted by signal processing methods

should be integrated with machine learning techniques to train models for incipient fault time detection, fault

classification, and remaining useful life prediction.
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Machine learning methods [18] applied to machinery condition monitoring include the expert system, support

vector machine (SVM), decision tree, neural network-based deep learning, etc., among which the deep learning

methods [19] have gradually reformed intelligent methods for machinery condition monitoring since the 2010s. For

example, Guo et al. [20] proposed a recurrent neural network–based approach to construct a a health index was

designed to predict the residual service life of bearings. Shao et al. [21] introduced a transfer learning-based deep

model for diagnosing faults in rotating machinery such as motors, gearboxes, and bearings. The machine learning

methods, especially deep learning, have great ability in extracting advanced abstract fault features and training models,

but their interpretability is usually insufficient, and the extracted fault features cannot directly manifest physical

connections with intuitive fault features such as FCF exhibited in the squared envelope spectrum and selected

frequency bands of the Fourier domain. However, practical machinery condition monitoring is a highly sensitive task,

i.e., a delayed fault alarm may cause significant accidents. Thus, interpretable intelligent machinery condition

monitoring methods, which can increase methods’ credibility and reliability and further help algorithm improvement

and diagnostic result attribution, are gradually receiving more and more research attention in recent several years.

Signal processing knowledge is an important inspiration for designing interpretable machine learning-based

machinery condition monitoring methods. For instance, based on wavelet transform, Li et al. [22] formulated an

interpretable WaveletKernelNet method by using a continuous wavelet convolutional (CWConv) layer as a

replacement for the first layer of a standard convolutional neural network. Wang et al. [23] designed an algorithm

unrolling an adversarial network to detect anomaly mechanical faults, and the network structure is composed of an

encoder and a decoder, which is established by unrolling a sparse coding model. Chen et al. [24] proposed a

time-frequency network by embedding the physically interpretable time-frequency transform into a traditional

trainable convolutional layer. Though these methods incorporated signal processing knowledge into neural networks,

intuitive connections between model weight parameters or extracted advanced features with physically interpretable

fault features (e.g., informative frequency bands, FCFs, or FCOs) are still lacking. As discussed above, the FCFs and

informative frequency bands have strong connections with specific fault types, so if model parameters or extracted

features have strong connections with them, the diagnostic or condition monitoring results can be effectively supported.

Fortunately, a recent series of studies proposed a new spectrum machine learning method by solving a two-class

classification model, named sum of weighted normalized Fourier spectrum/squared envelope spectrum (SWNSES or

SWNFS) [25], [26], [27]. Mathematical analysis [27] proved that the model weight parameters can indicate

fundamental frequency components, informative frequency bands, or FCFs and their harmonics, having a strong

interpretability. Further, the accordingly interpretable model weight parameters are called optimized weight spectrum

(OWS), and new fault feature extraction methods, such as OWS-based index [28], optimized weight time–frequency

matrix index [29], difference mode decomposition [30], Differgram [31], spectral feature-informed difference

multi-modes decomposition [32], robust optimized weight spectrum [33], etc., are designed for machinery condition

monitoring.

Overall, it is practically significant to explore more interpretable machine learning-based machinery condition

monitoring methods, which is also the focus of this article. Considering that the interpretable OWS is derived from the
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two-class classification model (e.g., linear support vector machine, logistic regression), and multiclass classification

model (e.g., softmax classifier) is a natural extension of the two-class classification model and has been widely applied

to fault classification methods, it is meaningful to investigate the interpretability of similar weight parameters. This

research makes the following contributions:

(1) The binary-class classification model-based OWS is extended to a multiclass classification model-based

OWS. Thus, new multiclass OWS are acquired.

(2) Softmax classifier is used to solve the multiclass OWS, and the interpretability of the multiclass OWS is

studied and theoretically proved. It can be shown that, in the multiclass OWS, positive spectral lines

correspond to the characteristic components associated with a specific class, while negative spectral lines

reflect either interferential components or fault components from other classes.

(3) Numerical and experimental cases validated the interpretable properties of the multiclass OWS. It further

demonstrates that the multiclass OWS can effectively capture the discriminative spectral differences among

various health conditions, thereby facilitating practical and reliable fault diagnosis and condition monitoring.

The paper is organized as follows: Section 2 provides a review of earlier OWS studies based on binary classification

models. Section 3 first details the idea and algorithm of OWS based on the multiclass classification model; then, the

physical interpretability of the multiclass OWS is theoretically investigated; finally, a numerical study is designed to

validate the theoretical properties of the multiclass OWS. Section 4 presents an experimental validation case using

bearing datasets. Finally, Section 5 provides conclusions of this paper.

2. Previous interpretable OWS based on binary classification models

In this part, we revisit the formulation of the OWS and its main characteristics. The OWS was initially developed

to highlight fault-related spectral components, thereby offering insightful information for condition assessment and

maintenance planning.

The procedure for implementing OWS can be described as follows. Suppose a signal as 1Nx  where N is the

length of the signal. Let 1( ) N G xS G represent a generalized spectrum (GS) of a signal x with N points,

obtained through a spectral transformation ( )G such as Fourier spectrum, squared envelope spectrum, or other signal

representations. Then, a normalized generalized spectrum (NGS) can be calculated by
1/NGS GS GS . Suppose

that M samples are gathered from both healthy and faulty states. These are organized into a dataset defined as

, , 1{ , | 0,1}}{,
i

N M
y i i y i i iT y y   NGS NGS  , where 0iy  indicates a healthy condition and 1iy  denotes a faulty

condition. In addition, significant spectral lines in ,iy iNGS are defined as the characteristic components of class iy ,

which serve as key features for condition identification. For binary classification, the normalized spectra are separated

in the feature domain by constructing a hyperplane defined as:

0,T b NGS (1)
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with  representing the weight vector and b denoting the intercept of the hyperplane. To maximize the posterior

separation between the two health conditions, an optimal decision function is learned based on maximum likelihood

estimation (MLE) with 2L -regularization [26]:

1

1 1max ( ) [ log(1 exp( ))]
2 2

M T T T
i i ii

L y
M M




   β β β β βz z (2)

where ],[ T bβ  , ,[( ) ,1]
i

T T
i y iz NGS , and  is a regularization coefficient. It is noteworthy that  can be

determined by Bayesian information criterion (BIC) [34]. Specifically, an expression of the BIC is as follows:
*BIC ( ) log( ),L k N  β (3)

where *β is the optimal solution of (2); k is a degree of freedom, which is defined as the number of non-zero elements

in *β . According to the BIC criterion, the regularization coefficient is determined by evaluating the BIC values over a

candidate set of  , and selecting the one that achieves the minimum BIC.

Besides, support vector machine can also be applied to obtain the OWS [25]. Solving the above problem yields an

optimal separating vector * , which defines the OWS for binary classification.

Fig. 1. Illustration of properties of an OWS.

From the viewpoint of maximizing separation between the two health states in feature space, the OWS can be

understood as contrasting the normalized spectrum of a fault-related signal against that of a clean healthy signal, which

has been proved in [27]. This interpretation reveals two essential characteristics of the OWS that enhances its ability in

spectral fault analysis:

(1) Locatable property: As shown in Fig. 1, the OWS accentuates spectral lines that are associated with various

signal components. Specifically, positive-valued weight spectral lines indicate fault-related frequency components,

negative-valued weight spectral lines reveal interfering components, and near-zero weight spectral lines correspond to

noise. This property enables the precise localization of fault and non-fault information in the frequency domain.

(2) Amplitude property: The ratios between positive spectral amplitudes reflect the relative strengths of fault

frequencies in the original signal. Similarly, the ratios among negative spectral amplitudes correspond to the

proportional structure of interferential components.
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3. New multiclass interpretable OWS based on a multiclass classification model

Although the two-class classification model-based OWS is effective in identifying characteristic components to

distinguish healthy and faulty conditions, practical maintenance decision-making often considers multiple failure

modes and constructs multiclass classification models. In practical industrial scenarios, a rotating machine may suffer

from several different fault types simultaneously, and it is essential to distinguish not only faulty conditions from

healthy ones, but also different fault modes from each other. Simply combining multiple one-vs-rest binary classifiers

is often insufficient, as such an approach may lead to inconsistent decision boundaries and, more importantly, may fail

to capture the intrinsic differences among various fault types. In contrast, a direct multiclass formulation provides a

unified framework that simultaneously handles all categories, avoids ambiguity, and enhances the physical

interpretability of the resulting OWS. Therefore, it is very meaningful to explore the OWS based on multiclass

classification models.

3.1 Idea and the algorithm implementation

To extend the OWS to multi-class classification, a softmax classifier-based framework is adopted to separate the

normalized spectra into K distinct machine health conditions. Let the dataset now consist of:

, , 1{ , | , {0,1,..., 1}}
i

N M
y i i y i i iT y Ky   NGS NGS  (4)

where iy indicates the class label of signal i . A softmax classifier is then introduced to estimate the posterior

probability of each health condition as:

1

exp( )( ; ,b)
exp( )

k i k
i i K

j i j
j

T

T

bP y k
b




 


NGSNG

NGS
WS∣




, (5)

where 1[w , ,w ] N K
K

  W  and Kb  are the model parameters. The parameters are learned by maximizing a

likelihood function:

2
,

1

1max ( , ) log ( )
M

T
i i F

i

L P y
M

 


  W b NGS W b b∣W b . (6)

An optimal set of weight vectors *
1{ }Kk k is obtained by solving this optimization problem, which defines

multiclass OWS. Each weight vector corresponds to a direction in the spectral feature space that best separates a

particular fault condition from the others.

To solve the optimization problem in multiclass OWS, a gradient-based iterative approach is adopted. The

gradient of the regularized cross-entropy loss with respect to each class-specific weight vector k is given by:

1

1 ( ) ( ) 2
M

i i i i k
k i

L y k P y k
M

 



        NGS NGS∣ 


, (7)
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where ( )  is an indicator function, and ( )i iP y k NGS∣ is the softmax probability. Similarly, the gradient with

respect to the bias term kb is:

1

1 ( ) ( ) 2
M

i i i k
k i

L y k P y k b
M

 



        NGS

b
∣ . (8)

The parameters ( , )W b are updated using gradient descent until a convergence condition is achieved, and the new

multiclass OWS can be obtained accordingly. Furthermore, the fault type can be identified according to the index k

corresponding to the maximal posterior probability, which indicates the class to which the signal most likely belongs:

* (argm ,ax ; )k i ik P y = b= k N WGS∣ , (9)

where *k denotes the predicted fault type.

3.2 Research on the physical meanings of the multiple-class classification model-based OWS

In the original binary classification setting, the OWS obtained from a logistic classifier possesses clear

interpretability [27]: the positive weights correspond to fault-related spectral components, while the negative weights

reflect fundamental components that are contained in both healthy and faulty conditions. When extending to the

multiclass setting, such as using a softmax classifier, each class-specific weight vector k plays an analogous role to

the OWS in binary classification. Specifically, the Softmax classifier inherently decomposes into a series of one-vs-rest

classification models, each separating class k from all other classes. The optimization model for k is as follows:

( ) ( ) ( )

1

1 1

1,( ) ( )

1,

l
/

1 /

1 1log (1 ) log 1
2 2

1 1og (1 ) log
2

T T
k i k i

T T
i

TT
k i

i j j

j i

j i
TT

k i

M
k k k T

i K i K k k
i

j j

K

j j kk k
i K i

j j k

L e ey y
M Me e

e e
y y

M e e




 

 

 

    
    
        
    

        

 
 
   
 
 
 



 





β z β z

β z β z

β zβ z

β zβ z

β β

 

1

1,

( )

1

.

1

1 / 2

1 1log 1
2 2

TT
k i

T
k i

j i

M
T

K k k
i

j j k

M
k T T
i k i k k

i

Me e

y e
M M







 



  
  
   
  

    

     








β zβ z

β z

β β

β z β β

(10)

where
1,

([ ], log )j
T
iKT

k k k j j k
eb

 
  β zβ  represents the weight vector of class k. It is noteworthy that the optimization

model (10) has an identical form to (2), which indicates the properties of the OWS can be extended to the multiple-class

classification scenario. Following the research approach in [27], the kNGS and ( )j j kNGS are expected to become

linearly separable in a high-dimensional space. Accordingly, the optimal linear hyperplane can be expressed as

follows:
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** *
, 1,

log( ) 0j

i

i
TKT

k y i k j j k
b e

 
   β zNGS . (11)

Denote ( )kS and ( )kS are the ideal noiseless sample vectors (support vectors) to the optimal hyperplane,

belonging to the class k and the other classes, respectively. To find the optimal linear hyperplane that can separate class

k and other classes, one can develop the optimization model as follows:
( ) ( )max ( ) . . 1.

k

T k k
k ks t S S   (12)

According to the conclusion in [27], the normalized multiclass OWS /k k  , i.e., the optimal solution of (12),

has a form of ( ) ( ) ( ) ( )( ) /k k k k  S S S S . It is noteworthy that the multiclass OWS k can only measure differences

between class k and other classes. To conduct a comprehensive analysis of the characteristic components across all K

classes, a total of K OWS are required, i.e., each constructed by treating one class as the target and the remaining K−1

classes as the reference. Based on the above analysis results, it is concluded that a multiclass OWS has similar

properties to the OWS for binary classification, which can be summarized as follows:

(1) Based on the interpretable K-class classification model shown in Section 3.1, K interpretable OWS corresponding

to one healthy condition and K-1 fault conditions could be acquired;

(2) For the interpretable OWS corresponding to the healthy condition, its positive weight spectral lines indicate

interferential components (i.e., fundamental components) that are commonly present across all conditions,

including both healthy and faulty states; In contrast, its negative spectral lines correspond to FCFs associated with

the remaining K−1 faulty conditions.

(3) For an interpretable OWS corresponding to a specific faulty condition, it will exhibit positive weight spectral lines

at the FCFs and be specific to that condition. Meanwhile, its negative weight spectral lines should arise from two

sources: (i) FCFs associated with other faulty classes, or (ii) common interferential components (i.e., fundamental

components) that are not unique to the current fault.

As an illustration of Fig. 2, the physical meaning of the multiclass OWS is quite similar to the OWS for binary

classification. The key difference between these two spectra lies in the meaning of the negative weights: they may

originate not only from interferential components but also from the fault components of other classes.

Fig. 2. Illustration of properties of an multiclass OWS.
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3.3 Numerical validations

To further validate the properties of the multiclass OWS, a numerical experiment is implemented with simulated

bearing signals with pitting faults in different parts. According to the vibration model of rotating element bearings [35],

the faulty bearing signals are regarded as periodic impulses convolved with the response of a single-degree-of-freedom

(SDOF) system. Furthermore, the faulty bearing signals can be described kx as follows:

/

1
( ) ( ) cos ( ),( ) (2 )k

kk k
N T

k ri rtx i tt A nT t Bs f t   


   (13)

where
/

1
(( ))aN T

k ki kA tt iT s  


  represents cyclic impulse responses excited by defects; kT denotes the time interval

of the cyclic impulse and 1/k kf T is the fault characteristic frequency (FCF), where different fault characteristic

frequencies are assigned to simulate pitting faults in various parts of the bearing; sin(2 )i
t

ns e tf  is the impulse

response of the SDOF, and 2/ 1nf    ; nf and  represent the natural frequency and the damping ratio of the

SDOF; (2 )cosr rB kf t is periodic interferences, which can be regarded as interferential components, with frequency

rf , which exists in both healthy and faulty conditions; white noise ( )n t stands for external interferences.

In this numerical experiment, the sample frequency and signal length are 2048Hz and 4096; nf and  are set to

500Hz and 0.05; the frequency of periodic interferences is 20Hz and its amplitude coefficient rB is 1.6. In addition,

three fault components at characteristic frequencies of 1 30Hzf  , 2 50Hzf  , and 3 70Hzf  are included, the

amplitude coefficient kA for each component is set to 5.
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Fig. 3. (a) and (b): the simulated signal in a healthy condition and its FS; (c) and (d): the simulated signal with fault characteristic
frequencies at 30Hz and its FS; (e) and (f): the simulated signal with fault characteristic frequencies at 50Hz and its FS; (g) and (h):
the simulated signal with fault characteristic frequencies at 70Hz and its FS.

Subsequently, the multiclass OWS are calculated according to the optimization model (6) , where the regular

coefficient is set to 0.1. Fig. 4 presents the weight distributions of the multiclass OWS under different FCFs. As shown

in Fig. 4 (a), in the healthy case, the OWS allocates significant positive weights at the frequency of 20 Hz, which

corresponds to periodic interference present in all signals. When fault components are introduced, as shown in Fig. 4

(b–d), the OWS consistently assigns positive weights at the frequencies around 500Hz with an interval of FCFs

(marked in red). These positive weights signify the discriminative performance of OWS in enhancing fault-relevant

spectral components. Notably, the interference frequency at 20 Hz remains a negative weight in all cases except the

healthy one, which further verifies that the OWS successfully separates meaningful fault information from misleading

components.

Fig. 4.Multiclass OWS for each class: (a) healthy condition; (b) faulty condition with FCF of 30Hz; (c) faulty condition with FCF
of 50Hz; (d) faulty condition with FCF of 70Hz.

Moreover, as the fault frequency increases from 30 Hz to 70 Hz, intervals of corresponding dominant positive

weights shift accordingly. This behavior also validates the interpretability of the multiclass OWS: positive weights are

assigned to characteristic frequencies associated with the corresponding class, while negative weights are allocated to
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characteristic frequencies of other classes (frequencies of interferential components can be regarded as the

characteristic frequencies of the healthy condition).

These results verify that the multiclass OWS framework is capable of distinguishing between fault-related

components and interference components by allocating them distinct weight signs. This capability is crucial for

achieving interpretable fault detection in multi-fault scenarios.

4. Experimental validations using the XJTU bearing dataset

Fig. 5. Experimental rig of XJTU-SY dataset.

To evaluate the multiclass classification model-based OWS under realistic diagnostic settings, the XJTU-SY

run-to-failure dataset is employed. This dataset originates from accelerated degradation experiments on rolling

bearings carried out in a controlled laboratory environment. In this study, the experimental platform is configured to

simulate real-world bearing wear progression and includes hydraulic loading and dual-axis vibration acquisition, as

illustrated in Fig. 5.

Among the three operating conditions available in the dataset, Condition 2 is selected for this validation, involving a

radial load of 11 kN and a shaft speed of 2250 rpm. Under this condition, three test bearings, identified as 2_1, 2_2, and

2_3, are chosen for the multiclass classification model-based OWS analysis. The failure patterns varied across the three

bearings, involving inner-race damage, outer-race degradation, and cage fault, respectively. Theoretical fault

characteristic frequencies (FCFs) were calculated for these defects, namely the ball-pass frequency of the inner race

(BPFI), the ball-pass frequency of the outer race (BPFO), and the fundamental train frequency (FTF). In addition, the

rotational frequency is also provided. All these theoretical FCFs are summarized in Table 1.

Table 1 Fault characteristic frequencies and rotational frequency under Condition 2

Rotational frequency BPFO BPFI FTF

37.5Hzrf  115.6Hzof  184.4Hzif  14.5Hztf 

These diverse failure modes offer a representative validation set for multi-type fault diagnosis. As the loading

direction is horizontal, only the horizontal axis signals are used in this study, which have been shown to carry more
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fault-related information. Data were acquired at a sampling rate of 25.6 kHz. Each record consists of 32,768 samples,

corresponding to a time length of 1.28 seconds per acquisition.

Fig. 6. SES of different conditions: (a) healthy condition; (b) inner race fault; (c) outer race fault; (d) cage fault.

Before implementing the multiclass OWS, samples are labeled according to their corresponding health conditions.

Specifically, the first ten samples of each of the three bearings are labeled as a healthy condition. Fault samples are

selected as follows: samples 461-470 from Bearing 2_1 represent an inner race fault, samples 151-160 from Bearing

2_2 correspond to an outer race fault, and samples 501-510 from Bearing 2_3 correspond to a cage fault.

Since the squared envelope is employed to address potential signal modulation, the SES is subsequently used to

compute the multiclass OWS. The SES of the selected samples are presented in Fig. 6, where the FCFs and their

harmonics are marked. It is noteworthy that among various fault types, in addition to the evident FCFs, there also exist

many other prominent spectral lines in the SES, as illustrated in Fig. 6 (d), which may be attributed to the complex

mechanical structures and failure processes. Although these prominent spectral lines in SES may not align with the

theoretical FCFs, they can still serve as valuable evidence for fault diagnosis.

As illustrated in the figure, the SES of the healthy samples does not exhibit any prominent spectral components. In

contrast, all three fault types show prominent spectral lines in their SES, each associated with their respective

characteristic frequencies, along with multiple harmonics. For the inner race fault and cage fault, theoretical FCFs are

clearly visible and dominant in the SES, demonstrating strong spectral responses at the expected fault frequencies.

However, in the case of the outer race fault, the expected FCF is not clearly manifested. Instead, the rotational

frequency and its harmonics appear prominently. Despite the absence of the theoretical FCF, this frequency pattern can

still serve as a useful indicator for identifying the fault type.
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After calculating the multiclass OWS based on the optimization model (6), the obtained weight distributions align

well with the theoretical analysis, as shown in Fig. 7. Regarding the multiclass OWS of the healthy condition, no

prominent positive weights are observed, which is consistent with their SES, where no significant spectral components

are present. Instead, the negative weights in the OWS correspond to the FCFs and their harmonics associated with other

faulty types. For each specific fault type, the multiclass OWS assigns positive weights to its own FCFs (not only the

theoretical FCFs but also other fault-related frequency components introduced by practical faults), while negative

weights correspond to the FCFs of other fault types. These positive spectral lines are consistent with previous

observations and confirms that the method captures fault-specific spectral patterns while suppressing irrelevant or

misleading components from other health conditions.

Fig. 7. multiclass OWS for each health condition: (a) healthy condition; (b) inner race fault; (c) outer race fault; (d) cage fault.

5. Conclusions

In recent years, interpretable modeling approaches have drawn increasing attention in the field of machinery

condition monitoring, and the earlier binary OWS framework was able to differentiate fault-related and fundamental

frequencies through the assignment of positive and negative spectral weights, showing great potential for practical

machinery condition monitoring. Considering that multiclass classification is often met in practical scenarios, this

work extended the original OWS to multiclass classification model-based OWS. The softmax classifier is first applied

to solve the model and obtain multiclass OWS, and the property of the proposed multiclass OWS is studied and further

validated with a numerical case. Finally, the effectiveness of the multiclass classification model-based OWS was

demonstrated through experiments on a bearing dataset. The multiclass OWS, as interpretable machine learning fault

features that are directly connected with informative frequency bands or FCFs, provide new insight for spectrum-based
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fault classification models and are capable of revealing both distinctive fault-related frequencies and fundamental

frequency components. The difference between the original binary OWS and the studied multiclass OWS is that

negative spectral lines may represent not only from interferential components but also fault components of other

classes.
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