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The image-based approach is widely used in Fault Detection (FD) algorithms of me-

chanical systems. The images are derived from the vibrational signals transformed 

from the time to time–frequency domain, and they are used to develop a Convolu-

tional Neural Network (CNN) to automate the FD process. Nowadays, images are al-

so obtained from the transformation of vibrational signals from the time domain to 

Symmetrized Dot Pattern (SDP) coordinates, achieving high CNN testing accuracy. 

This paper shows a comparison of image-CNN approaches for FD using images ob-

tained from time–frequency transforms and those obtained from the SDP transform as 

input. The comparison was conducted using experimental data from two publicly 

available bearing datasets, examining both the accuracy of the CNNs and the compu-

tational time required for the vibrational signal transformations. The results show that 

the SDP-CNN approach achieves the same accuracy as spectrogram-CNN approaches 

but with a significantly reduced computational time. These results support the future 

real-time implementation of the SDP-CNN approach for FD in mechanical systems 

such as bearings. 

Keywords: Fault Detection, Symmetrized Dot Pattern, CNN, Time–frequency Analysis, Ball 

Bearings

Introduction 
Fault detection (FD) and diagnosis in rotat-

ing machinery are essential to identify 

anomalies, reduce downtime, and prevent 

unexpected failures. A typical FD process is 

developed from vibrational analysis based 

on features derived from the time, frequen-

cy, and time–frequency domain [1-2].  

In recent years, image-based approaches 

have gained considerable attention for FD 

by transforming 1-D vibration signals into 2-

D representations such as time–frequency 

spectrograms. These images enable ad-

vanced Machine Learning (ML) models, 

particularly Convolutional Neural Networks 

(CNN), to automatically learn discriminative 

features [3-4]. Commonly used time–

frequency transforms include the Short-
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Time Fourier Transform (STFT) and Con-

tinuous Wavelet Transform (CWT), which 

have been successfully applied in gear and 

bearing FD [5-7]. Improved time–frequency 

transforms [8-9], deep ML models [10-11], 

or Synchrosqueezing Wavelet Transform 

(SWT) [12] have been used to enhance the 

image-CNN approach. Other approaches in-

corporate frequency-attention mechanisms 

within CNN architectures to enhance the fo-

cus of the ML models on the most informa-

tive frequency components while suppress-

ing irrelevant noise [13-14]: they have 

shown superior performance across multiple 

fault types and rotating machinery compo-

nents. 

Recently, the Symmetrized Dot Pattern 

(SDP) method has become a relevant ap-

proach for rotating machinery FD: it pro-

vides a vibrational signal transformation into 

a visual representation to identify faults [15]. 

The SDP is frequently combined with CNNs 

to develop an image-based FD process [16-

18], demonstrating its effectiveness in sys-

tems ranging from gearboxes [19-20] and 

fans [21] to more recent applications in lith-

ium battery modules [22]. The SDP images 

allow more accurate classification of faults 

than the analysis of raw signals [23] and can 

reveal significant differences be-tween 

Gaussian and white noise, which are diffi-

cult to distinguish in traditional spectra [24]. 

A key advantage of this visual approach is 

its ability to reveal spatial relationships 

among primary features, which is particular-

ly beneficial for diagnosis under variable 

working conditions [25]. To enhance the 

classical SDP-CNN approach, researchers 

have combined it with signal processing 

techniques like Empirical Mode Decomposi-

tion and Variational Mode Decomposition 

[26-27]. This fusion of methods helps in 

generating more informative and discrimina-

tive images for the neural network, as also 

demonstrated using optimized SDPs for 

Switched Reluctance Motor fault diagnosis 

[28]. Further-more, the SDP has proven 

highly valuable for the FD process under 

variable working conditions [29-30]. To ad-

dress the domain shift problem inherent in 

these scenarios, advanced techniques such as 

adversarial gradual domain adaptation have 

been explored to improve model generaliza-

bility [31]. Finally, the architecture of the 

deep learning models processing SDP imag-

es continues to evolve. Beyond standard 

CNNs, novel hybrid approaches are being 

developed, such as combining CNNs with 

K-Nearest Neighbors for robust compound 

fault diagnosis [32] or utilizing convolution-

al probabilistic neural networks [33], further 

expanding the applicability and robustness 

of the SDP-based fault diagnosis framework. 

Xu et al. [34] present a fast and accurate 

method for real-time detection of rotating 

stall in centrifugal fans, which converts 

pressure signals into images using SDP 

analysis and compares them with reference 

templates through image matching. By ap-

plying PCA directly to the SDP images, 

noise and redundancy are effectively re-

duced, significantly improving speed and 

accuracy compared to wavelet filtering. The 

approach achieves a minimal detection delay 

with computational times suitable for real-

time applications, making it a reliable meth-

od for providing timely stall warnings. This 

approach does not involve the use of classi-

fication CNN networks or other ML tech-

niques. 

FD based on the image-CNN approach is 

typically carried out by deriving input imag-

es (spectrogram) from the time–frequency 

transform of vibrational signals. This meth-

od has demonstrated high accuracy in CNN 

testing across various mechanical systems 

and different defect types. The computation-

al time is closely linked to the chosen time–

frequency transform. In recent years, the in-

put im-ages have also been obtained from 

diagrams of vibrational signals, SDP trans-

formed achieving high accuracy with a low-



er computational time. Given the high accu-

racy demonstrated by the image-CNN ap-

proach for FD, it is interesting to evaluate 

which technique offers the best trade-off be-

tween computational time and CNN accura-

cy, with a view toward potential real-time 

implementation of an image-CNN-based FD 

method. Many studies have investigated the 

SDP transform applied to signals from dif-

ferent sensors and systems, demonstrating 

the accuracy of the SDP-CNN approach for 

fault detection. Furthermore, the SDP-CNN 

framework has often been enhanced either 

by pre-processing the signals before apply-

ing the SDP transformation or by directly 

processing the diagrams. Nevertheless, SDP-

CNN has never been compared with the 

conventional image-CNN approaches, which 

use time–frequency transform images of the 

acquired signals as input. 

The novelty of this work lies in the direct 

comparison between SDP-CNN and the 

classical spectrogram-CNN approach. The 

results highlight two key points: 

• SDP-CNN approach achieves accuracy 

comparable to spectrogram-CNN meth-

ods. 

• SDP transformation requires significant-

ly lower computational cost than other 

time–frequency transforms. 

This demonstrates that SDP-CNN is a 

stronger candidate for real-time monitoring 

compared to other spectrogram-CNN ap-

proaches, as it provides the best trade-off be-

tween computational efficiency and predic-

tive accuracy of the CNN. 

This paper compares the image-CNN ap-

proaches between the images derived by 

time–frequency transformations and the im-

ages derived by the SDP transformation. The 

comparison was carried out both in terms of 

the test performance of the specifically de-

signed and optimized CNNs, and in terms of 

the computational time required to obtain 

the transformed signals. The experimental 

results are obtained using two public da-

tasets of ball bearings that include various 

defect types, defect sizes, and operating 

conditions. They have proven that the 

SDP‑CNN approach achieves a comparable 

test accuracy as spectrogram‑CNN ap-

proaches, but with a reduced computational 

time during the signal transformation from 

the time domain to SDP coordinates. 

The main contributions of this work can be 

summarized as follows: 

1. This study proposes a comparison be-

tween the FD based on image‑CNN 

techniques between SDP‑CNN and spec-

trogram‑CNN. 

2. The comparison is performed on exper-

imental public datasets of ball bearings 

that include multiple defect types, defect 

sizes, and operating conditions. 

3. The comparison is evaluated in terms of 

the test accuracy of the specifically de-

signed and optimized CNNs and in terms 

of the computational time for transform-

ing the signals. 

The remainder of the paper is structured as 

follows: Section 2 outlines the workflow, 

the SDP coordinate transformation, and the 

time–frequency transformations chosen for 

the comparison; Section 3 describes the ex-

perimental datasets; Section 4 presents and 

discusses the experimental results; and Sec-

tion 5 summarizes the main conclusions of 

this work. 

Image-CNN approaches 
The proposed comparison is based on the 

performance of automated FD through 

CNNs. These networks use as input the im-

ages obtained from some two-dimensional 

transformations of the accelerometer signals. 

First, the vibrational signal is transformed 

using either SDP or a time–frequency analy-

sis method (STFT, CWT, Kurtogram, or 

SWT) to highlight both time and frequency 

characteristics. In particular, the SDP meth-



od converts 1D temporal signals into sym-

metric, visually distinct patterns in polar co-

ordinates, while time–frequency transforms 

offer rich frequency-temporal insights.  

 
Figure 1 - Image-CNN approaches workflow. 

Then, each transformed output diagrams are 

converted as a binarized image fed into op-

timized CNNs. Finally, the CNN outputs a 

classification, determining the health status 

of bearings. The workflow is represented in 

Fig. 1. 

The pipeline in Fig. 1 is applied separately 

for each transform. It can be summarized as 

follows: 

1. The raw signals are divided into one-

second intervals. 

2. They are then normalized to the range [-

1, 1].  

3. The normalized intervals are subsequent-

ly transformed using either the SDP or a 

time–frequency approach. 

4. The transformations produce 2D repre-

sentations, which are binarized by set-

ting a threshold. 

5. The resulting images form a datastore 

that is split into training, validation, and 

test sets. 

6. The three image sets are used to train, 

optimize, and test a CNN for FD. 

Below there are a description of the used 

transformations and the CNNs. 

SDP transformations 
The SDP technique transforms a signal into 

a normalized two-dimensional representa-

tion by plotting amplitude values in a polar 

coordinate system, resulting in a symmet-

rical diagram. This visualization method 

highlights variations in signal amplitude and 

frequency, aiding in the diagnosis of faults 

in rotating systems such as bearings. The 

differences between various signals are re-

flected in the distinct shapes of the petals 

forming the “snowflake” pattern. The 

“snowflake diagram” refers to symmetric 

image generated by SDP, i.e., scatter repre-

sentation in polar coordinates, where each 

data point is mirrored to form radial sym-

metry. This creates a distinctive structure 

whose geometric differences directly corre-

spond to variations in underlying signal 

characteristics, making it easier to visually 

distinguish between fault types or detect 

subtle anomalies. This diagram is construct-

ed using 𝑘 planes of symmetry, which are 

created by circular repetition of the petals 

through specific angles 𝛾: 

𝛾 =
360

𝑘
                               (1) 

Not overlapping the petals is a necessary 

condition for plotting the snowflake. 

It is possible to transform a signal 𝑦 =
𝑦1, … , 𝑦𝑖, … , 𝑦𝑛 in polar coordinates using 

the SDP transform by the formulas: 

𝜌𝑖 =
𝑦𝑖 − 𝑚𝑎𝑥 (𝑦)

𝑚𝑎𝑥 (𝑦) − 𝑚𝑖𝑛 (𝑦)
              (2) 
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𝛼𝑖 = 𝛾 +
𝑦𝑖+ℎ − 𝑚𝑖𝑛 (𝑦)

𝑚𝑎𝑥 (𝑦) − 𝑚𝑖𝑛 (𝑦)
𝜆          (3) 

𝛽𝑖 = 𝛾 −
𝑦𝑖+ℎ − 𝑚𝑖𝑛 (𝑦)

𝑚𝑎𝑥 (𝑦) − 𝑚𝑖𝑛 (𝑦)
𝜆            (4) 

where 𝑚𝑖𝑛 (𝑦) and 𝑚𝑎𝑥 (𝑦) are the mini-

mum and the maximum value of 𝑦 respec-

tively, 𝜌𝑖 is the radius of the 𝑖-th point, 𝛼𝑖 is 

the clockwise deflection angle of the 𝑖-th 

point along the symmetry plane, 𝛽𝑖 is the an-

ti-clockwise deflection angle of the 𝑖-th 

point along the symmetry plane, ℎ is the de-

lay coefficient, 𝛾 is the rotation angle of the 

symmetry plane, 𝜆 is the gain of the deflec-

tion angle. 

Time-frequency transformations 

The most common time–frequency trans-

forms are briefly described below. The dia-

grams of these transformations are used for 

image generation. These images will then be 

used as input for automatic FD via CNN. 

The STFT [37] is a time–frequency trans-

formation that allows to divide the time-

signal 𝑥 into time-segment which the Dis-

crete Fourier Transform (DFT) is calculated. 

The STFT 𝑋(𝜏, 𝜔) of a time-domain signal 

𝑥(𝑡) can be expressed as: 

𝑋(𝜏, 𝜔) = ∫ 𝑥(𝑡) ∙ 𝜔(𝑡 − 𝜏)
∞

−∞

∙ 𝑒−𝑖𝜔𝑡𝑑𝑡                            (5) 

where 𝜔(𝑡 − 𝜏) is the window function cen-

tered in 𝜏 that defined the window of the 

𝑥(𝑡) where the DFT must be calculated, and 

𝜔 is the angular frequency. 

The Kurtogram [38] is based on the Spectral 

Kurtosis 𝑆𝐾 a statistical measure that quan-

tifies the impulsivity of a time-signal 𝑥(𝑡) as 

a function of frequency 𝑓: 

𝑆𝐾(𝑓) =
𝐸[|𝑋(𝑓)|4]

([|𝑋(𝑓)|2])2

− 2                                       (6) 

where 𝑋(𝑓) is the Fourier Transform of  

𝑥(𝑡) and 𝐸[∙] is the expected value. 

The CWT [39] is a time–frequency trans-

form of a time-signal 𝑥(𝑡) defined as: 

𝑋𝑤(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥(𝑡)

∞

−∞

∙ 𝜓̅ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡                    (7) 

where 𝜓(𝑡) is the mother wavelet and 𝜓̅ is 

the complex conjugates, 𝑎 > 0 is the scale 

factor that expands or compresses the wave-

let function, and 𝑏 ∈ ℝ is the translation fac-

tor that moving the wavelet function along 

the time. 

The SWT [40] is a time–frequency trans-

formation of a time-signal 𝑥(𝑡) that improve 

the resolution of CWT concentrating energy 

around the estimated instantaneous frequen-

cies. After the calculation of the CWT of 

𝑥(𝑡) as show in Eq. 7, the instantaneous fre-

quency 𝜔𝑠 is estimated as: 

𝜔𝑠(𝑎, 𝑏) = −𝑖 ∙
𝜕𝑏𝑋𝑤(𝑎, 𝑏)

𝑋𝑤(𝑎, 𝑏)
            (8) 

where 𝜔𝑠(𝑎, 𝑏) returns the local instantane-

ous frequency 𝜔𝑠 at each point (𝑎, 𝑏). The 

SWT of 𝑥(𝑡) move the energy from (𝑎, 𝑏) to 

(𝜔𝑠, 𝑏) to improve the time–frequency rep-

resentation: 

𝑇𝑠(𝜔𝑠, 𝑏) = ∫ 𝑋𝑤(𝑎, 𝑏)

∙ 𝑎−3 2⁄ 𝛿(𝜔𝑠(𝑎, 𝑏)
− 𝜔)𝑑𝑎                                (9) 

where 𝛿 is the Dirac function. 

Image binarization, CNN development 

and optimization 
Once the 2D representation of the signal was 

obtained, the resulting image was binarized: 



• If the signal was transformed using SDP, 

a threshold was set to highlight all the 

dot patterns. 

• If the signal was transformed using a 

time–frequency approach, a threshold 

was selected to emphasize the distinctive 

features of each defect while suppressing 

noise.  

The obtained binarized images were used as 

input to train and optimize CNNs for FD. A 

CNN is a specialized form of artificial neu-

ral network designed for image recognition 

tasks [41]. It processes single-channel binary 

images through a deep convolutional 

framework, where the architecture depth and 

hyperparameters are fine-tuned using Bayes-

ian Optimization [42]. Each convolutional 

block contains the following sequence: 

• A convolutional layer equipped with 

multiple filters. 

• Batch Normalization (BN) stabilizes and 

accelerates training by normalizing layer 

inputs. 

• ReLU activation function to introduce 

non-linearity. 

• Max pooling to down-sample the spatial 

dimensions, reducing computational 

complexity.  

The output from the final convolutional 

block is flattened into a one-dimensional 

vector and passed through a Fully Connect-

ed Neural Network (FNN). This is followed 

by a ReLU activation and a SoftMax layer to 

produce the final classification probabilities. 

The network is trained using the cross-

entropy loss function, optimized via Sto-

chastic Gradient Descent with Momentum 

(SGDM). Bayesian Optimization, employ-

ing the Expected Improvement criterion, is 

utilized to tuning the network hyperparame-

ters. 

The final architecture of the optimized 

CNNs is structured as reported in [30]. 

Experimental Datasets 
The comparison was conducted using two 

different datasets: the CWRU [35] and the 

HUST [36] dataset. These datasets were se-

lected to cover different working conditions, 

defect types and sizes, as well as ball bear-

ings of different sizes. 

Dataset 1: CWRU 
The CWRU dataset was provided by the 

Case Western Reserve University Bearing 

Data Center. This dataset is widely used as a 

benchmark for bearing fault diagnosis. This 

dataset is widely used as a benchmark for 

bearing fault diagnosis. The test rig includes 

a 3 hp Reliance electric motor, torque sen-

sor, encoder, dynamometer, and two test 

bearings, one at the Drive End (DE) and one 

at the Fan End (FE). The faults are artificial-

ly introduced via electro-discharge machin-

ing in three bearing locations: Inner Race 

(IR), Ball (B), and Outer Race (OR). The 

fault diameters ranged from 7 mils to 40 

mils, and OR faults were further categorized 

by their placement relative to the load zone 

 at 3 o’clock  6 o’clock  or    o’clock .  i-

bration data is collected from accelerometers 

at the DE, FE, and Base (BA) at 12 or 48 

kHz. Experimental conditions spanned 0 to 3 

hp motor loads, corresponding to speeds be-

tween 1797 RPM and 1720 RPM, ensuring a 

range of operating scenarios for evaluating 

fault diagnosis techniques. Tests are run at 

constant speed and load. 

Dataset 2: HUST 
The HUST bearing dataset comprises 99 vi-

bration recordings across five types of bear-

ings (6204, 6205, 6206, 6207, and 6208) and 

includes faults in the IR, OR, and B as well 

as combined fault scenarios. Faults are in-

troduced via wire-cut micro-cracks about 0.2 

mm and simulating early-stage damage. Da-

ta were collected at loads 0, 200, and 400 W, 

and include both steady-state and run-up 

(start-up transient) conditions. Each record-



ing lasts 10 seconds and is sampled at 51.2 

kHz. The acquisition setup features a 750 W 

induction motor, a multi-step shaft, a pow-

der brake to impose load, and a torque trans-

ducer plus dynamometer for monitoring. A 

PCB 325C33 accelerometer captures radial 

vibrations. The rotational speed data are cap-

tured by a dynamometer, which monitors 

speed evolution throughout both steady and 

transient phases of each test. 

Results and discussion 
The results obtained separately for each da-

taset are presented and discussed below. The 

only signals preprocessing was the normali-

zation of each one-second segment in the 

range between -1 and 1. 

To ensure fairness in the comparison among 

the different transformations, as detailed be-

low, the following choices were made: 

• All execution times were measured on 

the same hardware and within the same 

MATLAB environment. 

• All signals underwent the same pre-

processing. 

• All signals were segmented into 1-

second intervals for the transformations. 

• All images were binarized in the same 

way. 

• For the time–frequency methods, typical 

parameter settings were adopted to avoid 

favoring specific transformations. 

Dataset 1 results 
The signals sampled at 12 kHz by the DE 

accelerometer and all fault types with di-

ameters of 0.007, 0.014, and 0.021 mm were 

considered. The three OR location faults 

were included in one class. Fig. 2 shows one 

second of raw signals. 

Fig. 2 shows the raw vibrational signals in 

N, B, IR, and OR conditions. The N condi-

tions presents a stationary noise without evi-

dent impulses, while it is possible to see 

high frequency components in the defects 

conditions, especially in IR and OR signals. 

These characteristics highlight a signal 

modulation due to the periodic impact be-

tween the defect and the rolling elements. 

The different morphology of the signals 

suggests the possibility of discriminating be-

tween different conditions.  

It is necessary to choose the SDP parameters 

𝑘, ℎ, and 𝜆 appropriately to transform sig-

nals from the time domain into SDP coordi-

nates: 

• 𝑘 was chosen equal to 6 from which 𝛾 

was obtained equal to 60 from Eq. 1. 

This choice was made to obtain a better 

definition of the centre of the diagram. 

• ℎ and 𝜆 were set as shown in [43]. 

Each snowflake diagram was obtained by 

choosing a one-second acquired signal in the 

time domain. The calibration process of pa-

rameters ℎ and 𝜆 was performed for signals 

acquired in the N case and is shown in Fig. 

3. 

In Fig. 3 is possible to see the influence of ℎ 

and 𝜆 on the snowflake diagram. The condi-

tions ℎ and 𝜆 to be properly chosen is that: 

• There is no overlap between the petals. 

• The petals must be sufficiently open to 

be clearly defined. 

To fulfil both conditions, ℎ = 14 and 𝜆 =
30 were chosen. 

Fig. 4 shows the SDP transformation for one 

second of raw signals. 

In Fig. 4, the N conditions exhibit a smooth, 

continuous spiral with symmetrically dis-

tributed points, reflecting stationary noise 

without impulsive components, and the 

point density is uniform, indicating the ab-

sence of significant transient events. In this 

case, the petals indicate a signal dominated 

by stationary noise, free from impulsive 

components, and therefore associated with a 

regular operating condition of the bearing.



 
Figure 2 – Raw signals for dataset 1. 

 

 

 
Figure 3 – SDP parameters tuning. 

 

 

 
Figure 4 – SDP snowflakes for dataset 1. 

 

     

        

  

    

 

   

 
 
 
 
  
 
  
 
 

      

     

        

  

    

 

   

 

 
 
 
  
 
  
 
 

    

     

        

  

    

 

   

 

 
 
 
  
 
  
 
 

          

     

        

  

    

 

   

 

 
 
 
  
 
  
 
 

          



 
Figure 5 – STFT diagrams for dataset 1 

 
Figure 6 – Kurtogram for dataset 1. 

 
Figure 7 – CWT diagram for dataset 1. 

 
Figure 8 – SWT diagram for dataset 1. 



The B conditions show more concentrated 

petals, suggesting the presence of pulses 

generated by the rotating elements: the radi-

al symmetry remains, but the structure is 

significantly more segmented and less con-

tinuous than in the N case. Physically, the 

distribution of petals corresponds to the gen-

eration of impulses each time the damaged 

ball meets the inner or outer race, while still 

preserving a certain radial symmetry. For 

IR, the petals are narrower and more sharply 

defined, while in the OR case, the petals ap-

pear broader and less defined, with greater 

radial dispersion at the petal tips. These vis-

ual transformations align with observations 

in the raw signals, where high-frequency 

impulsive components appear in defective 

cases. In the SDP domain, these manifest as 

petal-shaped structures. In the case of an IR 

fault, the petals appear narrower and more 

sharply defined: this occurs because the in-

ner race, being connected to the rotating 

shaft, generates repetitive high frequency 

impacts each time the balls pass over the 

damaged area, with high regularity. Con-

versely, in the case of an OR fault, the petals 

appear broader, less defined, and character-

ized by greater radial dispersion, since the 

outer race is fixed and is excited only when 

the balls roll over the damaged zone, pro-

ducing fewer regular impulses with higher 

angular variability. The morphological dif-

ferences between IR and OR patterns sug-

gest that SDP is sensitive not only to the 

presence of faults but also to their location 

within the bearing, enabling potential auto-

matic discrimination based on characteristic 

patterns.  

The diagrams of the time–frequency trans-

forms described in Section 3.2 are com-

mented and given below to make the com-

parison between the SDP and the time–

frequency diagrams. 

The STFTs of the raw signals (Fig. 2) are 

reported in Fig. 5. Each FFT transform was 

performed on 512 samples using a Hamming 

window of 256 samples with an overlap of 

128 samples. 

In Fig. 5, the spectrum of the N case shows 

low noise and an energy concentration in the 

lower frequency band (<1500 Hz), likely as-

sociated with harmonic components of shaft 

rotation. In the B case is possible that dis-

tinct impulsive components distributed over 

time are observed, with significant energy 

around 3    H : this reflects the transient 

nature of impacts caused by a localized fault 

on the ball, which generate intermittent and 

broader frequency distributions. For the IR 

conditions, the spectrum shows an energy 

band around 3    H   with a dense pattern 

throughout the entire time interval. This be-

havior is consistent with the cyclic nature of 

impacts due to a fault on the inner race, 

which recurs with every rotor revolution, 

causing high‑energy signals. Finally  O  

shows a structure of periodic horizontal 

bands, suggesting the presence of regular 

impulses corresponding to the fixed (outer) 

race fault and the rotor rotation. The multi-

ple bands indicate the generation of harmon-

ics due to repetitive impacts at a constant 

frequency. 

Fig. 6 shows the Kurtograms. 

In the N case of Fig. 6, the spectral kurtosis 

is low and non‑locali ed  indicating the ab-

sence of significant transients. This is con-

sistent with regular vibration behavior typi-

cal of a healthy bearing, while the B case 

shows high kurtosis at short windows and in 

frequencies ranging around 2500-4    H   

suggesting that transient impacts generated 

by the ball defect are localized and 

high‑frequency. The    shows transient ac-

tivity around 3500-5000 Hz and intermedi-

ate window lengths, consistent with the reg-

ular  high‑energy impacts that occur cycli-

cally. The OR case exhibits a distribution of 

kurtosis around 1000-3000 Hz and short 

windows, consistent with an impulsive 

structure that repeats regularly. 

Fig. 7 shows the CWTs. The chosen mother 



wavelet was the Morse wavelet. 

The CWT of the N case in Fig. 7 shows well 

distributed around 2000 and 4000 Hz with 

low temporal variability, typically of a regu-

lar vibration signal due to shaft rotational 

frequencies. B defect shows energy concen-

trated in the high-frequency band (4500 -

5    H    while    shows repeatable events 

in the same frequency band. The OR defect 

shows very high energy in the upper bands 

and around 3500 Hz. 

In Fig. 8 are reported the SWTs. The chosen 

mother wavelet was the Morse Wavelet with 

a 10 voices per octave. 

Fig. 8 shows how the SWT improved the 

frequency localization of CWT. The N case 

shows harmonic distribution around 2000 

and 5000 Hz with periodic vibrations. The B 

case shows components around 4000 and 

5000 Hz, the IR case highlights harmonics 

around 4500 Hz, and OR shows components 

mainly above 5    H . 

Comparing the various techniques, the SDP 

demonstrates a high visual ability to distin-

guish bearing states but is limited to qualita-

tive aspects and requires ML approaches for 

automated diagnostics. Time–frequency 

transforms show a dynamic spectral content, 

allowing the emergence of fault-related 

bands and pulses to be observed. 

The images obtained from the transformed 

signals were binarized and used as input to 

develop the 5 CNNs that predict whether the 

bearing is healthy or has one of the previ-

ously listed defects The images were split 

into 50 % for training, 20 % for validation, 

and 30 % for testing using a stratified parti-

tioning strategy. This division ensures that 

the number of samples between classes (N, 

IR, OR, and B) is always balanced between 

the three subsets. The developed CNN was 

optimized by tuning several hyperparame-

ters, using a Bayesian optimization process 

to identify the most effective configuration. 

Tab. 1 reports all the hyperparameters con-

sidered, together with the corresponding 

search ranges defined for the optimization 

procedure. 

Table 1. Hyperparameter range. 

Hyperparameter Range 

Convolutional Layers 1÷5 

Stride of Convolutional Layers 2÷5 

Filters Size of Convolutional Layers 2÷5 

Filters Numbers of Convolutional Layers 2÷50 
 

Stride of Pooling 2÷5 

Pooling Size 1÷5 

Fully Connected Layers Number 1÷5 

Neurons Numbers of Fully Connected Layers 1 ÷ 1000 

Initialization Learning Rate 10−6 ÷ 10−1 

Momentum 
 

0.01 ÷ 0.99 

Mini Batch Size 2 ÷ 64 

L2 Regularization 10−6 ÷ 10−1 

 

It is worth noting that the training and opti-

mization times of the various networks are 

all comparable. The used PC is characterized 

by a processor 13th Gen Intel Core i9-13900 

of 2.00 GHz, 32 GB of RAM, and a 12 GB 

NVIDIA GeForce RTX 3060. 

The architectures of the optimized CNNs for 

dataset 1 are reported in Tab. 2. 

In Tab. 3 are reported the performance met-

rics obtained during the test phase of each 

CNN, and the computational time to perform 

the signal transformations. The metrics used 

are: accuracy (the percentage of correctly 

classified samples over the total), precision 

(the percentage of samples identified as 

faulty that are actually faulty), recall (the 

percentage of actual faults correctly detected 

by the network), and F1-score (the harmonic 

mean of precision and recall, which 

measures the balance between false alarms 

and missed faults). 

 

 



Table 2. Optimized CNNs for dataset 1. 

SDP SWT Kurtogram CWT SWT 

IML IML IML IML IML 

C2DL(2,48,2) C2DL(4,11,2) C2DL(2,19,2) C2DL(3,44,4) C2DL(2,16,2) 

BNL BNL BNL BNL BNL 

RL RL RL RL RL 

MP2DL(3,3) MP2DL(4,2) MP2DL(3,3) MP2DL(2,2) MP2DL(3,2) 

FCL(192) C2DL(2,46,2) C2DL(2,19,2) FCL(856) C2DL(2,16,2) 

RL BNL BNL RL BNL 

FCL(658) RL RL FCL(4) RL 

RL MP2DL(2,2) MP2DL(2,2) SL MP2DL(2,2) 

FCL(4) FCL(139) C2DL(2,39,2)  C2DL(2,32,2) 

SL RL BNL  BNL 

/ FCL(4) RL  RL 

/ SL MP2DL(2,2)  MP2DL(2,2) 

/ / FCL(366)  FCL(486) 

/ / RL  RL 

/ / FCL(774)  FCL(597) 

/ / RL  RL 

/ / FCL(4)  FCL(4) 

/ / SL  SL 

 

 

The results in Tab. 3 clarify that the use of 

the time–frequency transforms derived im-

ages achieve perfect performance across all 

metrics, suggesting comprehensive and dis-

criminative information for distinguishing 

between all classes. 

The CNN based on SDP achieves a lower 

performance of 0.43% for the accuracy, 

2.33% for the precision, and 1.18% for the 

F1 score; a recall of 100% suggest no false 

negatives. Instead, the SDP is the faster 

transformation thanks to its extremely light-

weight computational nature without the 

spectral processing. The STFT offers an ex-

cellent compromise between computation 

time and information yield, making it practi-

cal for diagnostic pipelines, while the other 

time–frequency transformations require a 

significantly higher computational time. In-

deed, Tab. 3 confirms that the lowest com-

putational time is relative to the SDP trans-

form and comparing it with the STFT (the 

second fastest techniques) the SDP is 3.78 

times lower than the STFT. 



Table 3. Dataset 1 results. 

Method  Accuracy 
[%] 

Precision 
[%] 

Recall 
[%] 

F1-
score 

[%] 

Computational 
Time [s] 

SDP 99.57 97.67 100 98.82 0.18 

STFT 100 100 100 100 0.60 

Kurtogram 100 100 100 100 18.80 

CWT 100 100 100 100 11.58 

SWT 100 100 100 100 76.58 

 

Tab. 4 shows the mean, median, and stand-

ard deviation of the execution time for each 

transformation. 

Table 4. Dataset 1 stats. 

Method  Mean [s] Std [s] Median [s] 

SDP 2.285∗ 10−4 3.084∗ 10−4 2.492∗ 10−4 

STFT 7.803∗ 10−4 1.738∗ 10−4 7.522∗ 10−4 

Kurtogram 0.028 6.968∗ 10−4 0.028 

CWT 0.017 0.001 0.017 

SWT 0.114 0.004 0.116 

 

The results in Tab. 4 confirm that the SDP 

method is significantly faster than the others, 

with average times about 10−4 s. In contrast, 

Kurtogram, CWT, and SWT exhibit consid-

erably higher computational costs. 

Tab. 5 show the paired t-test results. 

Table 5. Dataset 1 paired t-tests results. 

Method  h p-value Test statistics Std 

SDP-STFT 1 0 -82.752 1.713∗ 10−4 

SDP-

Kurtogram 

1 0 -1.018∗ 103 6.985∗ 10−4 

SDP-CWT 1 0 -362.201 0.001 

SDP-SWT 1 0 -823.325 0.004 

 

The Tab. 5 results highlight that all compari-

sons indicate a statistically significant dif-

ference between the execution times of SDP 

and the other methods, with p-values equal 

to zero. The negative test statistics further 

confirm that SDP consistently achieves low-

er computational costs compared to STFT, 

Kurtogram, CWT, and SWT. 

Dataset 2 results 

The bearings ID 6205, 6206, 6207, and 6208 

and all faults at all operating conditions were 

considered. Fig. 8 shows one second of raw 

signals. 

The SDP tuning process is performed as 

previously seen for Dataset 1. Also in this 

case, ℎ = 14 and 𝜆 = 30 were chosen to ob-

tain the snowflake in Fig. 9. 

Below are the STFTs (Fig. 10), Kurtograms 

(Fig. 11), CWTs (Fig. 12), and SWTs (Fig. 

13). 

The CNNs were trained by always dividing 

the binarized images into 50% train, 20% 

validation, and 30% for the test, and always 

optimized according to the hyperparameters 

shown in Tab. 1. The architectures of the op-

timized CNNs for dataset 2 are reported in 

Tab. 6, while in Tab. 5 are reported the CNN 

test phasing results and the computational 

time to perform the signal transformations. 

Tab. 7 highlights a performance drop for da-

taset 2 compared to dataset 1 across all im-

age-CNN approaches, except for the CWT-

CNN method. This decline can be attributed 

to two factors: 

• Dataset 2 includes a greater number of 

operating conditions than dataset 1. 

• Dataset 2 involves five ball bearings of 

different sizes, whereas dataset 1 con-

tains only a single type of bearing. 

Observing Tab. 7, it is possible to see that 

the CWT confirms its effectiveness in more 

complex datasets, while Kurtogram and 

SWT detect faults perfectly but with a low 

false positive rate. The STFT is the least ef-

fective, suggesting less than perfect effec-

tiveness with variable datasets. The SDP 

confirms the good performance seen for da-

taset 1, albeit with a slight decrease in accu-

racy. The SDP is again the transform with 

the lowest computational time at only 0.26, 

while the STFT is still second at 4.54 times 

higher than the SDP. 



 
Figure 8 – Raw signals for dataset 2. 

 
Figure 9 – SDP snowflake for dataset 2. 

 
Figure 10 – STFT diagrams for dataset 2. 

 
Figure 11 – Kurtogram for dataset 2. 

 

     

        

  

    

 

   

 
 
 
 
  
 
  
 
 

      

     

        

  

    

 

   

 

 
 
 
  
 
  
 
 

    

     

        

  

    

 

   

 

 
 
 
  
 
  
 
 

          

     

        

  

    

 

   

 

 
 
 
  
 
  
 
 

          



 
Figure 12 – CWT diagram for dataset 2. 

 
Figure 13 – SWT diagram for dataset 2.

The Tab. 8 and 9 show the comparison be-

tween the computational time statistics for 

each transform and the paired t-tests results, 

respectively. 

The results in Tab. 8 and 9 confirms that the 

SDP is the faster transformation. 

Table 7. Dataset 2 results. 

Method  Accuracy 

[%] 

Precision 

[%] 

Recall 

[%] 

F1-

score 

[%] 

Computational Time 

[s] 

SDP 98.18 96.77 96.77 96.77 0.26 

STFT 96.77 92.50 97.37 94.87 1.18 

Kurtogram 98.55 95.12 100 97.50 71.63 

CWT 100 100 100 100 49.90 

SWT 98.39 94.59 100 97.22 297.76 

 

Table 8. Dataset 2 stats. 

Method  Mean [s] Std [s] Median [s] 

SDP 4.402*10^-4 4.610*10-5 4.298*10^-6 

STFT 0.002 3.394*10^-4 0.002 

Kurtogram 0.146 0.031 0.151 

CWT 0.106 0.005 0.105 

SWT 0.652 0.022 0.648 

 

Table 9. Dataset 2 paired t-tests. 

Method  h p-value Test statistics Std [s] 

SDP-STFT 1 0 -103.787 3.214*10^-4 

SDP-
Kurtogram 

1 0 -676.329 0.005 

SDP-CWT 1 0 -425.156 0.005 

SDP-SWT 1 0 -627.934 0.022 

 

 

 

 



Table 6. Optimized CNNs for dataset 2. 

SDP SWT Kurtogram CWT SWT 

IML IML IML IML IML 

C2DL(3,22,3) C2DL(3,32,2) C2DL(2,27,2) C2DL(3,8,2) C2DL(2,45,2) 

BNL BNL BNL BNL BNL 

RL RL RL RL RL 

MP2DL(3,3) MP2DL(4,4) MP2DL(2,3) MP2DL(3,3) MP2DL(4,2) 

FCL(99) FCL(507) FCL(776) FCL(559) FCL(474) 

RL RL RL RL RL 

FCL(339) FCL(810) FCL(265) FCL(358) FCL(919) 

RL RL RL RL RL 

FCL(354) FCL(4) FCL(529) FCL(156) FCL(824) 

RL SL RL RL RL 

FCL(4) / FCL(4) FCL(4) FCL(4) 

SL / SL SL SL 

 

Conclusions 
In this work, image-based approaches for the 

FD of ball bearings were compared. Time–

frequency and SDP transforms of vibrational 

signals were computed, and the images were 

derived to be used as input for CNNs. Ex-

perimental results were obtained on two 

public datasets of ball bearings that included 

different defect types, defect sizes, and op-

erating conditions. All techniques achieve 

high test accuracy and low false positive and 

negative rates. Furthermore, the techniques 

were also compared in terms of the compu-

tational time required to perform the trans-

forms, demonstrating that SDP is always the 

most advantageous. 

The results highlight that the SDP-CNN 

achieves accuracy comparable to spectro-

gram-CNN methods, and the SDP transfor-

mation requires significantly lower compu-

tational cost than other time–frequency 

transforms. In addition, CNNs trained with 

SDP images have consistently shown accu-

racy above 98% in the testing phase. The lat-

ter result necessitates finding a trade-off be-

tween computational time and accuracy 

since the best results in the test phase were 

achieved by the CWT for both datasets, but 

at the expense of a much higher computa-

tional time to obtain the CNN input. 

The low computational time and high accu-

racy promote the SDP for a future study for 

real-time implementation of the technique 

over other time–frequency transforms. 

In future research, it will be essential to 

thoroughly evaluate the performance of the 

SDP-CNN approach in comparison with 



spectrogram-CNN methods under more real-

istic and challenging conditions. This in-

cludes testing its robustness in dynamic op-

erating environments where system parame-

ters (such as load and speed) fluctuate, as-

sessing its resilience to high levels of noise 

that may be present in practical applications, 

and extending the analysis to other types of 

mechanical systems, such as complex gear 

assemblies and other rotating machinery. 

Such comprehensive validation will provide 

a deeper understanding of the generalizabil-

ity, reliability, and practical applicability of 

the SDP-CNN approach for real-world fault 

detection and monitoring tasks. 

Nomenclature 

IML                  Image Input Layer 

C2DL               Convolutional 2D Layer 

BNL                 Batch Normalization Layer 

RL                    Relu Layer 

MP2DL            Max Pooling 2D Layer 

FCL                  Fully Connected Layer 

SL                    Softmax Layer 

C2DL(x,y,z) C2DL(Filters Size, Filters 

Number, Stride) 

MP2DL(x,y)   MP2DL(Pooling Size, Stride) 

FCL(x)           FCL(Numbers of Output Neu-

rons) 
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