
A Coherent Pattern Mining Algorithm Based
on All Contiguous Column Bicluster

Xiaohui Hu,1 Qiuhua Kuang,1 Qianhua Cai,1 Yun Xue,1 Weixing Zhou,1 and Li Ying2

1School of Electronics and Information Engineering, South China Normal University, Foshan, Guangdong 528000, China
2Department of Propaganda and Education, Guangzhou Women and Children Hospital,

Guangzhou, Guangdong 511442, China

(Received 06 April 2022; Revised 10 May 2022; Accepted 10 May 2022; Published online 12 May 2022)

Abstract: Microarray contains a large matrix of information and has been widely used by biologists and bio data scientist for
monitoring combinations of genes in different organisms. The coherent patterns in all continuous columns are mined in gene
microarray data matrices. It is investigated, in this study, the coherent patterns in all continuous columns in gene microarray data
matrix by developing the time series similarity measure for the coherent patterns in all continuous columns, as well as the
evaluation function for verifying the proposed algorithm and the corresponding biclusters. The continuous time changes are taken
into account in the coherent patterns in all continuous columns, and co-expression patterns in time series are searched. In order to
use all the common information between sequences, a similarity measure for the coherent patterns in continuous columns is
defined in this paper. To validate the efficiency of the similarity measure to mine biological information at continuous time points,
an evaluation function is defined to measure biclusters, and an effective algorithm is proposed to mine the biclusters. Simulation
experiments are conducted to verify the biological significance of the biclusters, which include synthetic datasets and real gene
microarray datasets. The performance of the algorithm is analyzed, and the results show that the algorithm is highly efficient.

Key words: contiguous column coherent biclusters; gene data; similarity measure; time series

I. INTRODUCTION
The availability of cloud computing, big data analysis and
machine-learning techniques allows big biology datasets to be
explored and analyzed [1]. Microarray contains a large matrix
of information and is being widely used by biologists and bio data
scientists for monitoring the combinations of genes in different
organisms. There is a kind of gene microarray data matrix called
sequential gene microarray data matrix. This kind of data is a time
series, as there are time factors in the data. The value of the data
matrix of sequential gene microarray is obtained by testing gene
expression at different time, which reveals the expression value
varies with time [2]. The sequential gene microarray data always
provides knowledge about the co-regulation of physiological
processes and can reflect the relationship between biological
processes and time. Therefore, the sequential gene microarray
data plays an important role in the analysis of gene regulatory
networks and dynamic biological processes [3–5].

Time-series gene microarray data are generally stored in
matrices, for a matrix D, each row in the matrix refers to one
gene, while each column refers to the time setting of the experiment
[6,7]. The value of the row is expressed as the expression level of
the corresponding gene in the corresponding time.

Many biclustering models mine biclusters which are not
continuous adjacent time, and thus these biclustering models
cannot deal with time series data very well [8,9]. A contiguous
column coherent (CCC) biclustering model was proposed by

Sara C. Madeira et al. [10], which confined the pattern to continu-
ous columns and was used to find all maximal contiguous column
coherent biclusters. Considering the noise factor, Sara C. Madeira
et al. improved the original CCC biclustering algorithm and
proposed the e-CCC biclustering algorithm [11]. The experimental
results showed that the e-CCC algorithm had better robustness to
noise, and the biological information of the double clustering was
enriched.

The important characteristics of a sequence are taken into
account by CCC and e-CCC algorithms, which pay attention to the
changing trend between two adjacent time points and the relative
gene expression values rather than absolute values, and thus the
model has strong anti-noise ability. However, CCC and e-CCC
algorithm are all based on suffix tree string processing techniques,
which have high spatial complexity and are difficult to deal with
large-scale data. Moreover, these methods only qualitatively ana-
lyze the similarity degree of time series data, but do not give a
quantitative method to calculate the similarity degree of time series,
and thus it is difficult to quantitatively measure the similarity
degree of two time series [12]. Without a measure of time series
similarity, it is difficult to make further mathematical deduction and
analysis of time series. Therefore, combining the core idea of
contiguous columns coherent biclusters, it is critical and important
to provide a measure of the similarity of time series.

The longest common subsequence (LCS) [13,14] is one of the
classical similarity measures. However, LCS cannot contain all the
information shared between two sequences. In order to capture
more information between two sequences, Wang Hui [15] consid-
ered all subsequence factors of two sequences and proposed a new
similarity measure, the number of all common subsequencesCorresponding author: Qianhua Cai (email: caiqianhua@m.scnu.edu.cn).

80 © The Author(s) 2022. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Journal of Artificial Intelligence and Technology, 2022, 2, 80-92
https://doi.org/10.37965/jait.2022.0105 RESEARCH ARTICLE

mailto:caiqianhua@m.scnu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2022.0105

(ACS), which obtained similarity by using dynamic programming
strategy in polynomial time. However, the time series data con-
tained sequential time sequence and had sequential relationship in
continuous time. Both LCS and ACS did not take the adjacent time
into account, and thus the similarity of this kind of data could not be
properly measured. Considering the continuous time, it is more
meaningful to pay attention to the same regular change in continu-
ous time rather than the specific expression value. A uniform
evolution type in continuous columns was proposed by Sara C.
Madeira et al. [16]. CCC considered the same ascending and
descending trend of the adjacent time points and the local longest
mode. However, it lost the information of uniformly evolving
pattern in the second, the third longer continuous columns, etc. In
addition, this method only qualitatively analyzed the similarity
degree of time series data. It did not quantitatively calculate the
similarity of time series. It did not clearly propose or define a
similarity metric to measure the similarity of two time series.

In order to measure the similarity of two sequential gene
microarray series, a similarity measure, the number of coherent
patterns in all continuous columns, is defined in this paper by
considering the characteristics of time series. The expression of
continuous time has time information factors and uses all common
information between sequences, which can reflect the character-
istics of uniform evolution in continuous time series. The simula-
tion experimental results also show that the similarity measure is
more accurate than other similarity measures, such as Euclidean
distance and cosine distance.

Aiming at the problem of bicluster mining, combined with the
characteristics of similarity measure proposed, we define a bicluster
evaluation function for all continuous columns coherent biclusters
to ensure the consistency of biclusters and implement an efficient
algorithm to apply the evaluation function to specific bicluster
mining. The results also show that the bicluster algorithm proposed
in this paper can find significant results of biological knowledge
from the sequential gene microarray data.

The remainder of this paper is as following. Section II explains
the All Contiguous Coherent Columns (ACCC) similarity measure.
Section III presents our proposed BicACCCmethod and algorithm.
Section IV outlines the datasets and experiment design. Section V
discusses the simulation experimental results. Finally, section VI
draws conclusions.

II. ALL CONTIGUOUS COHERENT
COLUMNS SIMILARITY

The idea of calculating ACCC in given continuous columns of the
same length is as follows. Given two rows to be computed, count
the number of patterns with the same trend in two rows in any
continuous columns. The number obtained is the ACCC similarity.

The similarity in all continuous columns focuses on the
common evolutionary rules of data in continuous time. First, the
original sequence (whose number of elements is n) is preprocessed
and transformed into the differential sequence (whose number of
elements is n−1) [17]. The value in d sequence reflects the rising
and falling trend from the time to the next time. In this paper, we
divide the trend into two cases: rising and non-rising. The way in
which the original sequence is preprocessed into a differential
sequence is shown as the following:

di =
�
1, if aiþ1 − ai > 0
0, if aiþ1 − ai ≤ 0

(1)

Where ai+1 and ai is the (i+ 1)th and the ith element in the
sequence a respectively.

Firstly, the original sequence is preprocessed, and the original
sequence is transformed into the differential sequence. For conve-
nience, the preprocessing process is expressed as d=Difference
(a): The calculation of the differential sequence is as follows:

DifferenceðaÞ =
�
1, if aiþ1 − ai > 0

0, if aiþ1 − ai ≤ 0
i = 1,2, : : : ,jaj − 1 (2)

The original data are inspected and the differential sequence is
obtained by preprocessing. By calculating the changing trend of
two successive elements in the original data, where the rising is 1,
and the non-rising is 0. Thus, a sequence with 1 element shorter
than the original data can be obtained, which is called the differ-
ential sequence.

After this preprocessing, the original matrix is transformed into
the differential matrix. Considering two rows of time series data, we
focus on the number of patterns with the same trend in the adjacent
time points. The bigger the number of the continuous columns
coherent patterns in two time series is, the more similar they are.

ACCCða,bÞ refers to the similarity of the sequence a and b.
The calculation is as follows. The sequence a and b are different
rows in the difference matrix.

Two difference sequences after being preprocessed are inves-
tigated, and the similarity is obtained. Two differential sequences
are operated on Inclusive-OR operation, that is, in the same
columns, if the Boolean values are the same, then the result is
1, and vice versa, it is 0. Thus, the similarity sequence is obtained,
which has the same length as the differential sequences.

Consider the similarity sequence and calculate the similarity.
The number of segments appearing in all 1, and the number of 1 in
each segment are counted. Finally, the number of continuous
columns coherent patterns, namely similarity ACCC, is calculated
by the equation (3).

ACCCða,bÞ =
Xsects
i=1

niðni þ 1Þ
2

(3)

Where sects is the segments appearing in all 1 in the similarity
sequence obtained by OR operation from the deferential sequences
a and b, and ni is the number of 1 in the ith segment. Figure 1 shows
the pseudo code for calculating ACCC.

1

1

1

1

,

ACCC(,) // , ar

1, if 0
1 1, 2,...,| | 1

0, if 0

1, if 0
2 1, 2,...,| | 1

0, if 0

3 XN

i ia

i i

i ib

i i

a b a

a b a b e sequences which have

the same length

a a
d i a

a a

b b
d i b

b b

u d

+

+

+

+

− >⎧
 = = −⎨ − ≤⎩

− >⎧
 = = −⎨ − ≤⎩
 =

1

OR

14

5 for =1 to do

6 1

7 end for

(1)
8

2

9

b

k

sects
i i

i

d

sects the segments in which all s appear

k sects

n the number which appears in k

n n
accc

Return accc
=

 =

 =

+ = ∑

Fig. 1. The pseudo code for calculating ACCC.

Experimental Agriculture 81

JAIT Vol. 2, No. 3, 2022

For example:
Given a similarity sequence (1,1,0,0,1,1,1,0,1), it has 3 seg-

ments of all 1. Each segment is underscored as (1,1,0,0,1,1,1,0,1),
thus the number of 1 in each segment is: n1= 2, n2= 3, n3= 1.
Then the similarity is: accc= 3+6+1=10.

Given the original sequences as:

a = ð2,8,7,5,7,9Þ, b = ð3,5,8,6,3,7Þ, c = ð6,5,9,7,5,2Þ
The process of obtaining the differential sequence is as

follows.
For example: Obtain the differential sequence from the

sequence a. It is show in the sequence a that the first element is
2 and the second is 8. As 8 is greater than 2, then the first element in
the sequence da is 1, and so on. The last group is 9> 7, so the last
element of db is 1. Thus, we obtain the sequence da= (1,0,0,1,1).

The obtained differential sequences are:

da = ð1,0,0,1,1Þ, db = ð1,1,0,0,1Þ, dc = ð0,1,0,0,0Þ:
The process to obtain the similarity sequence:
To obtain the similarity sequence ua,b from the sequence a and

the sequence b, where da= (1,0,0,1,1), db = (1,1,0,0,1). The first
elements in both da and db are 1. The result of inclusive-OR
operation of (1,1) is 1. Thus, the first element of the sequence
ua,b is 1. The same procedure is repeated and is obtained.

The other similarity sequences are:

ua,b = ð1,0,1,0,1Þ, ua,c = ð0,0,1,0,0Þ, ub,c = ð0,1,1,1,0Þ:

To calculate the similarity:
Obtain the similarity of the sequence b and the sequence c

from, ub,c= (0,1,1,1,0) where the series (1,1,1) represents the
changes in the differential sequences (1,0,0) (rising, falling, fall-
ing), which includes the following contiguous columns coherent
patterns (i->j: y, the trend from the column i to the columns j is y,
where y= 1 represents rising and y= 0 represents falling):

2->3:1
3->4:0
4->5:0
2->3->4:10
3->4->5:00
2->3->4->5:100
There are six contiguous columns coherent patterns, and thus

the similarity is 6.

ACCCða,bÞ = 3, ACCCða,cÞ = 1, ACCCðb,cÞ = 6:

III. BicACCC BICLUSTERING ALGORITHM
We propose a biclustering based on ACCC.

A. THE EVALUATION OF A BICLUSTER

The following is the description of the relative definitions.

(1) C represents the continuous columns and Cj,k represents the
continuous columns from the jth column to the (j+ k−1)th
column.

(2) S represents the core of the bicluster and Sj,k represents the
series belong to Cj,k.

(3) R represents the supporting row set. If a row has a pattern in
the given continuous columns, it is said that this row supports

the pattern. The supporting row set refer to the row set
that support a bicluster core. Rj,k means the supporting
row set of Cj,k.

(4) The subscript represents the serial number of the bicluster.
The ith bicluster core is Sj,kwhose continuous columns is Cj,k

i
and the supporting row set is Rj,k

i .

Firstly, a bicluster measure method is defined, which employs the
information in all continuous columns coherent patterns that is the
number of all continuous columns coherent patterns per column
(abbreviated as perACCC).

The procedure of biclustering method based on all continuous
columns coherent patterns is to calculate the number of all contin-
uous columns coherent patterns of each row and the core of
bicluster, then sum these numbers, and divide the sum result by
the number of columns in the bicluster, so as to get the value to
measure the bicluster [18].

The evaluation of a bicluster is stated as the following:

perACCCðI,JÞ = 1
jIjjJj

X
i∈I

ACCCðaiJ ,aIJÞ (4)

Where I is the supporting row set of the bicluster, J is the
continuous columns set of the bicluster, aiJ the sequence of the
ith row under the continuous columns J, aIJ is the core bicluster.
ACCC(aiJ,aIJ) refers to the similarity value of the sequence aiJ and
aIJ. If the core bicluster is S

j,k
i , the row set is Rj,k

i and the column set
is Cj,k

i , then the corresponding relation of the formula is I = Rj,k
i ,

J = Cj,k
i , aIJ = Sj,ki , ACCCðaiJ ,aIJÞ represents the similarity

between the sequence ai and Si under the continuous columns.
According to the definition of ACCC similarity, it can be

expanded as follows:

ACCCðaiJ ,aIJÞ =
XsectsJ
k=1

nkðnk þ 1Þ
2

(5)

Where sectJ represents the number of all 1 s in the continuous
columns, nk is the number of 1 in the kth segment.

From (4) and (5), we can obtain (6) :

perACCCðI,JÞ = 1
jIjjJj

X
i∈I

XsectsJ
k=1

nkðnk þ 1Þ
2

(6)

Given a matrix D= (R,C),where R is the row set and C is the
column set, is a submatrix in D, where Rs and Cs are the subsets of
R,C respectively. If Cs is the continuous columns, and the sub-
matrix S= (RS,CS) has larger perACCC, then S= (RS,CS) is a
bicluster of all contiguous columns coherent patterns in D= (R,
C), abbreviated as BicACCC.

B. THE ALGORITHM OF BicACCC

The framework of BicACCC is shown as Figure 2:
The steps of BicACCC algorithm:

(1) Data preprocessing: Generate the differential matrix by
transforming the original matrix into a matrix which implies
the trend of any two adjacent time points.

(2) Initialize biclusters: Firstly, select the core of bicluster, that
is, to select randomly the combination of several pairs of
rows and consecutive columns in the data matrix to get the
core bicluster. Secondly, initialize the row set of the bicluster,
that is, to calculate the perACCC value of each row and each
core in the data matrix, select the row with the largest value

82 Xiaohui Hu et al.

JAIT Vol. 2, No. 3, 2022

for the core and apply the row to the row set of the core. The
third step is to update the core of the bicluster, that is to say, to
calculate the mode of each column to the row set in the
bicluster and use the number of the mode as the value of the
corresponding column of bicluster, so as to get the updated
core of the bicluster. The complete algorithm is given in
Figure 3.

(3) Update biclusters: Firstly, calculate the perACCC value of
the bicluster before updating; Secondly, update columns by
adding and deleting; the third step is to update rows by
adding qualified rows through scanning the data matrix; and
the fourth step is to update the core bicluster by mode
method; The fifth step is to calculate the perACCC value
of the bicluster after updating; the sixth step is to calculate the
change rate of the perACCC value of the bicluster before and
after updating, and to determine whether the preset threshold
is satisfied, so as to determine whether to continue updating
the bicluster iteratively.

(4) Output results: setting a set of the row and column thresholds,
deleting the bicluster which does not meet the preset row and
column thresholds, and obtaining the bicluster which satisfies
the row and column thresholds.

C. EXAMPLE OF THE ALGORITHM

The sequential gene microarray data matrix is time series data
whose value is obtained by testing gene expression at the different
time. The value in the matrix reveals that the expression value
varies with time 0. This paper focuses on the consistent evolution of
data over time rather than on the specific value of gene expression.
The model studied in this paper does not consider the actual
expression value of the gene at the time point, but it considers
the variation trend of the gene at the adjacent time points.

1) Preprocessing. There are many rules of change, which can be
divided into three types: rising, unchanged and falling. They can
also be divided into five types: sharp rise, slow rise, basically
unchanged, slow decline and sharp decline. In this paper, we focus
on the uniform evolution in continuous columns, and define the
change as two cases, i. e. rising or non-rising. Therefore, in the

process of data preprocessing, the original data matrix Am×n is
transformed into the differential matrix Dm×(n−1). In the original
data matrix, aij is the element in ith row and the jth column in A. In
the differential matrix, dij is the element in the ith row and the jth

column which represents the upward and downward trend from ai,j
to ai,j+1 in the original data matrix A. The upward and non-upward
trends are expressed by 1 and 0 respectively, i.e. if ai,j+1−ai,j>0
then, dij= 1; if ai,j+1−ai,j≤0 then dij= 0. The differential matrix
obtained by the above method is a matrix ofm×(n−1) whose values
are only 0 and 1. The operation of each row of the original matrix is
the same as the method of obtaining the difference sequence
described in the ACCC similarity described above. The specific
calculation method is shown in equation 2.

The original data matrix is shown as Table 1, and the differ-
ential data matrix transformed by preprocessing for Table 1 is
shown as Table 2. For instance, in the first row of Table 1, the
expression values at time t1 and t2 are 0.55 and 0.19 respectively,
because 0.19< 0.55, the first column’s value of the row in the
difference matrix is 0. Similarly, when the original data in row α is
0.83> 0.19, so the second column’s value of the row α is 1. With

Fig. 2. The framework of BicACCC.

Fig. 3. The pseudo code of BicACCC.

Experimental Agriculture 83

JAIT Vol. 2, No. 3, 2022

this preprocessing method, the original data matrix represented in
Table 1 can be transformed into the differential data matrix
represented in Table 2.

2) Initialize biclusters. The procedure for initializing biclusters
are described below.

Select a bicluster core.
In the data matrix, several pairs of rows and consecutive

columns are randomly selected to obtain a bicluster core. The
method of randomly selecting K cores of biclusters is to randomly
select a row in the data matrix as the core row, and then randomly
select a continuous column. The expression pattern of the selected
row on the selected continuous columns constitutes the core of the
bicluster. In fact, this step chooses the initial column set of the
bicluster. For convenience, it is marked as the ith bicluster’s core
Sj,ki , in which the core row is represented as and the continuous
columns is represented as Cj,k

i .
As shown in Figure 4, in the differential matrix of Table 2, it is

advisable to set the number of bicluster cores as 2, that is, K= 2.
Randomly select two bicluster cores, the first core S1 is the row b=
[0 0 1 1 0], which has continuous columns (the second column and
the third column). The second core S2 is the row a= [0 1 0 1 0],
which are listed consecutively in the column 1 and the column 2.
As shown in Figs. 2, and 3, the numbers in the box represent
column labels, and the lists in the dotted box represent continuous
columns. The cores are S1 = (ce = [0 0 1 1 0], C= {2,3}), S2= (ce
= [0 1 0 1 0], C= {1,2}) respectively.

3) Initialize the row set of the bicluster. The row set refers to the
set of supporting rows that support corresponding bicluster cores.
The procedure is stated as follows: calculate the perACCC values
of each row and all cores, select the core with the highest perACCC
values, and add the row to the supporting row set with the highest
perACCC values, remark it as the ith supporting row

set Rj,k
i . As the continuous columns Cj,k

i are selected in previous
step, so the bicluster is expressed as ðRj,k

i ,Cj,k
i Þ.

As shown in the Figure 5, calculate the perACCC values of the
row awith the core S1 and S2 respectively, then compare the results,
because 0< 1.5, so the row a is added to the corresponding row set
R2 in S2. The next is to compute the perACCC values of the row b
and the row c, and we get R1= {b,c}. As for the row d, since its
perACCC values is 0.5= 0.5, so it is added to the two cores and we
get R1= {b,c,d}, R2= {a,d}. Finally, we get the initial row sets
and the initial column sets, R1= {b,c,d}, C1= {2,3}, R2= {a,d},
C2= {1,2}.

4) Update the core of the bicluster. For each column of the
differential matrix, calculate the mode of each column on the row
set of the bicluster, and use the mode as the value of the corre-
sponding column of the core of the bicluster, thus we obtain the
updated core of the bicluster. If there are more than two modes,
randomly select one of them to update. It should be noted that when
updating the bicluster core, all columns should be updated, there-
fore it is convenient to update the column set later.

As shown in the Figure 6, when the first bicluster is consid-
ered, and the row set and column set are R1= {b,c,d}, C1= {2,3},
respectively. The row values of b,c,d is in the upper right long box.
Considering the first column, the number of 0 is 1, marked as # 0=
1, and the number of 1 is 2, marked as # 1= 2, because # 0< # 1, so
the core of the first column is listed as 1, as shown in the row ce.
Next, the process is repeated from the second column to the last
column to get the core row ce = [1 0 1 1 0]. Thus the core is up-
dated as S1= (ce= [1 0 1 1 0], C= {2,3}). Considering the second
bicluster, the method is similar, the core are obtained as S2 = (ce =
[1 1 0 1 0], C= {1,2}).

5) Update biclusters. The procedure for updating biclusters are
described below.

Step 1: Calculate the perACCC value of the bicluster before
updating.
The method of calculating perACCC value of biclusters

is introduced in the overview of algorithm as shown in
equation 4.

Table I The original time series gene data

Gene Time t1 t2 t3 t4 t5 t6

a 0.55 0.19 0.83 0.48 0.76 0.38

b 0.78 0.42 0.27 0.56 0.69 0.32

c 0.54 0.88 0.76 0.69 0.41 0.64

d 0.16 0.34 0.4 0.52 0.81 0.25

Table II The differential matrix

Row Column 1 2 3 4 5

a 0 1 0 1 0

b 0 0 1 1 0

c 1 0 0 0 1

d 1 1 1 1 0

Fig. 4. An example of selecting the core of biclusters.

perACCC({a},C1)=0
perACCC({b},C1)=1.5
perACCC({c},C1)=0.5
perACCC({d},C1)=0.5

perACCC({a},C2)=1.5
perACCC({b},C2)=0.5
perACCC({c},C2)=0
perACCC({d},C2)=0.5

<
>
>
=

R2=R2+{a}={a}
R1=R1+{b}={b}
R1=R1+{c}={b,c}

R1=R1+{d}={b,c,d},R2=R2+{d}={a,d}

R1={b,c,d},C1={2,3},R2={a,d},C2={1,2}

a

b

c

d

Fig. 5. An example of initialize the row set of the bicluster.

Fig. 6. Updating the core of the bicluster.

84 Xiaohui Hu et al.

JAIT Vol. 2, No. 3, 2022

Example: Initialize biclusters, Take the first bicluster as an
example whose row set is R1= {b,c,d} and the continuous columns
is C1= {2,3}. The perACCC of is calculated as pA0= 0.83.

Step 2: Update columns by adding and deleting.

In order to adjust the continuous columns pattern of biclusters
flexibly, the columns are updated by adding and deleting. The
conditions for adding and deleting the continuous columns are as
follows:

The Condition for adding columns: If a column is added and
the calculated perACCC value increases, then the column can
be added.

The condition for deleting columns: If a column is deleted and
the calculated perACCC value increases, then the column can be
deleted.

The steps for adding and deleting contiguous columns are as
follows:

First, add continuous columns to the right until the end of
expansion, then continue to add continuous columns to the left until
the end of expansion. Delete operations from the leftmost column
to the right until stop. Then delete operations from the rightmost
column to the left until stop. If continuous columns expand to the
right, then you do not need to delete the column on the right
because only the perACCC value increases in the process of
expanding and adding columns is permitted. Similarly, if continu-
ous columns expand to the left, you do not need to delete the
column on the left. Only when no column has been added to the
right expansion or the left expansion, then the column on the right
or the left can be deleted, and thus it avoids unnecessary operations.

The pseudo code for updating the column set of biclusters is
shown in Figure 7.

An example of updating the column set of biclusters is shown
in Figure 8.

Given the bicluster whose row set is R1= {b,c,d} and the
continuous column set C1= {2,3}, calculate the perACCC value of
the bicluster first, and mark it as pA= perACCC(R1,C1 as shown in
the Figure 8. “before updating” pA= 0.83. Then add contiguous
columns to the right. First, consider adding column 4 as shown in
step 1 of the Figure 8, then the continuous columns are {2,3,4}. The
perACCC value is calculated to be 1.11, because 1.11> pA= 0.83,
so it is confirmed to add column 4 to the continuous column and
assign the new perACCC value 1.11 to pA. Continue to expand the
contiguous column to the right and add the fifth column, as shown
in step 2 of the Figure 8, which is the same as the previous step, thus
the continuous columns are {2,3,4,5}. The perACCC value is
calculated to be 1.42, because 1.42> pA= 1.11. Thus, it is con-
firmed to add the fifth column to the contiguous columns and assign

pA the new perACCC value 1.42. Because column 5 is the
rightmost column, stop expanding to the right. After the right
expansion stops, the left expansion begins. First, consider adding
column 1, as shown in step 3 of the Figure 8, the continuous
columns are {1,2,3,4,5}. Then calculate the perACCC value and
get 1.33, because 1.33< pA= 1.42, so do not add column 1 to the
continuous columns, while maintaining the value of pA as 1.42.
Because column 1 is the leftmost column, it can no longer be
expanded to the left, therefore stop expanding to the left.

After the adding step is completed, we begin to delete the
continuous columns. First, consider the column 2 as shown in step
4, when the column 2 is deleted, the perACCC value is calculated to
be 1.44, because 1.44> pA= 1.42. Thus, it is confirmed that the
second column is deleted from the continuous column set and the
new perACCC value (1.44) is assigned to. Continue to delete
column 3, as shown in the step 5 of the Figure 8, and calculate the
perACCC value as 1, because, 1> pA= 1.44 hus we do not delete
column 4 and maintain the value of pA as 1.44. Because the
initialized continuous columns are {2,3}, after the column expan-
sion it becomes {2,3,4,5}. That is to say, the column 4 and 5 are

Fig. 7. The pseudo code of updating the column set of biclusters.

Fig. 8. The example of updating the column set of biclusters.

Fig. 9. The pseudo code of updating the row set of biclusters.

Experimental Agriculture 85

JAIT Vol. 2, No. 3, 2022

confirmed to be added to the continuous columns in the process of
extending to the right, so the process of deleting columns from the
right to the left is not necessary. Finally, the last continuous
columns C1= {3,4,5} generated by this round of process is shown
in ‘Updated’ of the figure.

Step 3: Update the row set by adding qualified rows by
scanning the data matrix.

The conditions for adding rows are as follows:
If the calculated perACCC value after adding a row is greater

than or equal to the perACCC value of the bicluster before adding
the row, then confirm to add the row, otherwise do not add.

The updating steps are as follows:
First, the perACCC value of the biluster is calculated, then the

data matrix is scanned once and the ACCC value between each row
and the bicluster core is calculated. Then, the ACCC value is
divided by the number of continuous columns in the bicluster core,
and the row whose perACCC value is greater than or equal to the
previous perACCC value is added to the row set.

In fact, the effect of scanning the matrix and updating the row
sets is equivalent to deleting the rows whose perACCC value are
smaller than the original bicluster’s perACCC value, and then
adding rows whose perACCC values are greater than or equal to the
original bicluster’s perACCC value. This method can add rows and
delete rows at the same time.

An example of the process of updating the row set is shown in
Figure 10.

The support row set obtained in the above steps are
R1= {b,c,d}, and the continuous columns are C1= {3,4,5}. The
bicluster core is S1= (ce= [1 0 1 1 0],C= {3,4,5}). The perACCC
value after updating columns is pA= 1.44. Scanning all rows in the
differential matrix, we first calculate the perACCC of the first row
α(α(perACCC({a},C1)= 1),), because 1< pA= 1.44, so we do not
add row b to the row set. The same process is done on the second
row b (perACCC({b},C1)= 2), because 2> pA= 1.44, so add the
row b to the row set. After scanning, the row set R1= {b,d} are
obtained, compared with the original row set{b,c,d}, the row c is
deleted because it is not satisfied the condition.

Step 4: Update the bicluster core by the mode method.
The method of updating the bicluster core is the mode method,

which has been described in the above. The pseudo-code is shown
in the following Figure 11.

The process of updating the bicluster core is shown as the
following and the core S1= (ce = [1 0 1 1 0],C= {3,4,5}) is
obtained.

Step 5: Calculate the perACCC value of the updated bicluster.
Example: After updating the bicluster, the perACCC value of

the bicluster is calculated as pA1 = 2.

Step 6: Calculate the changing rate of perACCC before and
after updating the bicluster.

The method to decide whether to continue iteration or not is to
set a changing rate threshold α and the upper limit of iteration
number γ. The perACCC value are calculated before the column
and the core are updated as pA0, and after updated it is pA1. If the
changing rate from pA0 to pA1 is less than the preset changing rate
threshold α or the number of iterations reaches the upper limit γ.,
then stop iteratively updating the bicluster; otherwise continue
updating iteratively. The calculation of the rate of changing and the
judgment are as follows:

pA1 − pA0

pA0
< α (7)

Examples of iterations are shown in Figure 13.
In this example, it is possible to set the changing rate threshold

α= 0.1, which means that the changing rate of the perACCC value
needs to be less than 0.1 before the iteration stops. As shown in the

Fig. 10. The example of updating the row set of biclusters.

Fig. 11. The pseudo code of updating the core of biclusters.

Fig. 12. The example of updating the core of a bicluster.

Fig. 13. Calculating the changing ratio and the updating iterations.

86 Xiaohui Hu et al.

JAIT Vol. 2, No. 3, 2022

Figure 13, the perACCC value of the bicluster before updated is
pA0= 0.83. After the bicluster is updated, the perACCC value is
pA1= 2. The changing rate is 1.41, because 1.41> 0.1. In the
second iteration, the perACCC value of the bicluster before
updated is pA0= 2. After the bicluster is updated, the perACCC
value is pA1 = 2, and the change rate was 0. Because 0< 0.1, the
iteration is stopped and the row set of the bicluster are obtained.

6) Output. In order to avoidfindingmeaningless biclusters with too
few rows or columns, a row threshold and a column threshold are set.
Only the biclusters satisfying both the row threshold and the column
threshold is meaningful. Therefore, we only output the bicluster
satisfying the pre-determined row and column thresholds and delete
those biclusters that do not meet the row and column thresholds.

The steps of output are as follows: Set a set of row and column
thresholds, delete the bicluster if the bicluster does not meet the
preset row and column thresholds, output the biclusters which
satisfy the row and column thresholds.

In this example, we set the row threshold min_row = 2 and the
column threshold min_col= 2.

After updating the biclusters, the row set and the column set of
the first and the second bicluster are (R1,C1)= ({b,d},{3,4,5}),
(R1,C1)= ({a},{2,3,4,5}) respectively. Obviously, the second bi-
cluster has only one gene whose number of rows is 1<min_row =
2, so it is deleted. Therefore, the final result is (R1,C1)=
({b,d},{3,4,5})

IV. DATASETS AND SIMULATION
EXPERIMENTS

Simulation study is conducted on synthetic data in order to evaluate
the performance of the proposed algorithm. The relationship
between the running time of the program and the size of the
synthetic data set is analyzed, that is, the scalability of the algo-
rithm, as well as the mining speed of single bicluster, are analyzed.

In order to analyze the biological correlation of the biclusters,
the GOToolbox is used for analyzing the real gene microarray
data [19,20]. Gene Ontology (GO) is often used to test the bio-
logical authenticity of clustering or biclustering results, that is, to
reflect the biological significance of clustering or biclustering
results. By focusing on the P-value of the biclustering results
from GO and analyzing them from the statistical point of view,
we can obtain the significance of the enrichment degree of the
biclusters in biological function. Calculate the P-value of known
gene types and the biclusters, and then count the ratio of the
biclusters whose P-values are less than the pre-set P-value to the
total number of biclusters. We thus get the statistical significance of
the enrichment of the biclusters on biological processes. In order to
illustrate the performance of the algorithm more comprehensively,
several comparative experiments with other biclustering algo-
rithms are carried out on the same synthetic data and the real
gene microarray data, and the results of the proposed algorithm and
other algorithms are simulated analyzed. In addition, the proposed
similarity measure ACCC is applied to K-means algorithm for
enrichment analysis in the gene microarray data. At the same time,
Euclidean distance and cosine distance are applied to the same gene
microarray data for enrichment analysis in K-means algorithm. The
comparative experimental results show that ACCC can describe the
similarity of time series data more accurately.

Simulation experiments based on synthetic data and the real
gene microarray data sets are carried out to analyze the perfor-
mance of the proposed algorithm and the biological significance.

The real gene microarray data sets include three gene microarray
data sets, yeast microarray data 0, mouse cell microarray data and
human cell microarray data.

For synthetic data sets, the range of data is 0 to 1, and the data
is uniformly distributed. One of the data sets has the same number
of columns, which are 20. The number of rows starts at 1000
and ends at 2000 with the increasing step 100. Therefore, there are
11 data matrices. Another dataset has the same number of rows,
which are 1000. The number of columns starts at 20 and ends at
40 with the increasing step 2. There are also 11 data matrices.

The real gene microarray data sets include three gene micro-
array data sets.

Yeast microarray dataset: Yeast microarray dataset is a
sequential gene microarray data, which is tested by CHO et al.
0. CHO et al. [21] on 6178 genes and 17 sampling time points. The
interval between two sampling time points was 10 minutes. In this
data matrix, different rows refer to different genes, different
columns refer to different experimental time points, and the values
in the matrix refer to the expression level of the corresponding
genes at the corresponding time points. Some of the missing values
in this data set are filled with the ‘cubic spline interpolation
method’ proposed by Troyanskaya et al. 0, and those rows with
extremely large missing values are deleted. After processing the
missing values, the size of the data matrix is 6147 × 17.

Rat microarray dataset: Rat microarray dataset is the traumatic
brain injury data set of Salvia [22]. It is an analysis of the lateral
cortex of the brain from Wistar males for up to 48 hours after
traumatic brain injury (TBI). After preprocessing the data, the size
of the data matrix is 8162 × 16.

Human cell microarray dataset: Human cell microarray dataset
is used in hematopoietic stem cells to study CD34+ and is
processed by uridine triphosphate. The data is processed in about
24 hours. The size of the original data matrix is 22283 × 6 which
contains some duplicated data, i.e. several rows of time series
experiments that record the same gene. After processing, only one
row for a gene is retained in the matrix, and the size of the
remaining data set is 5477 × 6. The data set can be found at
ftp://ftp.ncbi.nlm.nih.gov.

V. RESULT ANALYSES
The platform used in the experiment is: Intel ® Pentium ® CPU
G2030 @ 3 GHz 3 GHz; RAM: 8 G; working speed: 3 GHz;
computer system: Windows 10; operating software: VS2010;
experimental programming language: C++.

A. THE PERFORMANCE OF THE ALGORITHM
THROUGH SIMULATION

Assume that matrix A(m,n) with m rows and n columns, if there are
k biclusters in the matrix A, and the max iteration number is T, then
the time complexity of the algorithm is O(KTmn(m + n))).

1) The scalability of algorithm. In order to evaluate the perfor-
mance of BicACCC algorithm, it is analysed the relationship
between the efficiency of the algorithm and the size of data. Firstly,
the relationship between the running time of the algorithm and the
size of data is analyzed. A synthetic data set is used. The data range
is 0 to 1, which is uniformly distributed. The experimental results
are shown in Figure 14, which clearly reflect the time-consuming
performance of BicACCC algorithm under different data scales of
rows and columns, and both subgraphs reflect similar trends.

Experimental Agriculture 87

JAIT Vol. 2, No. 3, 2022

ftp://ftp.ncbi.nlm.nih.gov

It is also analysed the relationship between the running time of
the algorithm and the number of rows of the data. A set of data sets
are used whose number of columns are the same as 20. The number
of rows of the data starts with 1000 and ends with 2000 with the
increasing step 100. So there are 11 data matrices. The results
are shown in Figure 15 (a). It can be seen from the graph that, on the
whole, the run time of the algorithm increases linearly with the
linear increase of the number of rows in the data, and the trend is
shown by the dotted line in the Figure 15 (a).

To analyze the relationship between the running time of the
algorithm and the number of columns of the dataset, we use a set of
data sets with the same number of rows (1000 rows). The number
of columns of the data is set 20 as the starting point and 40 as the
end point with the increasing step 2. Thus there are 11 data
matrices. The results are shown in Figure 15 (b). As can be
seen from the graph, in general, the execution time of the algorithm
increases linearly with the linear rising of the number of columns in
the dataset, as shown by the dotted line in the figure. Exceptionally,
when the number of columns is 36, the running time is obviously
longer than the number of columns 34 and 38 on both sides,
because the number of double clusters generated is more. From the
experimental results, we can see that BicACCC algorithm has good
scalability in the case of increasing data volume.

2) Efficiency Analysis of the bicluster Mining. In order to
achieve a more comprehensive performance of the algorithm,
the relationship between the average time-consuming of mining
each bicluster and the size of the data set is analyzed. The data used
in the analysis is the same as the previous step’s. The experimental
results are shown in Figure 16. The average time-consuming of
each bicluster is linearly related to the number of rows or columns,
as shown by dotted lines. In particular, when analyzing the
relationship between the running time of the program and the
number of columns, the running time is longer when the number of
columns is 36, as shown in Figure 16(b), the time is not too long.
That is to say, when the number of columns is 36, biclusters found
are more. From the experimental results, it can be seen that
BicACCC algorithm takes less time to mine each bicluster and
has higher mining efficiency.

B. VISUALIZATION OF BICLUSTERS

Firstly, the BicACCC algorithm proposed in this paper is used to
mine biclusters. Based on the biclusters from the original sequential
gene microarray data, the corresponding graph is drawn. From the
graph, we can intuitively learn the common characteristic of the
biclusters.

As shown in Figure 17, the abscissa in the graph refers to the
label of columns of the biclusters, the different curves in the graph
refer to different genes, and the ordinate in the graph refers to the
expression values in the gene microarray data matrix. From the
graph, we can see that the gene expression values in the bicluster
showed the same trend of rise and decrease at the adjacent time
points, that is, the change trend of gene expression values at the
same group of adjacent time points is the same. From the graph, we
can see that the bicluster obtained has obvious coherent properties.

Fig. 14. The relation between the run time and rows or columns.

Fig. 15. The relation between a single bicluster and rows or columns. Fig. 16. Biclusters mined by BicACCC.

88 Xiaohui Hu et al.

JAIT Vol. 2, No. 3, 2022

C. GENE ONTOLOGY ANALYSIS

Gene Ontology (GO) is a database created by the Gene Ontology
Federation. It has the standard vocabulary of biological gene
language. This standard aims to be used in various biological
applications, to describe the functions of genes and proteins, and to
be updated continuously. GO can be divided into three aspects:
molecular function, biological process and cell composition. GO is
often used to test the biological authenticity of clustering or
biclustering results, that is, to reflect the biological significance
of clustering or biclustering results.

In order to study the biological significance of the biclusters,
the tool GOToolbox 0 is used to analyze. GOToolbox is a web
application platform which can help researchers to query gene
ontology data easily, and its annotated data can be visually dis-
played. So far, the GOToolbox project has covered a large database
for genes such as animals and plants. We use GOToolbox tool
platform to study the biclusters obtained in this paper. The analysis
includes GO Term, GO Level analysis and so on.

In the experimental analysis of this paper, we use GOToolbox
tool to get P-value of the biclusters. By studying GO annotations of
genes belonging to the same category and calculating the biclusters
found by the algorithm and the P-value of known gene types, we
can understand the biological value of the biclusters.

Genes with same expression levels often belong to the same
biological pathway, and their molecular functions and biological
processes are somewhat similar. On the GOToolbox tool platform,
the experiment of mining GO annotations with the biclusters is

done to output the corresponding P-value. P-value is to find the
possibility of a given gene annotation when the data distribution is
known. The smaller the P-value is, the lower the possibility of
finding a given gene annotation is. In fact, it can be found in the
biclusters. Therefore, the biclusters have certain biological signifi-
cance. The smaller the output P-value is, the closer the correlation
between the bicluster’s patterns and the corresponding gene types.

P-value is calculated as the following:

P − value =
Xn
j=x

�
M
j

��
N −M
n − j

�
�
N
n

� (8)

WhereN refers to the total number of genes in the gene dataset;
M refers to the number of annotations for N genes covered; n refers
to the total number of genes in the bicluster; x refers to the number
of annotations for x genes covered.

Take GO analysis of yeast microarray data as an example. The
first line in Table 3 is GO:0002181. There are 7166 genes in the
gene database, of which only 186 genes (2.6%) belong to GO in
cytoplasmic translation. However, we find 754 genes in a bicluster
found by BicACCC, 90 of which (11.9%) belonged to GO items of
cytoplasmic translation. Calculated by the equation, the P-value is
very small, which reflects the significance of the bicluster in
biology.

The GO analysis results of yeast microarray data, mouse
microarray data and human cell microarray data are shown in
Table 3, Table 4 and Table 5. It can be seen from the table that the
P-value obtained is generally very low. The results of tables reflect
that the biclusters found have certain biological significance.
Combining the GO analysis results of three gene microarray
datasets, it proves that BicACCC algorithm can effectively mine
the knowledge with remarkable biological significance.

D. BIOLOGICAL ENRICHMENT ANALYSIS

In order to verify the biological significance of biclusters in the
statistical sense, biological significance analysis can be carried
out by analyzing the biological function enrichment of the
biclusters [23]. By calculating the P-values of the biclusters
and the known gene species, and counting the percentage of
the biclusters, whose P-values are less than the preset P-value
threshold, we can understand the enrichment of the biclusters in
the biological process from the statistical point of view. The lower

Fig. 17. The comparison of enrichment on different similarity measures.

Table III Go analysis of BicACCC biclusters in yeast microarray dataset

G0 ID Gene Ontology term Cluster frequency Genome frequency Corrected P-Value

G0:0002181 cytoplasmic translation 90 of 754 genes,11.9% 186 of 7166 genes,2.6% 4.62E–37

G0:0042254 ribosome biogenesis 124 of 754 genes,16.4% 470 of 7166 genes, 6.6% 7.05E–21

G0:0022613 Ribonucleoprotein complex biogenesis 138 of 754 genes, 18.3% 567 of 7166 genes, 7.9% 5. 93E–20

G0:0042274 ribosomal small subunit biogenesis 59 of 754 genes, 7.8% 145 of 7166 genes,2.0% 1.54E–18

G0:0042255 ribosome assembly 38 of 754 genes, 5.0% 73 of 7166 genes, 1.0% 1.06E–15

G0:0034460 ncRNA metabolic process 127 of 754 genes, 6.8% 570 of 7166 genes, 8.0% 1.41E–14

G0:0030490 maturation of SSU-rRNA 46 of 754 genes, 6.1% 117 of 7166 genes,1.6% 2.75E–13

G0:0000462 maturation of SSU-rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA)

42 of 7 54 genes, 5.6% 108 of 7166 genes, 1.5% 9.31E–22

G0:0034470 ncRNA processing 108 of 754 genes, 3.7% 460 of 7166 genes, 6.4% 2.07E–11

G0:0016072 rRNA metabolic process 87 of 754 genes, 1.5% 359 of 7166 genes, 5.0% 2.44E–11

Experimental Agriculture 89

JAIT Vol. 2, No. 3, 2022

P-value settings and the larger the percentage is, the stronger the
correlation between the biclusters and the known gene categories
in general, which indicates that the biclusters are more significant
in biology.

Firstly, in order to prove that the ACCC similarity measure
proposed in this paper can measure the similarity of time series data
very well, the enrichment analysis of the results is made. In this
experiment, human cell microarray data were used. Using K-means
algorithm in BicAT toolbox, we select the existing similarity
measures such as Euclidean (Euclidean distance), Pearson (Pearson
similarity coefficient), Cosine (cosine similarity), Manhatan (Man-
hattan distance) in the toolbox to calculate the corresponding
enrichment ratio. Then, we run the K-means program using
ACCC similarity measure, and we get the results for enrichment
analysis as shown in Figure 18.

From the graph, it can be seen that the results of similarity
measure ACCC are better than those of Euclidean, Pearson, Cosine
and Manhatan. For example, when the P-value threshold is 0.01,
the enrichment ratio of ACCC results is 1, while the highest results
of other similarity measures are Cosine 0.84, which is less than 1.
When P-value is small, the advantage of ACCC is more obvious.
For example, when P-value threshold is 0.00001, the enrichment
ratio of ACCC results is 0.88, while Pearson is 0.39, which is
significantly less than 0.88. The experimental results show that the
similarity measures of ACCC are better than those of Euclidean,
Pearson, Cosine and Manhatan in the sequential gene microar-
ray data.

In order to compare and evaluate the results of BicACCC
algorithm on biological enrichment, we select CC, CC-TSB, CCC,

OPSM, xMotifs, K-means algorithms in BicAT toolbox. Then, the
results of CC, CC-TSB, CCC, OPSM, xMotifs and K-means are
obtained. The enrichment results of statistics are drawn on the
figures.

The results of yeast microarray data are shown in Figure 19. It
can be seen from the graph that the enrichment ratios of BicACCC
algorithm under different P-value thresholds are higher than that of
other algorithms under the same corresponding threshold. For
example, when the P-value threshold is 0.01, the enrichment ratio
of BicACCC algorithm is 0.78. The results of CC, CC-TSB, CCC,
OPSM, xMotifs and K-means are 0.17,0.71,0.11,0.5,0.17,0.52
respectively, which are less than 0.78. When P-value is small,
the advantage of BicACCC algorithm is more obvious. For exam-
ple, when P-value threshold is 0.00001, the enrichment ratio of

Table IV Go analysis of BicACCC biclusters in mouse cell microarray dataset

G0 ID Gene Ontology term Cluster frequency Genome frequency Corrected P-Value

G0:0008152 metabolic process 627 of 1109 genes,56.5% 1023 of 24197 genes,42.2% 3.28E–19

60:0044237 cellular metabolic process 551 of 1109 genes,49.7% 8914 of 24197 genes,42.2% 1.08E–15

60:00099ft7 cellular process 820 of 1109 genes,49.7% 1023 of 24197 genes,42.2% 5. 93E–20

60:0044699 single-organism process 757 of 1109 genes,68.3% 13528 of 24197 genes, 55.9% 1.88E–14

60:0071704 organic substance metabolic process 567 of 1109 genes, 51.1% 9534 of 24197 genes, 39.4% 1.49E–12

60:004423ft primary metabolic process 540 of 1109 genes,48.7% 9084 of 24197 genes, 37.5% 2.37E–11

60:0006ft07 nitrogen compound metabolic process 379 of 1109 genes,34.2% 5860 of 24197 genes, 24.2% 5.36E–11

60:0044710 single-organism metabolic process 304 of 1109 genes,27.4% 4437 of 24197 genes, 18.3% 7.12E–11

60:0034641 cellular nitrogen compound metabolic process 356 of 1109 genes, 32.1% 5595 of 24197 genes, 23.1% 6. 01E–09

60:0044763 single-organism cellular process 667 of 1109 genes, 60.1% 12149 of 24197 genes. 502% 2.50E–08

Table V Go analysis of human sell microarray dataset

G0 ID Gene Ontology term Cluster frequency Genome frequency Corrected P-Value

G0:0032501 multicelluar process 228 of 497 genes, 45.9% 7806 of 46271 genes,16.9% 3.39–48

G0:0044707 Single multicelluar organism process 221 of 497 genes, 44.5% 7527 of 46271 genes,16.3% 1.53E–46

G0:0044767 Single organism development process 186 of 497 genes, 37.4% 6428 of 46271 genes,13.9% 5.15E–36

G0:0032502 development process 187 of 497 genes, 37.6% 6523 of 46271 genes,14.1% 1.04E–35

G0:0007275 multicelluar organism process 168 of 497 genes, 33.8% 5394 of 46271 genes,11.7% 1.56E–35

G0:0050896 response to sti mulus 266 of 497 genes, 53.5% 12165 of 46271 genes,26.3% 7.84E–35

G0:0065007 biological regulation 329 of 497 genes, 66.2% 17941 of 46271 genes,38.8% 5.97E–32

G0:0048856 anatomic structural development 166 of 497 genes, 33.4% 5662 of 46271 genes,12.2% 9.86E–32

G0:0048513 organ development 122 of 497 genes, 24.5% 3223 of 46271 genes,7.0% 1.07E–31

G0:0048731 system development 149 of 497 genes,30.0% 4706 of 46271 genes,10.2% 2.54E–31

Fig. 18. The enrichment ratio of different algorithm in yeast microarray
data.

90 Xiaohui Hu et al.

JAIT Vol. 2, No. 3, 2022

BicACCC algorithm is 0.41. The results of CC, CC-TSB, CCC,
OPSM, xMotifs and K-means are 0, 0.05, 0.01, 0.33, 0.12, 0.28
respectively, which are smaller than 0.41. In the dataset, the
biological enrichment of the biclusters mined by BicACCC algo-
rithm is better than other algorithms’ on the whole.

As for mouse cell microarray data, we can see from Figure 20
that the biclustering enrichment of BicACCC algorithm is signifi-
cantly higher than that of CCC, CC-TSB, CCC, OPSM, xMotifs
and K-means. In particular, both CC and CCC algorithms perform
poorly and are not suitable for this data set.

For human cell microarray data, as shown in Figure 21, all of
these algorithms perform well. BicACCC algorithm’s results are
slightly inferior to CC-TSB algorithm’s results, but the results of
BicACCC algorithm are obviously better than the other five
algorithms.

The enrichment analysis of real gene microarray data sets
shows that BicACCC algorithm can obtain more valuable and
biologically meaningful biclusters from gene microarray data.

VI. CONCLUSIONS
In the analysis of gene microarray datasets, a large number of
biclustering algorithms did not account the temporal correlation of
sequential gene microarray data. Considering the continuous time
variation, the consistent evolution pattern in continuous columns
could be mined. However, there was not a suitable similarity
measure proposed for the consistent evolution in continuous
columns, nor was the consistent evolution pattern in all continuous
columns taken into account. In this paper, we first proposed a
uniformly similarity measure, which measures the consistent
evolution pattern in all continuous columns. According to the
similarity measure, a biclustering model was proposed to mine
all continuous columns coherent patterns. Firstly, the original data

was transformed into the differential data, and then the initial core
of the bicluster was defined. By using the measure function of
biclusters, the high quality biclusters were found by iteration. In the
experiments, the synthetic data sets were applied in simulation to
analyze the performance of the algorithm, which shows that the
proposed algorithm was efficient. Real gene microarray data sets
were used to analyze the experimental results and verify the
biological significance of the biclusters.

ACKNOWLEGEMENTS

The authors thank their colleagues who were involved in this study and
provided valuable technical support. The work is supported by China
Scholarship Council, Guangdong Science and Technology Department under
Grant no. 2016A010101020, 2016A010101021, 2016A010101022, Guangz-
hou Science and Information Bureau under Grant no 201802010033.

CONFLICT OF INTEREST
The authors declared that they have no conflicts of interest to
this work.

REFERENCES

[1] Y. Chen and G. De Luca, Service-Oriented Computing and System
Integration: Software, IoT, Big Data, and AI as Services, 8th edition,
Dubuque, IA, United states: Kendall Hunt Publishing, 2022.

[2] Z. Bar-Joseph, “Analyzing time series gene expression data,” Bioin-
formatics, vol. 20, pp. 2493–2503, 2004.

[3] M. J. Korenberg, Microarray Data Analysis: Methods and Applica-
tions, Totowa, New Jersey: Springer Science & Business Media, 2007.

[4] Y. Zhang, H. Zha, and C.-H. Chu, “A time-series biclustering
algorithm for revealing co-regulated genes,” Int. Conf. Inf. Technol:
Coding Comput., IEEE, vol. 1, pp. 32–37, 2005.

[5] F. Liu and L. Wang, “Biclustering of time-lagged gene expression
data using real number,” J. Biomed. Sci. Eng., vol.. 3, p. 217, 2010.

[6] M. Yao, Q. H. Wu, J. Li, et al. “K-walks: clustering gene-expression
data using a K-means clustering algorithm optimised by random
walks,” Int. J. Data Mining Bioinf., vol. 16, pp. 121–140, 2016.

[7] J. Oyelade, I. Isewon, F. Oladipupo, et al. “Clustering algorithms:
their application to gene expression data,” Bioinf. Biol. Insights,
vol. 10, pp. 237–253, 2016.

[8] S. Gupta, S. N. Singh, D. Kumar, et al. “Clustering methods applied
for gene expression data: a study,” 2016 Sec. Int. Conf. Comput.
Intell. Commun. Techno. (Cict), IEEE, pp. 724–728, 2016.

[9] H. Chen, Y. Zhang, and I. Gutman, “A kernel-based clustering
method for gene selection with gene expression data,” J. Biomed.
Inf., vol. 62, pp. 12–20, 2016.

[10] S. C. Madeira and A. L. Oliveira, “A linear time biclustering algo-
rithm for time series gene expression data,” International Conference
on Algorithms in Bioinformatics. Springer-Verlag, pp. 39–52, 2005.

[11] S. C. Madeira and A. L. Oliveira, “An efficient biclustering algorithm
for finding genes with similar patterns in time-series expression data,”
5th Asia-Pacific Bioinf. Conf. (APBC2007), October 9, 2006. Hong
Kong, China: Citeseer, pp. 67–80, 2007.

[12] B. Lu, Q. Wang and Y. Wang, “An improved artificial fish swarm
algorithm for traffic signal control,” Int. J. Simul. Process Modelling,
vol. 14, no. 6, pp. 488–499, 2019.

[13] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” Spire 2000: Seventh Int. Symp. String
Process. Inform. Retrieval – Proc., IEEE, pp. 39–48, 2000.

Fig. 19. The comparison of enrichment in mouse cell microarray data.

Fig. 20. Comparison of enrichment in mouse cell microarray data.

Experimental Agriculture 91

JAIT Vol. 2, No. 3, 2022

[14] B. Landstad, J. Ekholm, K. Schuldt, et al. “Health-related
quality of life in women at work despite ill-health. A prospective,
comparative study of hospital cleaners/home-help staff before
and after staff support,” Int. J. Rehabil. Res., vol. 23, pp. 91–
101, 2000.

[15] H. Wang, “All common subsequences,” Int. Joint Conf. Artif. Intell.,
pp. 635–640, 2007.

[16] S. C. Madeira and A. L. Oliveira, “A linear time biclustering
algorithm for time series gene expression data,” Algorithms Bioinf.,
pp. 39–52, 2005.

[17] Z. He, X. Liu, and Y. Chen, “Secondary-diagonal mean transforma-
tion Partial Grey Model based on matrix series,” Simul. Modelling
Pract. Theory, vol. 26, pp. 168–184, August 2012.

[18] J. L. Flores, I. Inza, P. Larra Aga, et al. “A new measure for gene
expression biclustering based on non-parametric correlation,”
Comput. Methods Programs Biomed., vol. 112, no. 3, pp. 367–
397, 2013.

[19] M. David, B. Christine, R. Elisabeth, et al. “GOToolBox: functional
analysis of gene datasets based on gene ontology. Genome Biol.,
vol. 5, 2004.

[20] S. Tavazoie, J. D. Hughes, M. J. Campbel, et al. “Systematic
determination of genetic network architecture.” Nat. Genet.,
vol. 22, pp. 281–285, 1999.

[21] R. J. Cho, M. J. Campbell, E. A. Winzeler, et al. “A genome-wide
transcriptional analysis of the mitotic cell cycle,” Mol. Cell, vol. 2,
pp. 65–73, 1998.

[22] B. Shuangxia, S. Shaomei, L. Shiyang, et al, “UAV Maneuvering
decision-making algorithm based on twin delayed deep deterministic
policy gradient algorithm,” J. Artif. Intell. Technol., vol. 2, pp. 16–22,
2022.

[23] F. M. Al-Akwaa and Y M. Kadah, “An automatic gene ontology
software tool for bicluster and cluster comparisons,” IEEE Symp.
Computat. Intell. Bioinf. Computat. Biol. (CIBCB2009). IEEE,
pp. 163–167, 2009.

92 Xiaohui Hu et al.

JAIT Vol. 2, No. 3, 2022

