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Abstract: The purpose of this research is to create a simulated environment for teaching algorithms, big data processing, and
machine learning. The environment is similar to Google Maps, with the capacity of finding the fastest path between two points in
dynamic traffic situations. However, the system is significantly simplified for educational purposes. Students can choose different
traffic patterns and program a car to navigate through the traffic dynamically based on the changing traffic. The environments
used in the project are Visual IoT/Robotics Programming Language Environment (VIPLE) and a traffic simulator developed in
the Unity game engine. This paper focuses on creating realistic traffic data for the traffic simulator and implementing dynamic
routing algorithms in VIPLE. The traffic data are generated from the recorded real traffic data published on the ArizonaMaricopa
County website. Based on the generated traffic data, VIPLE programs are developed to implement the traffic simulation with
support for dynamic changing data.
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I. INTRODUCTION
The purpose of the overall project is to create a simulated environ-
ment similar to Google Maps, where live traffic data are fed into the
map system that can be dynamically updated to display the quickest
path to a particular destination. Google’s system is one of the best
navigation solutions, but it is also too complex for introductory
computer science students to create similar systems for learning
purposes. A simplified traffic simulator environment was imple-
mented, so that students could learn to program a virtual car with
dynamically changing traffic. The main motivations of this paper
are the presentation of a dataset creation process based on real
traffic data and a corresponding dynamic routing algorithm for
educational purposes.

The environment used in the project is ASU Visual
IoT/Robotics Programming Language Environment (VIPLE) [1].
VIPLE offers all the functions necessary for novice programmers
to learn programming concepts while experienced computer
science students are able to program complex IoT devices,
robots, and machine learning (ML) [1–3]. Various simulators
have been implemented in VIPLE, including both desktop simu-
lators and web simulators [2]. Traffic simulation is one of the
functions that has recently been added into the VIPLE environ-
ment. VIPLE is particularly suited to this project as it provides
strong support for orchestration and workflow in robotic applica-
tions [1,4].

This paper focuses on the traffic simulator, which is a desktop
simulator, developed using the Unity game engine. The simulator
provides an aerial view layout of a city grid and contains several
different subareas of the city. Noncontrollable cars are colored

yellow and are spawned by the simulator at any position on the road
with randomized driving directions. These cars are used to repre-
sent traffic and can be given specific driving patterns according to
supplied data. The red car can be programmed, for example, using
VIPLE, and allows users to develop both manual and autonomous
driving applications.

To provide a strong educational experience for computer
science students, a number of student teams have engaged in
developing the Unity traffic simulator. This project focuses on
dynamic traffic routing on the traffic simulator using traffic data
generated from real Maricopa County traffic data from 2020. This
work aims to help students visualize their pathfinding algorithm
using VIPLE and the traffic simulator. The data employed in this
project are generated according to manually specified patterns from
the original Maricopa County data. A self-sufficient approach can
be implemented using an online ML application. Section VI
provides more information on this topic.

Section II provides a review of the previous work that provides
the foundation for this project. Section III details the outline of this
project. Section IV outlines the method and implementation
including a description of the generation of traffic data, operation
of the traffic simulator, and a dynamic routing algorithm. Section V
discusses and presents the results followed by a discussion of the
contribution. Section VI concludes the paper with a discussion on
potential future work.

II. RELATED WORK
This section presents related studies that have been done by
Arizona State University faculty and students within the same
overall project, as well as work done by researchers and practi-
tioners from other organizations.Corresponding author: Gennaro De Luca, (e-mail: Gennaro.Deluca@asu.edu)
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A. TRAFFIC SIMULATION

According to the definition from Wikipedia, “traffic simulation is
the mathematical modeling of transportation systems through
the application of computer software and graphic presentation
to better help understand, plan, design, and operate transportation
systems” [5]. Today, many traffic simulators exist, some of
them are proprietary systems and others are open-source
systems. For example, Anylogic [6] and TransModeler [7] are
commercial software. Simulation of Urban Mobility (SUMO)
[8], CityFlow [9], and OpenTrafficSim [10] are open-source
simulators.

The software used as the main reference is SUMO, which has
been developed by the Institute of Transportation Research at
German Aerospace Center since the year 2000 [11]. The goal of
SUMO is for traffic management and traffic forecasting [12],
whereas the VIPLE simulator is intended for educational pur-
poses focusing on programming logic and visualizing graphic
algorithms. SUMO’s road network is similar to the VIPLE traffic
simulator in that both use a graph data structure for the map. The
roads are represented as edges and intersections are represented as
vertices (nodes) [13]. SUMO uses a microscopic traffic simula-
tion model which means that each vehicle on the street is
simulated individually [14,15]. ASU VIPLE can be considered
as using a macroscopic model, since it simulates the overall traffic
situation, including traffic density and spawning rate, rather than
the specific details of each car. Krauß discussed the traffic flow of
SUMO in [16]. SUMO uses a microscopic traffic model in which
traffic flow is also at the microscopic scale. The maximum safe
velocity and acceleration for each car are important factors to be
considered in traffic flow [16–18]. VIPLE’s traffic simulator
does not consider these factors from the microscopic scale,
focusing instead solely on the macroscopic scale. As a result,
simulation and analysis become simpler at the cost of lower
realism. Behrisch et al. introduce research topics related to
SUMO vehicle-to-infrastructure communication, route choice,
and traffic light algorithms in [11]. These elements have a certain
similarity with VIPLE’s traffic simulator but with different ap-
proaches and goals.

B. TRAFFIC DATA GENERATION

Traffic data generation plays an essential role in this project and
other research and applications. However, missing data is com-
monly encountered and typically causes problems in traffic data
generation. Much research has been dedicated to solving data
imputation problems. For example, bidirectional recurrent neural
networks can be used to generate missing data in consecutive time
periods [19]. Convolutional neural networks are models to com-
pute the spatiotemporal missing traffic data [20,21]. Graph neural
networks also can be used in spatiotemporal missing data. Zheng
et al. proposed a graph multi-attention network to predict future
traffic conditions [22]. In addition, a graph attention convolutional
network was proposed by Ye et al. whose study suggested to
“incorporate graph attention mechanism to learn spatial correlation
of the traffic data,” then “temporal convolutional layers are stacked
to extract relations in time-series after graph attention layers” [23].
A recent study summarized the previous works on missing patterns
and missing traffic data imputation and addresses two limitations
on the traffic data imputation in the previous works. The solution
from that research is to combine the bidirectional recurrent layer
with a graph-based convolution layer to model the spatiotemporal
dependencies [24]. To facilitate visualization and presentation of

the techniques and data, we employed a different approach as
discussed below. However, these techniques can be used to
enhance our approach in managing incomplete data.

C. VIPLE

VIPLE is a graphical programming language environment devel-
oped in our previous work. A VIPLE program “is represented as a
workflow diagram, and the components are defined as activities or
Web services in the diagram” [25]. These programs can be
mathematically modeled using the Pi-Calculus, enabling auto-
mated semantic verification of decentralized IoT and robotics
applications written using VIPLE [3,25]. The ability to perform
such verification on student programs provides additional benefit to
this system as an educational platform. Figure 1 shows the basic
activities in VIPLE.

In addition to the basic activities, VIPLE provides various
services to facilitate different types of teaching and research
projects. Figure 2 presents two more sets of services that are
used in this paper. The first set of services includes general services,
including input/output services (Simple Dialog, Print Line, Text to
Speech, and Random), event services (Key Press Event, Key
Release Event, Custom Event, and Timer), and RESTful services.
The second set includes Robot/IoT services. Communication types
between VIPLE and Robot/IoT devices include Wi-Fi (TCP or
WebSockets), Bluetooth, and USB interfaces. JavaScript Object
Notation (JSON) is the data format VIPLE and Robot/IoT devices
use to send or receive messages, though custom interfaces can be
defined. These features provide the foundation for the current paper
to develop a dynamic path planning algorithm in the VIPLE
environment. ASU VIPLE can be downloaded from this site:
http://venus.sod.asu.edu/VIPLE.

Fig. 1. VIPLE Basic Activities [25].
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III. DESIGN
This section presents the overall design of the project, which
includes the ideas and methods used.

For this project, real traffic data were employed in VIPLE’s
traffic simulator from the local area, Tempe, Arizona, located in
Maricopa County [26]. Although this traffic dataset is incomplete,
it provides records of partially complete hourly traffic data for
individual intersections. These data records facilitate the applica-
tion of the data to the VIPLE traffic simulator.

With the dataset selected, the next step is to generate traffic
data. Because of the incompleteness of the traffic dataset from the
Maricopa government website, the data generation was based on
partially complete data, according to the hourly traffic trend in
previous research. Specifics of this data generation are presented in
Section IV.B. This data generation step was completed manually
for each road and each time interval. Due to the large values of the
generated traffic data, the dataset could not fit into the traffic
simulator at the original scale. It was therefore scaled down before
integration. Subsequently, the roads were mapped to the traffic
simulator according to the appropriate geographical position in
Maricopa County. This generated traffic data, a complete and
scaled dataset using the values from real traffic data, was incorpo-
rated into the traffic simulator through the JSON data format and
the Unity platform where the traffic simulator was developed.
Lastly, the path planning algorithm, Dijkstra’s algorithm, was
implemented in the VIPLE environment using a min-heap data

structure. In a classroom environment, various shortest path algo-
rithms may be substituted. Dijkstra’s algorithm was arbitrarily
chosen for this work to provide a baseline demonstration of
the work.

The experiment for this project is to run Dijkstra’s algorithm
with the city’s simulated dynamically changing traffic patterns.
The global path for the VIPLE programmable red car that
defines the navigation path to the destination continually updates
at each new intersection, demonstrating the quickest route accord-
ing to the distance and traffic congestion on the roads at the
given time.

IV. IMPLEMENTATION
This section illustrates the implementation process in detail,
including generating traffic data, incorporating traffic data into
the simulator, and implementing a dynamic version of Dijkstra’s
path planning algorithm in VIPLE.

A. TRAFFIC SIMULATOR OPERATION

This section introduces some functionalities and features of the
traffic simulator that were used in this project.

1) DATA STRUCTURE OF THE TRAFFIC SIMULATOR MAP. As
shown in Fig. 3, the traffic simulator is arranged in a grid. As a
result, the current simulator only supports streets that match this
layout, though further work could support more types of roads. The
entire traffic simulator map is stored as a graph data structure. Each
road is stored as an edge, and intersections are represented as
vertices. The adjacency list is formed by the neighboring inter-
sections of each intersection. The weight of each segment of road is
represented as a combination of the Manhattan distance and
number of cars on the road. The integration of this information
into the simulator is detailed in Section IV.D.

2) COMMUNICATION WITH A VIPLE PROGRAM. To enable
communication between VIPLE and the traffic simulator, the
Robot/IoT Controller service needed to be configured properly.
Figure 4 presents the configuration applied for this project. Robot/

Fig. 2. More Services from VIPLE.

Fig. 3. Simulator Grid.
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IoTMessage In is a service that can receive custom JSONmessages
from the traffic simulator by listening on the socket defined in the
Robot/IoT Controller configured earlier. Robot/IoTMessage Out is
used to transmit JSON messages through the socket to the traffic
simulator. The traffic simulator receives the JSON messages and
responds accordingly.

3) THE TRAFFIC SIMULATOR’S CONTROL INTERFACE. The
main control buttons are shown in Fig. 5. The Car Controls
section’s buttons take the red car to the designated area of the
map. The dropdown list includes different traffic patterns that
control the number of yellow cars on the map, corresponding to
the traffic density set for the simulator. Camera Controls help to
navigate the traffic simulator to different areas. The WASD keys
may also be used to pan the map north, west, south, and east,
respectively, Z can be used to zoom in, and X can be used to zoom
out. Toggle Traffic from the Sim Controls section toggles the
yellow cars to spawn at 0%, 20%, or 50% spawn rates. Toggle
Graph shows each intersection’s name on the graph.

B. MARICOPA COUNTY TRAFFIC DATA
GENERATION

The purpose of this section is to present the Maricopa County
traffic data, describe how to overcome the incomplete data problem
to generate traffic data, and the approach used to match the real
traffic data to the VIPLE traffic simulator.

The data used in this project are from the Maricopa County
government website. Fig. 6 shows a small sample of the data. This
dataset contains 1378 records of various intersections’ traffic
information at different times of day. For example, the record in
the 3rd row of the table shows that on August 26, 2020, at the
intersection of Carefree Hwy and 7th Ave, 5893 cars drove north
on 7th Ave through the intersection. At 8:15, 427 cars passed
through this intersection heading north, while 533 cars did the same
at 15:45.

Considering many major roads in Maricopa County follow a
grid layout, the traffic simulator was created using an 11 × 5 grid as
shown in Fig. 3. This structure was chosen to enable the application
of local traffic patterns. According to this 11 × 5 grid in the
simulator, eleven roads run in the east and west (E/W) direction,
and five roads run in the north and south (N/S) direction. Maricopa
County traffic data needed to be chosen and matched to the 11 × 5
simulator grid. However, a direct translation was impossible as
the Maricopa County government website is not complete in the
following ways. First, the dates to record Maricopa County traffic
were not complete. For this traffic dataset, most of the records were
for weekdays. Second, hourly traffic in a day was incomplete. For
example, one intersection may only have contained traffic records
at 8am and 4pm for that day. Third, one intersection may only have
had traffic records for one direction. For example, the dataset only
recorded the number of cars going north at the 7thAve and Carefree
Hwy intersection but omitted traffic records for the south, east, and
west directions.

With acknowledgement of the incompleteness of the dataset,
the next step was to clean and process the traffic dataset from the
Maricopa County website, mainly using the pandas Python library.
First, rows containing empty cells were removed. By removing
these rows, the traffic records were reduced from 1378 rows to
1278 rows. The data in the columns of Date, AM Hour, and PM
Hour were originally represented as strings. In order to do compu-
tation on time in the future, the to_datetime function from pandas
was used to convert the Date, AM Hour, and PM Hour into a date
and time format recognized in Python.

Once the traffic data were cleaned, selecting proper traffic data
records became an essential task. Eleven roads running east and
west and five roads running north and south were chosen from
Maricopa County traffic data to match to the traffic simulator. The
first attempt included selecting major streets from the local area.
However, this approach was not successful due to the incomplete-
ness of the data because one intersection only had traffic records for
one direction.

To resolve this issue, we selected roads and intersections
from the dataset which had as much complete information as
possible. Then, based on the records from the dataset, we generated
traffic data according to hourly traffic trends in a given day [27].
According to the dataset, the west area of Maricopa County
included more complete data records. Thus, roads were chosen
mainly from the west area of Maricopa County. N/S roads included
355th Ave, Jackrabbit Tr, ElMirage, 107th Ave, 99th Ave and E/W
roads included Thunderbird Blvd, Peoria Ave, Camelback Rd,
Indian School Rd, Van Buren St, Buckeye Rd, Lower Buckeye Rd,

Fig. 4. Robot/IoT Controller Configuration.

Fig. 5. Control Menu.
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MC 85, Broadway Rd, Southern Ave, Baseline Rd, Dobbins Rd,
Elliot Rd. The isin function was used from pandas to select the
records that have roads running in the N/S direction. These were
designated as On Road. E/W roads were set as Ref Road. Other
records had roads running in the E/W direction delineated as On
Road and roads running in the N/S direction that were Ref Road.
The records after processing are shown in Fig. 7.

With the selected records from the dataset and hourly traffic
graphs obtained using the same method as described by [27], traffic
data generation proceeded. The next step of data generation was
completed manually for each road for different time durations. The
daily traffic trends were split into eight distinct time groups.
The eight different groups are: 0:00–5:00, 5:00–8:00, 8:00–
12:00, 12:00–14:00, 14:00–17:00, 17:00–19:00, 19:00–21:00,
and 21:00–23:59. To manually generate a complete traffic dataset,
we analyzed the existing Maricopa County traffic data for each
road. Then, based on the existing traffic data, we applied traffic
patterns as linear functions with a random component to obtain the
whole day traffic data for a specific road. Figure 8 presents sample
code illustrating how traffic data were generated for Thunderbird
Blvd for eight different time periods in a day. First, as shown in
Fig. 7, #43 to #47 are the records that have Thunderbird as On
Road. Available times in records for Thunderbird are 10:45, 11:00,
12:15, 15:00, 16:15, and 16:30, which fall in the 8:00–12:00,
12:00–14:00, and 14:00–17:00 durations. It should be noted that

Fig. 6. Maricopa County Traffic Data.

Fig. 7. Selected Traffic Data from Arizona Maricopa County. Fig. 8. Sample Code for Traffic Generation.
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for manual traffic generation, the dates do not play an important
role in this process because most of the dates are on weekdays and
the goal for the traffic data generation is to generate hourly traffic
for any of the weekdays. The highest number for 10:45, during the
8:00–12:00 duration, is 1888, and the lowest number is 578. The
highest number for 11:00 is 1218, and the lowest number for 11:00
is 644. According to the traffic trend from Fig. 8, the traffic slightly
decreased from 8:00 to 12:00 during the weekday. Thus, the linear
function for 8:00–12:00 is shown in Equation 1 below, where
rand_time is the time randomly generated between 8:00 and 12:00.
Though this formula does not perfectly model the values in the real
data, it provides similar ranges based on the ranges from the real
dataset in each time range.

traf f ic = 1000 − 150 · ðrandtime − 8Þ (1)

Then, we added randint (0, 1400) to the linear function because
for the time duration between 8:00 and 12:00, the maximum
difference for the same hour at 10:45 was 1888–578, which is
1310. A random number is used in the total traffic to take different
traffic situations for different days into consideration. For the time
duration omitted in the Maricopa County traffic data, the hourly
traffic trend graph from Fig. 8 is applied to the linear function. For
instance, the traffic for Thunderbird Blvd between 5:00 and 8:00 is
missing. According to the existing traffic data from 8:00 to 12:00,
the traffic at 8:00 is between 1000 and 2400. Also, the increase rate
for 5:00–8:00 is faster. Thus, the linear function used is shown in
Equation 2, with a random integer between (0, 1400). This formula
demonstrates the same ideology as Equation 1 for a different time
range.

traf f ic = 250þ ðrand time − 5Þ � 250 (2)

At 8:00, the traffic increased between 1000 and 2400 with 250 cars
per hour. This process is repeated for other time durations in a day
for Thunderbird Blvd. Then, other roads used the same idea to
generate traffic data at different hours.

C. MAP MARICOPA COUNTY TRAFFIC DATA TO
TRAFFIC SIMULATOR

Determining how the Maricopa County traffic data map to the
traffic simulator was the next task. The mapping process was
performed in two major steps. The first step was to map the roads
fromMaricopa County to the simulator geographically. The second
step was to correspond the hourly traffic data for each road in the
simulator.

The first step of the mapping process was straightforward
because the chosen roads in Maricopa County were mapped to the
same geographical position in the traffic simulator as much as
possible. Figure 9 shows the mapping from the Maricopa County
roads to the simulator roads. The yellow columns show the roads
that run in the N/S direction, and the green rows show the roads that
run in the E/W direction.

The second step of mapping was necessary because the real
traffic data from Maricopa County were too large for the traffic
simulator. To have traffic data that the simulator could process, we
had to scale down the Maricopa County traffic volume. The traffic
volume for each road in Maricopa County varies from 20 to 3000.
To scale down, we divided all the original traffic data by 100. Then,
we grouped the resulting values from 0 to 30 into ten intervals and

assigned the appropriate volume value of each interval to each
traffic simulator road as presented in Fig. 10.

Figure 11 presents how the traffic data changes hourly as a
whole for the scaled-down data.

Finally, since the traffic data generated in Python were in a
pandas DataFrame object, which cannot be directly sent to the
simulator, the traffic data needed to be changed to JSON format. A
sample JSON file that includes 7:00–8:00 traffic data is shown
in Fig. 12.

D. INCORPORATE GENERATED TRAFFIC DATA
INTO TRAFFIC SIMULATOR

The traffic simulator map was stored as a graph data structure.
Roads were represented as edges and intersections were repre-
sented as vertices of the graph. Neighboring intersections for each

Fig. 9. Mapping between Maricopa Roads and Simulator Roads.

Fig. 10. Scale Down Traffic Data in Ten Intervals.
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vertex were included in the adjacency list. Code in Fig. 13
demonstrates the JSON structure sent from the simulator.

The senior capstone team at Arizona State University in charge
of developing the traffic simulator helped create a preset dropdown
list to select hourly traffic patterns in the simulator, as shown in
Fig. 14. “Traffic from Viple” is the option that uses the Robot/IoT
Message Out service in VIPLE to send an hourly JSON file to the
simulator. For now, 4:00–5:00, 7:00–8:00, and 10:00–11:00 traffic
patterns are chosen to be “Preset 1,” “Preset 2,” and “Preset 3” in
the dropdown list.

E. IMPLEMENT DYNAMIC DIJKSTRA’S
ALGORITHM IN VIPLE

The VIPLE program received traffic from the simulator at every
intersection and used the newest traffic information to reapply
Dijkstra’s algorithm to find the shortest path, so that the program
would generate a path at every intersection that is shortest in terms
of total distance and traffic congestion. The path was then sent to
the traffic simulator to control the driving of the red car. The
program has been divided into four parts as discussed below to
demonstrate key concepts in detail.

1) RECEIVING MAP INFORMATION FROM THE SIMULATOR.
The VIPLE code in Fig. 15 is used to receive the real-time map
information from the traffic simulator. As shown in Fig. 12, the
JSON structure received from the traffic simulator includes

Fig. 12. Sample JSON File Showing Traffic Data Between
7:00 and 8:00.

Fig. 13. JSON Structure of Traffic Simulator.

Fig. 14. Different Traffic Patterns in Dropdown List.

Fig. 11. Hourly Traffic for Simulator vs. Hour.
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information such as the edges, nodes, and position, each of which
are static at every intersection. Additionally, the variable Weight
changes over time because the weight takes distance and number of
cars between two points into consideration.

2) RECEIVE STARTING POSITION FROM THE SIMULATOR AND
DESTINATION FROMUSER INPUT. The VIPLE program for this
part is presented in Fig. 16. To receive the intersection where the

red car is currently located, {“getintersection”: “true”} is used to
request the JSON information from the simulator. When the value
has been received, it is stored in the source variable which
represents the current intersection of the red car. Simple Dialog
enables interaction from the user so they can enter the desired
destination of the red car as shown in Fig. 17, then it stores it in the
variable destination.

3) WHILE LOOP CALCULATING THE TRAFFIC AT EACH
INTERSECTION. A while loop is used in the program to loop
through all the intersections from the starting position of the
red car to its destination. At every intersection, the program
receives the up-to-date map information and the current intersec-
tion. Then, the program uses the new data in the Dijkstra’s
algorithm code to calculate a path with the current shortest
distance and least traffic. This while loop is a key step to
achieving the dynamic goal of the program. The basic structure
is shown in Fig. 18.

Fig. 15. Receive Map Information from the Simulator.

Fig. 16. VIPLE program for Starting Position and Destination.

Fig. 17. Enter Destination Dialog.
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4) DIJKSTRA’S SHORTEST DISTANCE ALGORITHM. Dijkstra’s
algorithm, an algorithm to compute the shortest path based on a
graph’s edge weights, is implemented as a C# Code Activity in
VIPLE. A min-heap is used as the data structure to store nodes,
edges, weight, and the adjacency list information. The output of
this C# code activity is stored in two variables. The first is the next
intersection the red car will be at, which is output as current, then
stored in variable source. The second one is output in path, which is
the global path to the destination that Dijkstra’s algorithm deter-
mined at the current intersection. As shown in Fig. 18, src, dst, and
json are the inputs for Dijkstra’s algorithm where src is the current
intersection, dst is the destination intersection, and json is the JSON
message that is received from the simulator at the current intersec-
tion. All three parts of the input are important parameters to be
passed into the algorithm.

V. RESULTS AND DISCUSSION
This section presents the output of the implementation of Dijkstra’s
algorithm in VIPLE, and the corresponding routes shown in the
traffic simulator. Figs. 19–21 are the outputs for the traffic pattern

received from the simulator between 7:00 and 8:00. Figure 19shows
the printed output of the planned global path at each intersection and
the path the red car has taken. In particular, Fig. 19 highlights that the
globally best pathmay change any number of times during execution
due to changes in the traffic. The light blue path shown in Fig. 20 is
the current planned global path. The dark blue path in Fig. 21 is the
path that was actually taken by the red car to arrive at the destination,
a history of where the car has traveled based on the dynamically
updated global paths. The dark blue path corresponds to the printed
output “THE PATH RED CAR HAS TAKEN” in Fig. 19.

VI. CONCLUSIONS AND FUTURE WORK
This paper presented a combination of generation of complete
datasets from real traffic data, application of this traffic data in the
traffic simulator, and dynamic routing algorithms using the gener-
ated traffic data. The generation of traffic data was based on real
Maricopa County traffic data recorded in 2020. The hourly data for
each road were translated manually. Then, the generated data were
incorporated into the traffic simulator developed in the Unity game
engine. Finally, routing algorithms were implemented in VIPLE by

Fig. 18. While Loop.
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Fig. 19. Printed Output of the Dynamic Dijkstra’s Algorithm.

Fig. 20. Planning Path. Fig. 21. Path Actually Taken.
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using the dynamically changing traffic data in the simulator to
update the red car’s path. This work utilized the VIPLE traffic
simulator. Furthermore, this work provided a visualization sample
of dynamic routing algorithms for computer science education.

As discussed, real traffic generation in this work can be further
improved in future projects. This part can be accomplished by
collecting additional traffic data and applying more advanced ML
techniques. One example of future research is to train a ML model
to predict traffic on each road segment at certain times of the day
based on the direction and distance from various city landmarks or
popular areas, such as downtown buildings such as skyscrapers,
amusement parks, and sports stadiums. Additionally, the same or a
different model could be trained to incorporate automobile colli-
sions, perhaps from a dataset with locations of the accident (such as
on a freeway or a side street) or with traffic density. Then, the
simulator could be updated to have car accidents occur, stalling
traffic. These new traffic jams could then be used to verify the
existing implementation of Dijkstra’s algorithm and provide
grounds for further research into more efficient dynamic path
planning algorithms. For the traffic simulator, new functionalities
can be incorporated to better simulate real traffic behavior and to
show them on the map in real time to depict trends more accurately.

For a self-sustaining approach that uses present day data, an
online ML application can be developed that automatically re-
trieves data from the traffic data website. Such an approach enables
verification of student approaches using a variety of datasets and
offers the possibility of performing research on modern traffic
trends. For example, modern data can be analyzed to determine
value of infrastructure changes.
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