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Abstract: The haze weather environment leads to the deterioration of the visual effect of the image, and it is difficult to carry out
the work of the advanced vision task. Therefore, dehazing the haze image is an important step before the execution of the
advanced vision task. Traditional dehazing algorithms achieve image dehazing by improving image brightness and contrast or
constructing artificial priors such as color attenuation priors and dark channel priors. However, the effect is unstable when dealing
with complex scenes. In the method based on convolutional neural network, the image dehazing network of the encoding and
decoding structure does not consider the difference before and after the dehazing image, and the image spatial information is lost
in the encoding stage. In order to overcome these problems, this paper proposes a novel end-to-end two-stream convolutional
neural network for single-image dehazing. The network model is composed of a spatial information feature stream and a high-
level semantic feature stream. The spatial information feature stream retains the detailed information of the dehazing image, and
the high-level semantic feature stream extracts the multi-scale structural features of the dehazing image. A spatial information
auxiliary module is designed and placed between the feature streams. This module uses the attention mechanism to construct a
unified expression of different types of information and realizes the gradual restoration of the clear image with the semantic
information auxiliary spatial information in the dehazing network. A parallel residual twicing module is proposed, which
performs dehazing on the difference information of features at different stages to improve the model’s ability to discriminate haze
images. The peak signal-to-noise ratio (PSNR) and structural similarity are used to quantitatively evaluate the similarity between
the dehazing results of each algorithm and the original image. The structure similarity and PSNR of the method in this paper
reached 0.852 and 17.557dB on the HazeRD dataset, which were higher than existing comparison algorithms. On the SOTS
dataset, the indicators are 0.955 and 27.348dB, which are sub-optimal results. In experiments with real haze images, this method
can also achieve excellent visual restoration effects. The experimental results show that the model proposed in this paper can
restore desired visual effects without fog images, and it also has good generalization performance in real haze scenes.
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I. INTRODUCTION
Natural images captured in haze weather have problems with low
contrast, low color saturation, and high brightness. Haze images as
input will significantly increase the difficulty of processing
advanced vision tasks. Therefore, dehazing such images is an
important step before performing advanced vision tasks [1].

Traditional methods [2–5] improve the visual effect of hazy
images by increasing the contrast and enhancing the detailed
features. However, due to the lack of physical model support,
improving contrast and color information only cannot achieve true
dehazing [6]. Therefore, some studies [7–10] have extrapolated
unknown parameters in atmospheric scattering models [11] to
restore clear images by constructing a priori knowledge. But fixed
prior knowledge cannot adapt to changing scenarios, resulting in
low robustness in complex real-world scenarios [12].

With the rise of deep learning, many methods [13] began to
employ neural networks to estimate unknown parameters in

physical models. But the estimation accuracy of unknown parame-
ters affects the quality of dehazed images [14]. Therefore, many
methods begin to directly dehaze images with end-to-end deep
learning models. End-to-end deep learning methods [12,15–18]
directly regress haze-free images from hazy images, without rely-
ing on unreliable physical models parameter estimation, achieving
excellent dehazing performance. However, the dehazing backbone
network of these methods [12,16,17] uses standard encoder–
decoder structures. The cascaded codecs do not take into account
the differences before and after image dehazing, resulting in
incomplete dehazing results or color deviations. In addition, the
downsampling in the encoding stage loses a lot of spatial informa-
tion, which degrades the quality of the reconstructed image in the
decoding stage. Recently, two-stream convolutional neural net-
work [19,20], as a novel convolutional neural network architecture,
has been successfully applied to image classification tasks. The
model computes two-stream features by constructing two sets of
feature extraction branches with different structures and then fuses
the two-stream features for output prediction. The performance of
the model is improved relative to that of the single-feature stream.
However, in the image dehazing task, only a small number ofCorresponding author: Yuanyuan Li (email: liyy@cqupt.edu.dn).
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classification output layers cannot effectively regress clear images
from the fused two-stream features. Although there are already
models [12] that fully regress the features by adding enhancement
modules in the output stage, it also brings additional computational
effort.

In response to the above problems, this paper proposes a two-
stream convolutional neural network for single-image dehazing.
Two dehazing feature streams are constructed in this network: spatial
information feature stream and high-level semantic features stream.
The spatial information feature stream retains the dehazed image
detail information, and the high-level semantic feature stream ex-
tracts the abstract multi-scale semantic information in the dehazed
image. This paper designs a spatial information auxiliary module,
which uses the attention mechanism to eliminate the attention
difference between different feature streams, so that the multi-scale
semantic information of the hazy image can effectively assist the
spatial information to restore the haze-free image. A parallel residual
twicing module is embedded in the high-level semantic feature
stream, which performs dehazing on the difference information of
the features at different stages in the encoding and decoding process,
so that the model focuses on the change area of the features during
the reconstruction process. By cascading multiple parallel residual
twicing modules, the model gradually recovers the information
during the feature decoding process. Comparative experiments
show that the dehaze model proposed in this paper has better
dehazing ability than the previous dehazing methods.

The contributions of our work are as follows:

• An end-to-end two-stream multi-scale feature dehazing net-
work with parallel extraction of spatial information features
and multi-scale high-level semantic features is proposed. The
ability to use a unified objective function to train the network to
extract two-stream features avoids the problem of spatial
information loss.

• The spatial information auxiliary module is proposed, which
uses the attention mechanism to merge the semantic informa-
tion and spatial information and construct a unified represen-
tation of different types of information, so that the semantic
information can assist the spatial information to gradually
restore the clear image, which improves the dehazing ability
of the model.

• A parallel residual twicing module is proposed. By dehazing
the feature difference information at different stages instead of
directly dehazing the features, the model can focus on the
feature change area during the reconstruction process, and the
model’s ability to discriminate hazy images is enhanced.

II. RELATED WORK
A. SINGLE-IMAGE DEHAZING

In the traditional dehazing method, the image enhancement method
starts from the image itself, improves the image contrast, and
strengthens the image details. Reference [2] used a multi-scale
Laplacian scheme to mix a set of artificially underexposed haze
images to synthesize a haze-free image. Reference [3] obtained a
set of underexposed images through gamma correction. In order to
preserve the overall structure and local details, both global and
local components were first decomposed to construct an effective
pixel-by-pixel weight map, and then the weight map was used to
guide pixel-level fusion and finally output the dehazed image after
adjusting the saturation. Due to the lack of physical model support,

such methods only improve contrast and color information, so they
cannot achieve dehazing in the true sense. Using the atmospheric
scattering model, many methods based on image restoration esti-
mate the unknown parameters through effective priors and reason-
able assumptions to restore a clear image. Reference [9] first trained
a scene depth estimation model with a differentiable function and
then restored a haze-free image based on the atmospheric light and
transmission map estimated. Reference [10] established a linear
model of the hazy image with prior information and estimated the
transmission function with the help of the depth map of the hazy
image. But for white object areas or haze images, this linear model
may not hold.

With the rise of deep learning, many methods began to use
neural networks to directly estimate the transfer function and atmo-
spheric light in atmospheric scattering models. Reference [13] pro-
posed a dehazing model named DehazeNet. The model estimates its
transmissionmap directly from a given hazy image and then feeds the
hazy image and the estimated transmission map into an atmospheric
scattering model to obtain a clear image. The activation function of
the network is a bilateral nonlinear rectification function, which
constrains the numerical space of the feature map between [0,1]
to improve the dehazing quality. Reference [21] proposed the AOD-
Net (All-in-one dehazing network) dehazing model. The model does
not estimate the transfer function and atmospheric light separately but
combines the two into one parameter, using a lightweight CNN
performs regression to get the final clear image.

The estimation accuracy of the unknown parameters by the
deep learning network will affect the quality of the dehazed image,
so in recent years, many methods have begun to apply end-to-end
deep learning models to directly regress the clear image from the
hazy image. Reference [15] proposed the GridDehazeNet model, in
which a trainable preprocessing module was designed to solve the
shortcomings of insufficient diversity and low pertinence of man-
ually selected preprocessing methods. An attention-based multi-
scale network is used for the dehazing backbone of the model,
which effectively alleviates the inflexibility of traditional multi-
scale methods. Reference [22] constructed an image dehazing
network with an encoder–decoder structure using octave convolu-
tion. In addition, this work designs self-attention modules for
features at different stages to enhance the dehazing effect of the
model. Reference [16] proposed an image restoration network
constrained by a physical model. The restoration network was
supervised by a discriminator constructed based on the physical
model during training to ensure the final quality of the restored
image. Reference [12] based on generative adversarial networks
used the discriminator to guide the image reconstruction network to
generate rough dehazed images and then used the enhancement
network to enhance the color and detail effects of the images, thus
proposing an enhanced image-to-image dehazing network. The
Cycle GAN model [23] proposes a cycle consistency loss for
image-to-image translation, which can accomplish image-to-image
translation without relying on paired data. Based on this, [17]
proposed a domain-adaptive framework for single-image dehazing.
The method first bidirectionally transforms the real hazy image and
the synthetic hazy image to reduce the domain shift between the
synthetic domain and the real domain; then the transformed image
and its original image are used as the input of the dehazing network.
Although these methods have achieved excellent image dehazing
results so far, the dehazing backbone of these methods adopts a
standard encoder–decoder structure. The cascaded codecs do not
take into account the differences before and after image dehazing,
resulting in incomplete dehazing results or color deviations.
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In addition, this structural at encoding stage loses a lot of spatial
information due to downsampling, which destroys the quality of
the reconstructed image.

B. TWO-STREAM NETWORK

Two-stream network, as a novel convolutional neural network
structure, has been used for image classification tasks. By con-
structing two feature extraction branches with different structures,
two heterogeneous features are calculated to solve the limitation of
model performance brought by single-image information. For
example, [19] proposed a two-stream network model, which can
simultaneously extract local and global spatial features in the input
data. The two-stream model proposed by [20] could simulta-
neously extract spatial and transformed features. The advantages
of the two sets of features complement each other, which improved
the performance of the model compared to a single-feature stream.
At present, there are few works using two-stream network for
image dehazing. In addition, if the image reconstruction model is
constructed according to the mode of classification network in the
above method, only relying on a small number of output layers
cannot make full use of the combined two-stream features.
Although there is already model [12] by adding augmentation
modules to fully learn the features output, this also brings addi-
tional storage and computational resource consumption.

Aiming at the above problems, this paper proposes a two-
stream multi-scale feature dehazing network. The main body of the
model adopts a two-stream structure so that the model can maintain
the spatial information of the input image. A spatial information
auxiliary module is proposed, which uses the attention mechanism
to eliminate the attention difference between the two feature
streams, so that the semantic information of the hazy image can
effectively assist the spatial information to restore the clear image.

The encoding and decoding part of the dehazing network is
embedded with a parallel residual twicing module, which learns
the difference between features and gradually recovers the infor-
mation in the image during the feature decoding process, so that the
model can extract more effective image features.

III. THE PROPOSED SOLUTION
A. THE OVERALL NETWORK STRUCTURE

As shown in Fig. 1, this model contains two feature streams: a spatial
information feature stream that extracts spatial features of images
and a high-level semantic feature stream that extracts multi-scale
semantic information of images. Specifically, the high-level seman-
tic feature stream is an encoder–decoder network based on a parallel
residual twicing module. The feature encoding part consists of a
feature extraction module and a convolutional layer with stride 2
concatenated, and the feature decoding part consists of parallel
residual push-pull. The pull module and the deconvolution layer
with stride 2 are concatenated. The spatial information feature flow
consists of a small full-resolution convolutional neural network. The
features calculated by the spatial information auxiliary module are
input into the feature extractionmodule so that the feature stream can
also use the semantic information for reconstruction tasks. The final
spatial information feature stream and high-level semantic feature
stream are spliced according to the feature channel direction and then
enter the output module to obtain a haze-free image.

B. SPATIAL INFORMATION AUXILIARY MODULE

The architecture of the spatial information auxiliary module is
shown in Fig. 2. The method first extracts the effective structural
information in the high-level semantic feature stream. High-level
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Kernel = 3×3,
Stride  = 2

Residual feture
Convolution module

spatial information 
auxiliary module

Feature replication

Convolution
Kernel = 3×3,
Stride = 2
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Input&Output
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Spatial Information Feature  Stream

high-level semantic feature stream

Fig. 1. The overall network structure.
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semantic feature stream attention (HSFSA) is then computed to
highlight semantic feature maps that are effective for the dehazing
task. Two-stream mixed attention (TSMA) is then computed to
emphasize regions of interest in the spatial information features
stream. Finally, the feature upsampling of attention calculation and
spatial information feature splicing are completed. Using the spatial
information auxiliary module, the image structure information in
the high-level semantic feature stream is gradually integrated into
the spatial information feature stream, and the full-resolution
network can utilize the image structure features to improve the
dehazing effect of the model.

In the high-level semantic features of convolutional neural
networks, some feature maps have strong correlation or no feature
information. Therefore, in order to extract the effective information
in the features, the method uses convolution to merge the feature
channels to achieve the feature extraction.

Attention mechanism [24] has been widely used in convolu-
tional neural networks to emphasize the region of interest of the
model and enhance the adaptability of the model. In the attention
model, a specific algorithm is used to calculate the weight infor-
mation in a specific dimension for the feature map. By assigning
weights, the feature information that deserves more attention is
highlighted, and the feature information that is not important or
even unfavorable for prediction is ignored. Therefore, in HSFSA,
attention features are used to treat different feature channels in
high-level semantic features unequally, providing additional flexi-
bility for the network model to handle different types of fog. As
shown in Fig. 3, for the input feature F, the semantic information of
the feature map is first aggregated using average pooling and max
pooling to generate two feature vectors with different semantics:
Fc
avg and Fc

max. In order to obtain the weights of different channels,
these two sets of features are first spliced and then pass through a
convolutional layer and Sigmoid function to obtain the channel
attention feature Fc

a:

Fc
a = σðConvðCatðFc

avg,Fc
maxÞÞÞ (1)

where σ represents the Sigmoid activation function, Conv repre-
sents the two-dimensional convolution, and Cat represents the

splicing of tensors along the number of channels. Finally, multiply
each element of the channel attention feature with each feature map
of the input feature:

F� = F ⊗ Fc
a (2)

Considering the uneven distribution of haze on different image
pixels and the different processing procedures of the full-resolution
network and the encoding–decoding network, the regions of
interest for the features of these two parts are not exactly the
same. If they are directly fused, it will hinder the expression of
spatial information features. Therefore, the TSMA is utilized in the
spatial information auxiliary module to unify the focus of the two
sets of features.

As shown in Fig. 4, in the TSMA, for the feature map F from
the high-level semantic feature stream, the maximum spatial
information feature Fs

max and the average spatial information
feature Fs

avg are first calculated along the channel direction:
8<
:

Fs
maxw,h = MaxðF1,w,h,F2,w,h · · · ;Fch,w,hÞ

Fs
avgw,h =

P
CH
ch=1

Fch,w,h

CH

(3)

where w,h represents the abscissa and ordinate on the feature map,
ch represents the number of the feature map, and CH represents the
total number of feature maps.

Then the convolution module is used to extract a self-convo-
lution spatial feature Fs

selfconv of size 1 × H ×W from the
C ×W × H feature map F:

Fs
selfconv = τðConvðFÞÞ (4)

where τ represents the nonlinear rectification activation function
ReLU. In order to enable high-level semantic features to better
focus on the area of interest for spatial information features, the
spatial information feature map Fh of the corresponding stage is
downsampled to W × H and then input to the convolution module
to obtain a size of 1 × H ×W for advanced Semantic convolution
spatial features Fs

hconv:

1×
1 conv
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Fs
hconv = τðConvðResizeðFhÞÞÞ (5)

After all the spatial features are spliced, the convolution
module completes the calculation of the TSMA tensor Fs

a:

Fs
a = σðConvð½Fs

max;F
s
avg;F

s
selfconv;F

s
hconv�ÞÞ (6)

Finally, perform point-to-point multiplication of the TSMA
tensor with each feature map to complete the weighted calculation
of the input features:

F�
ch = Fch � Fs

a (7)

C. PARALLEL RESIDUAL TWICING MODULE

As shown in Fig. 5a, in the U Net [25] structure, the horizontal
transfer process of features adopts the direct splicing:

in = Gð½inþ1; jn�Þ (8)

Among them, in represents the feature of the n-th layer of the
decoding part, jn represents the feature of the n-th layer of the
encoding part, and G represents the computing unit used for
dehazing, which represents the feature extraction module in the
model proposed in this paper. In this U Net structure, feature
splicing is performed first, and then convolution is performed to
extract features. For image segmentation tasks, the feature extrac-
tion module can simultaneously receive high-level semantic
features and low-level fine-grained information to improve classi-
fication accuracy. However, the U-Net structure is not a fusion
method specially designed for image dehazing tasks, and the
structure does not consider the difference between before and after
reconstructed features.

The twicing technique has been shown to be effective for
image restoration tasks [26]. In this technology, the iterative way of

features is improved, specifically filtered version of the data
residual was added back to the inital estimate. The twicing structure
shown in Fig. 5b is as follows:

in = Gðinþ1 − jnÞ þ inþ1 (9)

For the image dehazing task, the residual is defined as the
difference between a hazy image and its dehazed image. Since a
single dehazing computing unit cannot recover the perfect haze-
free image features from the features of the hazy image, the model
needs to integrate multiple dehazing computing units to gradually
reconstruct the haze-free image, so the residual between the
features at different stages will not be different zero. By extracting
features from the residuals and then adding them back to the
estimated features, the dehazing module can pay more attention
to the hazy parts of the features.

In order to enable the shallow layers in the network to also
receive the residual signal and further improve the performance of
the network dehazing, as shown in Fig. 5c, this paper uses a parallel
twicing method to complete this process. Parallel twicing is
represented by the following formula:

in = Gðinþ1 − jnÞ þ inþ1 þ jn (10)

Compared with the ordinary twicing structure, in the parallel
twicing structure, the estimated haze-free image features are added
to the image semantic features generated by the previous layer and
the corresponding shallow image semantic features so that both
parts can be A residual signal is received.

D. LOSS FUNCTION IN TRAINING STAGE

In this paper, the mean squared error (MSE) is used as the loss
function to calculate the difference between the network output and
the corresponding real clear image. The loss function is expressed as:

TSMA:
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L =
1
nb

Xnb
i=1

ðYi − ϕðXi,wÞÞ2 (11)

Among them, nb represents the batch size of the input data, Y
represents the real clear image, X represents the hazy image, ϕ
represents the proposed two-stream multi-scale feature dehazing
network in this paper, andw represents the parameters in the model.
The training process of the model is summarized as Algorithm 1.

IV. Experiment
In this section, the specific training settings of the network model
are first explained, and then the dehazing effect of the model is
shown. In the experiment, two synthetic public data [27,28] were
used for training and testing, and the Structural Similarity Index
(SSIM) and the peak signal-to-noise ratio (PSNR) are a total of two
full reference indicators to evaluate the dehazing effect of the
image. The larger the value, the closer the restoration result is to the
original image. Finally, this paper tests the image dehazing effect of
all methods in real foggy conditions and performs ablation analysis
on the proposed module.

A. DATASET

ITS (Indoor Training Set) and OTS (Outdoor Training Set) are two
large-scale synthetic haze image datasets for training dehazing
models [27]. ITS contains 10,000 clear images that can be used for
training. Each clear image corresponds to 10 haze images with
atmospheric light A between [0.7, 1.0] and transmittance beta
between [0.6, 1.8]. The OTS contains 2061 real outdoor images
from Beijing’s real-time weather. Using the estimated image depth
information, as well as the set atmospheric light and transmittance,
each clear image corresponds to 35 haze images. SOTS (Synthetic
Object Testing Set) [27] and HazeRD [28] datasets are used to
evaluate the dehazing performance of the model. SOTS is a test set
in RESIDE that contains 500 pairs of indoor haze/clear images and
500 pairs of outdoor haze/clear images; HazeRD is the result of
Zhang et al. Synthetic haze dataset contains 75 pairs of synthetic
clear haze/clear images.

B. TRAINING SETTINGS

The network model is implemented in Pytorch and trained using
the Adam optimization method [29], where β1 and β2 are set to
0.9 and 0.999, respectively. Five thousand indoor clear images
and 5,000 outdoor clear images were randomly selected from ITS
and OTS, for a total of 10,000 clear images to train the model. In
order to increase the generalization ability of the model to dehaze
and to simulate the process of haze formation from shallow to
deep in the real world for each clear image, three corresponding
synthetic haze images with haze density from shallow to deep are
selected. During the training process, all image sizes are uni-
formly scaled to 256 × 256, and the pixel values are normalized
to between [−1, 1] after being read in RGB format. The model
was trained with a batch size of 8, a learning rate of 1 × 10−4, and
trained on an RTX Titan GPU for 35 epochs. The loss change of
the model in the training phase and the change process of the
SSIM indicator on the test set are shown in Fig. 6. It can be
observed from the figure that in the first 20 epochs of the training
process, the loss value of the model rapidly drops below 0.2, and
the SSIM indicator on SOTS rapidly approaches 0.95 at the same
time. After that, the model loss slowly decreased and tended to
stabilize. The model successfully converged, and the SSIM
indicator finally reached 0.955.

C. RESULT

1) COMPOSITE DATASET. In this section, the method in this
paper and the method based on image enhancement: AMEF [2]; the

Fig. 6. The dehazing results of different methods on the HazeRD dataset.

Algorithm 1. Two-stream multi-scale convolutional neural
network for image dehazing training algorithm

Input:
nb←Batch size

t←Training times of model

w← Parameters of untrained two-stream multi-scale feature dehazing
network

Output:
The parameters of the trained two-stream multi-scale feature dehazing
network → w;

1: for num = 1; num ≤ t do

2: haze image sample X = fxð1Þ, : : : ,xðnÞg
3: clear free image sample Y = fyð1Þ, : : : yðnÞg
4: X←ϕðX,wÞ, The haze image is input into the model to obtain the

prediction image, ϕ represents the proposed two-stream multi-
scale feature dehazing network in this paper

5: L← 1
nb

Pnb
i=1 ðY − XÞ2, The difference between the predicted image

and the real image is calculated according to equation (11)

6: Update the parameters w of the two-stream multiscale feature
dehazing network using gradient descent for L

7: End for
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method based on image restoration: CO [7], CAP [10], DEFADE
[8]; methods based on convolutional neural networks: MSBDN
[14], RDN [30], GDN [15], EPDN [12], DA [17], and PBG [16] for
comparison. All methods use SSIM and PSNR metrics to objec-
tively evaluate their performance on SOTS and HazeRD datasets,
and the test image size is uniformly 512 × 512. The dehazing
images of all methods are shown in Figs. 7–9.

From Figs. 8, 9, it can be observed that the images of CO,
CAP, AMEF, and DEFADE have limited ability to dehaze, and
there is still obvious fog remaining in the image after dehazing.
End-to-end models for direct estimation of sharp images, RDN,
GDN, EPDN, DA, MSBDN, and PBG, yield better results than
other indirect methods. However, there is still a certain amount of
haze remaining in the dehazing results of GDN. In some cases,

Fig. 7. The dehazing results of different methods on the HazeRD dataset.

Fig. 8. The dehazing results of different methods in the indoor scene of the SOTS dataset.

Fig. 9. The dehazing results of different methods in the outdoor scene of the SOTS dataset.
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EPDN dehaze results in outdoor scenes will be darker than real
images. In addition, DA is accompanied by some color distortion
and poor results for high-frequency details such as edges and blue
sky. RDN has poor results for outdoor scenes, as shown in Fig. 9,
where white bands appear on the road surface. MSBDN achieves
excellent dehazing results on SOTS, but on the HazeRD dataset,
the excessive contrast of the scene causes some dark details to be
lost, such as the shadowed parts in the foliage. Compared with
these methods, the method in this paper can effectively restore the
structure and details of the image, and the reconstructed image is
closer to the original image.

The objective evaluation metrics of the 11 methods on the
datasets are given in Table I and Fig. 10. The method proposed in
this paper obtains the suboptimal PSNR and SSIM values on the
SOTS dataset and the optimal PSNR and SSIM values on the
Hazard dataset. Compared with the latest PBG, the PSNR and
SSIM of the method in this paper are improved by 0.809 dB and
0.018, respectively, on the SOTS dataset. For the HazeRD dataset,
the PSNR and SSIM metrics of the dehazing results of the method
proposed in this paper are 0.852 dB and 0.02, respectively, higher
than the PBG.

Table I Quantitative comparisons of different methods on two
data sets. Two best results are marked bold. (1) the best result and
(2) the second best result

Test Set

SOTS HazeRD

SSIM PSNR SSIM PSNR

CO 0.841 19.923 0.769 14.879

CAP 0.857 20.662 0.804 15.803

AMEF 0.821 18.604 0.806 17.027

DEFADE 0.766 17.911 0.735 15.598

GDN 0.897 20.760 0.680 12.528

EPDN 0.898 22.747 0.796 15.717

DA 0.906 22.872 0.814 17.151

PBG 0.937 26.539 0.850(2) 16.705(2)

MSBDN 0.982(1) 33.520(1) 0.808 14.885

RDN 0.943 24.230 0.845 17.050

ours 0.955(2) 27.348(2) 0.852(1) 17.557(1)

Fig. 10. Objective evaluation index results of different methods on SOTS and HazeRD datasets. The higher the SSIM and PSNR values, the better the
effect of image reconstruction. (a) SSIM of the SOTS dataset, (b) SSIM of the HazeRD dataset, (c) PSNR of the SOTS dataset, and (d) PSNR of the
HazeRD dataset.

Fig. 11. The dehazing result in real scenes.
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2) REAL SCENE. The dehazing effects of all 11 methods on the
real fog image are shown in Figs. 11, 12. It can be seen from the
result images that EPDN defogs most thoroughly, but the overall
image brightness is dark leading to excessive loss of dark details,
and the image color is also distorted, with an overall bias toward
red-yellow. TheMSBDNmodel with the best index in the synthetic
data has limited actual dehazing ability, as shown in the local zoom
results in Fig. 11, there are obvious haze on the river bank and the
stern part after dehazing. The dehazing ability of CO, CAP,
DEFADE, and GDN for the real image is weak, and there are
obvious haze left in the image. Color distortion and detail loss
occurred as a result of dehazing by DA, for example, the texture on
the river bank was blurred in Fig. 11, and the lawn of the course
turned yellow in Fig. 12. The image brightness of RDN was
unnatural, for example, part of the water surface turned black in

Fig. 11. Compared with these methods, the realistic dehazing effect
obtained in this paper is more complete, and the color of the image
can be accurately restored.

D. ABLATION STUDIES

In order to verify the validity of each module proposed in this paper
and the way it affects the model, after removing and replacing the
corresponding modules, this paper uses the same training method
as before to obtain the ablated model, which is analyzed quantita-
tively using evaluation metrics, and the results are shown in
Table II and Fig. 13.

The results from the ablation show that each module plays an
important role in the network performance. The model perfor-
mance is severely limited by using the spatial information feature

Fig. 12. The dehazing result in real scenes.

Table II Comparisons on SOTS for different configurations, a–f total six different combinations

Scheme a b c d e f (ours)

High-level semantic feature stream ✓ ✓ ✓ ✓ ✓

Spatial information feature stream ✓ ✓ ✓ ✓ ✓

Parallel residual twicing module ✓ ✓ ✓

Spatial information auxiliary module with no attention mechanism ✓

Spatial information auxiliary module ✓

SSIM 0.699 0.869 0.934 0.951 0.952 0.955

PSNR 19.917 22.121 25.158 25.699 25.453 27.348

Fig. 13. The result of ablation studies.
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stream (scheme a) or the high-level semantic feature stream
(scheme b) alone. When using only the high-level semantic feature
stream (scheme a) for the dehazing task, although the network
output has a relatively obvious dehazing effect, the loss of
advanced spatial features of the image is severe. In the case of
using spatial information feature streams alone (scheme b), the
feature extraction capability is limited due to the limited size of the
full-resolution network, which leads to poor model dehazing
performance. After the combination of the two feature streams
(scheme c), the model performance is improved substantially for
the first time, with SSIM and PSNR reaching 0.934 and 25.16 db,
respectively.

The horizontal transfer of features in the model using parallel
residual twicing modules (scheme d) allows the model to enhance
the performance of the model without introducing any additional
modules. Compared with the direct stitching of high-level semantic
features at different stages (scheme c), the parallel residual twicing
module enhances the ability of the model to represent the image
structure in the dehazing task, and the SSIM metrics have a
substantial improvement. Since the two features have different
concerns, the direct fusion of high-level semantic features with
enlarged resolution and spatial information features with the atten-
tionmechanism removed (scheme e) makes the expressions between
the features interfere with each other, and the PSNR metrics show a
decrease. By using the spatial information auxiliary module to build
the model (scheme f), the attention mechanism is used to unify the
focus between different features, which enables the semantic infor-
mation to effectively assist the spatial information to recover the
clear image, so that the model’s ability to maintain color and details
is improved and the PSNR index achieves a considerable improve-
ment. The union of all modules finally enables the model in this
paper to achieve a better dehazing effect.

V. CONCLUSION
In this paper, a novel two-stream convolutional neural network for
image dehazing tasks was proposed. The network is built on a dual-
stream network structure of high-level semantic feature streams
and spatial information feature streams and included a two-stream
feature fusion module and a parallel residual twicing module. The
spatial information auxiliary module is designed based on the
structural features of the two sets of feature streams, which con-
structs a unified representation of different dehazing information by
the feature extraction module, so that the semantic information
extracted from the dehazed image assists the spatial information to
reconstruct the clear image step by step, allowing the semantic and
spatial information to be fully learned before the regression output,
reducing the complexity of the network. The parallel residual
twicing module is designed based on the twicing technique to
gradually extract effective reconstructed features in the process of
feature decoding by learning the differences between the features
before and after dehazing. The results of the ablation experiments
show that the proposed module is effective for the dehazing
problem. A large number of comparison tests also show that the
proposed model in this paper performs well on practical image
dehazing tasks.

In future research work, the general applicability of the
proposed solution will be further explored and applied to tasks
such as target detection, instance segmentation, and pedestrian re-
identification in haze weather environments. The model structure
will continue to be optimized to achieve further improvements in
dehazing effect and computational speed.
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