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Abstract: The motivation for this research comes from the gap found in discovering the common ground for medical context
learning through analytics for different purposes of diagnosing, recommending, prescribing, or treating patients for uniform
phenotype features from patients’ profile. The authors of this paper while searching for possible solutions for medical context
learning found that unified corpora tagged with medical nomenclature was missing to train the analytics for medical context
learning. Therefore, here we demonstrated a mechanism to come up with uniform NER (Named Entity Recognition) tagged
medical corpora that is fed with 14407 endocrine patients’ data set in Comma Separated Values (CSV) format diagnosed with
diabetes mellitus and comorbidity diseases. The other corpus is of ICD-10-CM coding scheme in text format taken from www.
icd10data.com. ICD-10-CM corpus is to be tagged for understanding the medical context with uniformity for which we are
conducting different experiments using common natural language programming (NLP) techniques and frameworks like
TensorFlow, Keras, Long Short-Term Memory (LSTM), and Bi-LSTM. In our preliminary experiments, albeit label sets in
form of (instance, label) pair were tagged with Sequential() model formed on TensorFlow.Keras and Bi-LSTM NLP algorithms.
The maximum accuracy achieved for model validation was 0.8846.
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I. INTRODUCTION

Researchers in this paper kept the standardization to the global
perspective for analytics to be deployed on cloud and therefore,
used Fast Healthcare Interoperability Resource (FHIR) 4.0 HL7 to
model data. This standardized endocrine corpus is being analyzed
to diagnose diabetes mellitus (DM) and predict comorbidities in
this paper. The diagnoses are labeled with ICD-10-CM codes for
uniformity and understanding of international medical nomencla-
ture. Other corpus that would be used is ICD-10-CM corpus
extracted from the website; www.icd10data.com. ICD-10-CM
corpus would be tagged using tagged CSV HL7 standardized
endocrine corpus in the textual form. Both these Named Entity
Recognition (NER) tagged corpus would give us a medical corpora
to be used for unified natural language programming (NLP)
techniques for medical context learning for diagnosis, recommen-
dation, prescribing, or treating a particular patient in future.
Previously, Intelligent Medical System prototype (IMP) [1] is
proposed for e-coaching and recommendations that uses an incre-
mental learning mechanism. It showed 90% accurate results, and
the user satisfaction was 80% having 95% integration with legacy
system. It uses the capabilities of interactive dialogue system.
Internal knowledge system is built on heterogeneous data acquired
from multiple sources validated by knowledge experts by ripple
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down rules over an interoperable system with adaptable user
interface. The patients’ health logs are maintained that generate
alerts on observing critical condition of patient for a specific
disease. Prototype of IMP was tested in a hospital in Korea.
The targeted disease was Thyroid Cancer diagnosis, treated
through follow-up and recommendations given by doctors. This
prototype was integrated in Hospital Health Management Infor-
mation System to get S00 patients’ post treatment data that was
compliant with FHIR standard. Analytics used decision tree algo-
rithms; Chi-squared Auto Interaction Detection (CHAID) and J48
used majority voting and ensemble learning with 10-folds cross
validation to form semantic rules validated by knowledge experts
using RDRs. The accuracy with decision trees was 79.79%, J48
gave 80.56% accuracy, and 82.88% accuracy was observed with
CHAID. RDRs on other hand were continuously updated with new
rules through doctors’ feedback reaching the accuracy level of
90.32%. User satisfaction was evaluated by sharing two ques-
tionnaires; user interaction satisfaction was for overall system
usage, while user experience questionnaire was to access user
interface for emotions and feelings expressed through attitudes
after using the system. Clinical Document Architecture complying
with electronic medical record (EMRs) was converted to Virtual
Medical Records for IMP with 93% accuracy. Next-generation
medical systems are seen to have dialogue-driven chat bots with
FHIR as mediator standard as depicted by IMP [1].

The rest of the paper is organized as follows. Section 2 refers to
the previous propositions in the area of big data analytics for health.
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Sections 3 and 4 elaborate on significance of NLP techniques in
medical domain and how the limitations found are taken care of in
this paper by proposing a standardized mechanism for medical
context learning keeping to endocrine patients’ data. Section 5
explains the experiments performed to implement the proposed
mechanism in section 4. Unified tagging of medical corpora with
endocrine patients data and ICD-10-CM corpus for future use by
medical community for analysis is presented in section 5. Sections 6
and 7 conclude and elaborate the future direction for experimenting
with the common NLP techniques unified for medical context
learning.

Il. UNIFIED GENERALIZED BIG DATA
CLOUD ANALYTICS BUILT ON NLP

S Johnson et al. [2] came up with the unified data model, in year
2000, on which analytics for chronic diseases were built for
monitoring purposes with integration of different mining oper-
ands. Hadoop Distributed File System lets innovate Big Data
Analytics methodologies through altering the replication factor
for fault tolerance to maintain data integrity in healthcare
databases. The quality of analysis results is directly proportional
to the accuracy and completeness of health data. It is also
recognized that regional diseases show some unique features
known to that region only thus it is said to be phenotypically
related.

In healthcare, big data analysis is seen to have the potential
for monitoring, prediction, diagnosis, and management of dis-
eases and other systems performing in healthcare at organiza-
tional level like insurance and emergency care systems that
need speed to respond through in-time recommendations for
personalized patient care. The survey from major countries
showed that about 72% of medical professionals and students
working in different fields were not aware of the term big data
and 80% did not witness to see any big data technology been
implemented anywhere while 20% said that if implemented it is
not effective and is used at a very small scale. Challenges that
pose hindrance in adoption of big data technology in health
sector are trustworthiness and usability of data, the will to adopt
by health professionals, and security concerns. Now, as the
awareness is created of smart hospitals, 93% showed interest to
use the facility.

Complete healthcare data from different sources forms large
data banks that would be accessible through query system to give
deeper understanding of medical histories, diagnosis, recommen-
dations, and treatment plans with the underlying risks associated
with patients’ profiles. This architecture would enable us to
devise a large analytical system set on a uniform data model
standardized on FHIR HL7 to analyze heterogeneous data con-
verging in from multiple sources as a major shift in healthcare
business models.

lll. NATURAL LANGUAGE PROGRAMMING
IN HEALTH SECTOR

Textual clinical notes are also a good resource for data extraction
for e-Phenotyping, however, challenging due to its free form for
which two ways of extraction are there; symbolic and statistical
[3]. Symbolic focuses on predefined relations where statistical
annotates the corpus of text for finding semantic relationships.
There has been growing platforms for NLP processing on text in
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clinical notes to form interoperable data models, but the first one
was MedLEE (Medical Language Extraction and Encoding).
Mayo Clinic [3,4], while working on Learning Healthcare Sys-
tem, also devised an NLP pipeline cTAKES (clinical text analy-
sis and knowledge extraction system) that is open source to get
clinical rules for symptoms, diagnosis, medication, etc. Research
is led to develop a large corpus of clinical text taken from Mayo
Clinic in syntactic form. The first machine learning application
was applied to Phenotyping in 2007 [5] on cohort of diabetic
patients using feature selection via supervised model construc-
tion with 47 filtered features ranked on scale for their signifi-
cance. At that time Naive Bayes, C4.5, and IBI (Instance Bases
Learning algorithms) were used to identify diabetic patients. In
another study [6], prescriptions data, ICD-9 coding, and clinical
notes from Unified Modeling Language System (UMLS) were
employed to come up with Phenotyping model using SVM
rheumatoid arthritis. This study took all features structures
and unstructured to show that SVM as in [7-9] was as good
on unrefined feature sets as was on engineered. Noise in data
could not be ignored for which Halpern et al. [10] used frame-
work of Agarwal et al. [11] XPRESS (extraction of phenotypes
from records using silver standard) to build platform for extrac-
tion of features and building models. These researchers assumed
that large data sets would mitigate the effect of label errors by
setting bounds and would generate results as good as in small
data that is clearly labeled (Gold Standard). Phenotyping was
defined as three pillars: (i) complex relationship between multi-
ple features, (ii) it is understandable by medical knowledge
domain experts, and (iii) its definition is transferable into new
domain knowledge. Researchers used this definition to introduce
high-throughput phenotyping [12] that was unsupervised trans-
formed in a scalable format. These phenotypes were clustered in
correspondence with the diseases and validated by medical
experts. PheKnow cloud tool by Henderson et al. [13] evaluated
phenotypes derived from previous medical literature and associ-
ates them to the biomedical standard codes; latest International
Classification of Diseases (ICD) codes, SNOMED-CT (System-
ized Nomenclature of Medical — Clinical Terms), or MeSH, etc.
and ranks as per relativity thus limiting the need of medical
expert review. Automated Feature Extraction for Phenotyping
(AFEP) extracted features from medical resources like Wikipedia
and Medscape, to list UMLS concepts to train classifier. Feature
sets are more refined using NLP and ICD codes are given to
develop hybrid applications like ElasticNet on Logistic Regres-
sion Model. Surrogate-Assisted Feature Extraction extended
AFEP to include other resources like Merck Manuals, Mayo
Clinic UMLS, and Medline plus Encyclopedia removing noise
from phenotypes to classify manually labeled patients on gold
standard.

Long Short-Term Memory (LSTM) is known for automatic
concept tagging in clinical notes as referred to in [14]. Clinical
word embedding model is trained to learn context of problem,
tests, and treatments given to patients stated in practitioners’
notes. Clinical NER is quite challenging when the labeled corpus
is not available. Manual feature engineering has always remained
troublesome before the annotated clinical corpus was given
access to. Tokenized feature engineering is also considered
limited in its use as was proposed earlier in conditional random
fields (CRF). Deep learning is adopted in NLP-related tasks as we
experienced in fast.ai [15,16]. In CRF, LSTM RNN model
promised to derive contextual features for clinical concept extrac-
tion but had limitations to understand complex word semantics.
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Other good versions for contextual word embedding were seen as
Embeddings from Language Models (ELMo) adopted features of
language model to perform better than Glove and LSTM, etc. but
lacked understanding of clinical domain. In recent research [14],
bidirectional LSTM-CRF model embedded in ELMo was com-
pared with other state-of-the-art models for performance in
clinical context. Ensemble of ELMo and LSTM-CREF best per-
formed with the improved performance of 3.4% in terms of F1-
score. These recent breakthroughs in embedding approaches
using LSTM, ELMo and Bidirectional Encoder Representations
from Transformers (BERT), etc. still need a common standard
mechanism for integrating clinical context learning [17].

In [18], researchers have found that similar problem of
classifying multiple labels, in four data sets with as large as
having 0.5 million labels, is solved through eXtreme Multi-label
text Classification (XMC). The deep pretrained transformer NLP
models gave state-of-the-art results for sentence classification
and albeit label sets [19]. Application of these deep pretrained
transformer models in XMC problem at first did not give good
results for data sparsity and huge volume. Therefore, X-Trans-
former was proposed to solve XMC problem by fine-tuning the
transformers with a scalable approach. The pairs of (instance,
label) had to be formed and the scalable function needed training
such that the pairs with high relevance had high score. This
hypothesis was challenging to solve. The first challenge was to
determine model parameters and GPU memory size when XLNet
was applied to XMC model. There was a difference in MNLI
data set in GLUE and the 1 million labels in XMC data set so the
classifiers size had to differ for both the data sets making XMC
problem harder to solve. The other issue was sparsity of data. In
XMC data set, only 2% had more than 100 instances to train.
98% of data had long tailed labels with very few instances. This
sparsity issue had not been resolved before for a large data set as
in XMC. There were two methods to solve this challenging
XMC problem; (i) fine-tune deep transformers or (ii) the transfer
learning that has been discussed earlier in many contexts of
word2vec, GPT, or ELMo having bidirectional LSTM model
trained on large data set. The option of transfer learning,
however, economical was set aside as it limited the model
capacity for adaptation. Deep learning approaches were found
better than TF-IDF in extracting neural semantic embeddings in
text. XML-CNN contains single-dimension convolutional neural
nets to sequence words embeddings to label text. Recent break-
through in AttentionXML having Bi-LSTMs and learned labels
through scoring mechanism gets the models trained with hierar-
chical label trees. AttentionXML also takes care of negative
sampling of labels to avoid back-propagating the bottleneck
classifier layer. NLP community is seeing the shift to pretrained
and fine-tuned models to achieve GLUE benchmark levels, NER
and question answering chat bots, etc. XLNet and RoBERTa are
the latest advancements in pretrained transformer models.
XLNet, BERT, and RoBERTa are taken to fine-tune and give
X-Transformer to solve hypothesis of high scored function for
instance relevant to the label. BERT and RoBERTa are same in
speed, while XLNet is slower. In performance, RoBERTa and
XLNet were better, and there was not much significant differ-
ence in the results.

Researchers in this paper have explored Bi-LSTM and
keras on TensorFlow framework for text mining and classifica-
tion for diagnosis using proposed unified NER tagging mecha-
nism to be built on ICD-10-CM Tagged corpus (Fig. 1).
Researchers intend to explore X-Transformer and other recent

Endocrine Patients Tagged Corpus

Tag Tag Tag Tag Tag Tag Tag Tag Tag
0109 -z - u-@-@
©+0:0:0:0:0+0+-®=-9

Tog Tag Tag Tag Tag

Tag  Comma Delimited Text Tag  Comma Delimited Text
Endocrine Patients Datain CSVformat

processedfor NER Tagging

FIGURE 1. Proposed mechanism for custom unified NER tagging of
ICD-10-CM corpus tagging for diagnosing endocrine diseases.

models [20,21] proposed for XMC problem to find solution to
medical context learning elaborated in the proposed mechanism
in section 4.

IV. PROPOSED DIAGNOSTIC NER
TAGGING OF CORPUS FOR DM AND ITS
COMORBIDITIES

Wu et al. [22] had worked on automated free text mining to find
phenotypes in medical context. NLP process implementation or
transfer has always remained difficult on new data or settings.
Paper [22] proposed distributed representation mechanism to
train and reuse NLP models through identified phenotype embed-
dings in patient profiles. Twenty-three phenotypes were extracted
from 17 million documents of anonymous medical records from
South London Maudsley, NHS Trust in UK, for application on 6
morbidities. The experiments were done to reevaluate NLP
models for identification of 4 phenotypes. Proposed approach
selects the best NLP model using two measures for quantification
of reductions in duplicate and imbalance wastes. The proposed
approach also guides in validation and retraining of NLP models
to perform up to 93% to 97% accuracy. Adaptation and reuse of
NLP models with phenotype embeddings in new settings are more
effective with higher efficiency than blindfolded adaptation of
NLP models.

In this paper, researchers tried to propose the standard
mechanism for clinical context learning that was missing in
[17]. The authors of this paper have devised a big data diagnostic
analytics model for DM and its comorbidity diseases. This
analytics needs uniform clinical context learning for its HL7
FHIR v4 standardized diagnostic data model to be analyzed in
interoperable and generalized settings over the cloud. The phe-
notype fields contained in our custom endocrine patients’ corpora
in.csv format would be used to tag the corresponding values in
NER format associated with the diagnosis of DM and its
comorbidities.

The NER tagged corpora of endocrine patients’ diagnostic
profiles would then be used to tag ICD-10-CM corpus generated
from (www.icd10data.com). Iterating the same step, this ICD-10-
CM corpus would be used to tag comma separated “Note” and
“PC” fields in our custom endocrine patients’ corpus as shown
in Fig. 1.
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The analytical techniques used in our research are applied
on the custom corpus of 14407 DM patients with co-existing
diseases with 33185 instances mapped onto unified standard
data model set on FHIR HL7 schema labeled with ICD-10-
CM codes.

V. EXPERIMENTATION WITH NLP
TECHNIQUES

In our experimentation, Gradient Paperspace GPU data science
template frameworks are explored for reusing NLP models men-
tioned in [22] for medical context learning.

Experiment 1: Transformers + NLP template is used to create
our python notebook. The CSV corpus of 14407 DM patients’ data
set is tagged with comma delimited “Note” and “Diagnosed” fields
to train and predict “Diagnosed” disease labels using NLP Sequen-
tial NER model made on LSTM, Keras, and TensorFlow. (Note,
Diagnosed) tagged values are paired as an albeit form for patients
as in [18] to find the right sequence to diagnose the corresponding
disease. Figure 2 shows a dry run of the code that was tried with
LSTM and Bidirectional LSTM both that gave near to zero percent
accuracy which led us to other experiments with other entities like
“Exam” or “Test” fields which do not hold sparse values as the
“Note” field in our data set.

Experiment 2: The same Sequential() model having Ten-
sorFlow.Keras and Bi-LSTM was applied to the other set of
label values (“Exam,” “Disease”), in sequence of (instance tag,
label tag) pair for f{x, y) to predict the most probable disease for
the prescribed examination by the doctor as per patient’s
problem. In previous experiment “Note” field had sparse values

Read CSV 14407 endocrine patients dataset (HL7-FHIR v4)
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<keras.callbacks.History at @x7f80@c208cf8>

model.evaluate(X_valid, Y_valid)

1/1 [ ] - @s 21ms/step
[-2.807425498962402, ©.8846153616905212]

- loss: -9.8074 -

accuracy: ©.8846

import itertools

i = np.random.randint(@, X_valid.shape[0]) #659

p = model.predict(np.array([X_valid[i]]))

p = np.argmax(p, axis=-1)

_true = Y_valid[i]

print("{:15]\t{:5}\t {}\n".format("Exam", "True", "Disease"))

print("-" *30)

for w, true, pred in zip(X_valid[i], Y_valid[i], itertools.repeat(p[0])):

print("{:15}\t{}\t{}".format(ex[w-1], labels[true], labels[pred]))
True Disease

Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma oM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma oM Diagnosed
Fresh Frozen Plasma oM Diagnosed
Fresh Frozen Plasma oM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma DM Diagnosed
Fresh Frozen Plasma oM Diagnosed
FIGURE 3. The (‘Exam’, ‘Disease’) pair on reaching maximum

validation accuracy of 0.8846 tags corresponding Disease Label as
‘Diagnosed’.

in the form of long sentences and therefore model accuracy was
near zero.

“Exam” field used as fag in place of “Note” had much smaller
instances to tag corresponding “True” disease as ‘“Diagnosed”
(Fig. 3). RMSProp trained model gave accuracy up to 0.5631
where model validation accuracy was 0.8846 in only first 2 epochs
(Fig. 4). RMSProp optimizer was found fast learner in comparison
to Adam in Bi-LSTM Keras Sequential() model. It took less than 10

Get lists of all unique 'Notes' and 'labels' from 'NOTE' and 'Diagnosed' fields

Group the input data per PatientID and initialize patient Notes as x and Diagnosed labels asy using Keras sequence pattern

Hyperparameters to LSTIV Sequential() model are; activation="sigmoid", recurrent_activation="hard_sigmoid", Dropout(0.25),
loss="binary_crossentropy’, optimizer="rmsprop', metrics=['accuracy'])

model.evaluate(X_valid,Y_valid) - Minimal Accur

Generate predictions for validation set

FIGURE 2. The implementation of TensorFlow.Keras Sequential() model with LSTM to tag the predicted diagnosed diseases through clinical “Notes”

having near to zero accuracy.
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FIGURE 4. Keras Bi-LSTM Sequential() model trained on RMSProp
optimizer giving validation accuracy of 0.8846 in first 2 epochs.

Output Shape

(None, 15, 64) 2048

5, 128) Geaas

15, 128) o

y: 0.00002+00

- val_accuracy: .0000e+0¢

FIGURE 5. Keras Bi-LSTM Sequential() model trained on Adam
optimizer giving validation accuracy of 0.

epochs to train the model with RMSProp where Adam was hard to
train even with 50 epochs in default settings (Fig. 5).

VI. CONCLUSION

The authors of this paper mainly proposed the mechanism (Fig. 1)
in section 4 for NER tagging of unified medical corpora for
standardized medical context learning. Few known NLP libraries
like Keras over TensorFlow framework were reused for medical
domain learning on given corpora of endocrine patients and ICD-
10-CM coding scheme. LSTM and Bi-LSTM were both tested and
validated for Sequential() model and achieved relatively good
accuracy of 0.8846 with single parameter “Exam” to predict
True disease tagged as “Diagnosed” (Fig. 3).

Vil. FUTURE WORK EXPLAINED

Known NLP methodologies used in fast.ai as mentioned in previ-
ous section or others like, NLTK, BERT, LSTM, Keras, etc., would
be experimented to implement our proposed mechanism. The
mechanism as demonstrated in Fig. 1 is for NER tagging of
endocrine patients data set and ICD-10-CM corpus for uniform
learning of medical context. These experiments are being

conducted at lower level with access to the NLP frameworks
and libraries in open-source cloud platforms; Gradient Paperspace,
etc., for high-performance computing. Researchers also intend to
explore and implement XMC [18] to find solution to medical or
clinical context learning [17] elaborated in the proposed mecha-
nism in section 4 with higher accuracy.
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