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Abstract: Because of its strong ability to solve problems, evolutionary multitask optimization (EMTO) algorithms have been
widely studied recently. Evolutionary algorithms have the advantage of fast searching for the optimal solution, but it is easy to fall
into local optimum and difficult to generalize. Combining evolutionary multitask algorithms with evolutionary optimization
algorithms can be an effective method for solving these problems. Through the implicit parallelism of tasks themselves and the
knowledge transfer between tasks, more promising individual algorithms can be generated in the evolution process, which can
jump out of the local optimum. How to better combine the two has also been studied more and more. This paper explores the
existing evolutionary multitasking theory and improvement scheme in detail. Then, it summarizes the application of EMTO in
different scenarios. Finally, according to the existing research, the future research trends and potential exploration directions are
revealed.
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I. INTRODUCTION
Because of the advantages of high efficiency and easy implementa-
tion, evolutionary algorithms (EAs) have been widely used in various
optimization problems.[1], solving scheduling problems [2], intrac-
table constraint problems [3], multi-objective optimization (MOO)
[4], combinatorial optimization [5], big data [6,7], image classifica-
tion [8], etc. In recent years, more and more researchers have used
EAs to solve difficult problems in different research scenarios.
Although the evolutionary algorithm has many advantages, it also
has two limitations: it falls into local optimums and it is difficult to
generalize. Multitask optimization (MTO) method can solve the
above problems well. Through the knowledge transfer between
different tasks, the generalization ability is effectively improved.
At the same time, the knowledge of other tasks can be used to explore
potential areas more effectively, improve the possibility of searches,
and find the optimal solution to the current task.

Evolutionary multitask optimization (EMTO) has been widely
used in feature selection, point cloud registration, sparse recon-
struction, dynamic programming, and combinatorial optimization.
EMTO could fully explore the search space of the current task by
utilizing the search experience of other tasks, so it had good
generalization ability[9]. At the same time, it could still have a
good effect when dealing with data loss, and it was widely used in
real scenes[10].

EMTO uses the implicit parallelism between tasks to transfer the
common knowledge of different tasks, uses the effective knowledge

of other tasks as potential search solutions, extracts the knowledge
between different tasks, and optimizes multiple tasks simultaneously
through the common knowledge. Evolutionary multitasking has
flexible representation methods and different implementations. For
different problems, we can design unique knowledge transfer strate-
gies and coding methods and use the knowledge between tasks to
effectively deal with the problems to be solved.

In this paper, EMTO [11–13] is studied in detail, and its solution
procedure in various real-world application domains is explored. Due
to the combination of MTO and an EA and its good performance,
there has been a lot of research in recent years. First of all, this paper
will explore the existing research of EMTO and summarize its
different methods and effective improvements. Then, according to
different application scenarios, we comprehensively summarize how
MTO and EAs can solve problems in different scenarios. It is more
convenient to understand the most advanced MTO research field and
how to useMTO to solve problems. Comparedwith other papers, this
paper studies the latest applications and methods of multitask EA.
The main contributions of this paper are as follows:

(1) We introduced the basic theory of EMTO and the most
advanced improvement strategies.

(2) We summarized how to use EMTO to effectively solve target
problems in popular fields and explored why to use MTO in
these scenarios.

(3) We introduce the challenges and potential research trends for
existing EMTO problems.

The remaining parts of this paper are organized as follows.
Section II introduces the principle of EMTO and potential improve-
ment methods. Section III summarizes which scenarios of EMTOCorresponding author: Yue Wu (e-mail: ywu@xidian.edu.cn).
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have been applied and how to use them for optimization. The
challenges of EMTO and future research methods are described in
Section IV. Finally, Section V summarizes the work presented in
the work.

II. EMTO FUNDAMENTALS
We all know that very few problems stand alone in the real world.
Questions are often interrelated and contain a lot of implicitly
useful information. The information can further promote each
other’s problem-solving process so that multiple problems can
be solved efficiently at the same time [14]. Inspired by multitask
learning [15] and the working principle of the human brain [16], the
idea of multitasking was first introduced into the field of optimiza-
tion by Gupta et al. in 2016 [17], and a new research problem called
the MTO problem was described in the field of evolutionary
computing. This enables two important problems (i.e., stuck in
local optimums and difficult to generalize) in traditional EAs to be
effectively solved. On this basis, the MTO problem is solved by
using population-based optimization algorithms (e.g., EA), and
thus the concept of EMTO is proposed. In recent years, more and
more researchers have paid attention to EMTO and proposed many
improved algorithms. Therefore, this section first briefly introduces
the basic concepts of EMTO. Subsequently, the existing state-of-
the-art improved algorithms of EMTO are summarized and
analyzed.

A. THE OVERVIEW OF EMTO

In the field of evolutionary computing, previous research was
roughly divided into two categories: 1) single-objective optimiza-
tion (SOO) problems [18] and 2) MOO problems [4,19] The SOO
problem obtains the optimal solution by optimizing a scalar fitness
function, while the MOO problem obtains the optimal solution by
optimizing a vector fitness function. Different from SOO and
MOO, EMTO was an emerging research problem proposed in
recent years that aims to utilize the synergistic facilitation between
tasks to potentially facilitate information transfer, thereby promot-
ing the optimization process of multiple tasks and achieving the
simultaneous and efficient solution of multiple optimization tasks
[10]. Specifically, the EMTO problem with K single-objective
minimization optimization tasks is considered, each with its
own specific search space. It can be described in the following
form:

x�k = argminx∈Ωk f kðxÞ, k= 1,2, · · · ,K−1,K (1)

where x�k is the optimal solution of task Tk in its specific search
space Ωk and f kð�Þ is the objective function of task Tk. By
minimizing them, a set of globally optimal solutions
fx�1,x�2, · · · ,x�Kg for K tasks can eventually be found.

Multifactorial optimization (MFO) is an EMTO paradigm that
aims to achieve efficient solutions to EMTO problems using a
single evolutionary population. In MFO, each individual focuses
on only one task. Each task acts as an independent factor affecting
individual evolution in the process of multitask evolution. Before
evolution, these specific search spaces Ωk were first encoded into a
unified search space Y for representation. Then, the population is
evolved through an information sharing strategy within and
between tasks. Finally, individuals need to be decoded into the
original search space before being evaluated. To evaluate the
performance of individuals in multitask scenarios, the following
four important properties are defined for each individual:

• Factorial cost: The factorial cost ψ i
j of individual xi on task Tj

is defined as the objective function value obtained by xi on this
task, i.e., ψ i

j = f jðxiÞ.
• Factorial rank: The factorial rank rij of individual xi on task Tj
refers to the sequence number of individual xi after the factorial
cost of all individuals on task Tj are arranged in ascend-
ing order.

• Skill factor: The skill factor τi of individual xi is defined as the
sequence number of the task with the smallest factorial rank of
individual xi among all tasks, i.e., τi = argminj∈f1,2, · · · ,Kgfrijg,
which means that the individual performs best on task τi.

• Scalar fitness: The scalar fitness φi of individual xi is defined
as the reciprocal of the best factorial rank, i.e.,
φi = 1=minj∈f1,2, · · · ,Kgfrijg.
Among them, the skill factor is a cultural characteristic that can

be obtained by imitating parents. Scalar fitness is a unified indicator
for judging the pros and cons of individuals in multitask scenarios,
and it can directly compare the performance of individuals. The
comparison method is as follows: given two individuals xa and xb,
if φa > φb, it is considered that the individual xa dominates the
individual xb in a multitask scenarios, and this dominance relation-
ship is expressed as φa≫φb.

Gupta et al. also implemented the MFO paradigm by using the
genetic algorithm [20] and proposed a multifactorial evolutionary
algorithm (MFEA) [17]. The algorithm was inspired by the bio-
logical hereditary traits that depend on the interaction between the
two factors of genes and culture [21], and two strategies (assorta-
tive mating and vertical cultural transmission) are designed to
realize it. In addition, there are some works dedicated to utilizing
other population-based optimization algorithms to implement the
MFO paradigm. For example, Feng et al. [22] pioneered the use of
the differential evolution algorithm and the particle swarm optimi-
zation algorithm to realize MTO by designing a new effective
assortative mating and proposed MFDE and multifactorial particle
swarm optimization (MFPSO). Aiming at the problem that MFPSO
only explored a relatively narrow area, Tang et al. [23] devised the
inter-task learning-based knowledge transfer strategy to replace the
inter-task information exchange in MFPSO. Zhong et al. [24] used
genetic programming to implement the MFO paradigm for the first
time and proposed a new multifactorial genetic programming
(MFGP) algorithm. Xu et al. [25] used the fireworks algorithm
to achieve MTO and proposed a new multitask fireworks algo-
rithm. This method mainly designs a transfer spark with adaptive
length to help transfer useful information between different tasks.

B. THE IMPROVED ALGORITHMS OF EMTO

With the continuous improvement of the scale and complexity of
the problem to be optimized, the traditional MFEA has some
shortcomings that are not suitable for problem-solving. To address
these shortcomings, some works were dedicated to designing more
efficient knowledge transfer strategies in order to further improve
optimization performance [26–29]. Zheng et al. [30] improved on
the basis of the traditional MFEA knowledge transfer strategy and
designed an EMTO algorithm that could continuously and dynam-
ically adjust the degree of knowledge transfer, called SREMTO.
This algorithm could automatically adjust the degree of knowledge
transfer across tasks according to the changing similarity of the
search process, which promoted the efficient sharing of mutually
beneficial information between tasks. In order to solve the serious
impact of negative knowledge transfer in the search process,
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Bali et al. [31] proposed a new data-driven EMTO algorithm
framework, i.e., MFEA-II. It can track the similarity between
different tasks in real time through online learning and automatically
control the degree of knowledge transfer between different tasks,
which greatly enhances the performance of traditional MFEA. Xu
et al. [32] proposed a multitask evolutionary algorithmmultifactorial
differential evolution with variable transformation (MFDE-VT) in
which a variable transformation strategy and an inverse transforma-
tion were designed. The effectiveness of knowledge transfer is
further improved by transforming the estimated optimal solutions
for each task from the original search space to the vicinity of the
center of the unified representation space. Ding et al. [33] designed
two strategies: decision variable translation and decision variable
shuffling. Based on the improvement of MFEA, a new generalized
multifactorial evolutionary algorithm (G-MFEA) is proposed, which
realizes the transfer of knowledge from computationally simple
problems to computationally complex problems and promotes the
solution of expensive optimization problems.

III. THE APPLICATION OF EMTO
As a new research direction in the field of evolutionary computing,
EMTO has received extensive attention since it was proposed. It
has powerful capabilities for simultaneous multitask processing
and cross-domain optimization and has great potential for dealing
with complex problems in multitask scenarios. In addition, the
MTO algorithm has strong generalization ability and can make full
use of the knowledge between different tasks to optimize its own
tasks. By utilizing potentially useful knowledge among multiple
tasks, the optimization process of multiple tasks can be facilitated,
and better optimization results can be achieved. In recent years, it
was widely used to solve various complex problems in the real
world [34–37]. This section will conduct a detailed summary and
analysis of the relevant applications of EMTO from the following
aspects.

A. FEATURE SELECTION PROBLEM

Feature selection is an important issue and the basis for subsequent
classification operations. There are many challenges in direct feature
selection for high-dimensional data due to the curse of dimension-
ality. There were already a large number of methods for solving
feature selection [38,39], such as using mathematical methods [40]
and EAs [41]. The characteristics of EMTO can be better used to
solve the problem of feature selection, and it was widely used in
feature selection and has shown strong potential [42].

Liu et al. [43] proposed a multitask feature selection method
based on graph clustering. The impact of negative knowledge
transfer for irrelevant tasks is reduced through the method of graph
clustering feature sharing. The method performs feature selection
on multiple tasks by solving the task grouping structure and using a
graph-guided regularization framework. This method uses Pear-
son’s correlation coefficient to calculate the correlation between
different tasks, fully considers the relationship between tasks, and
conducts a theoretical analysis of the model.

Chen et al. [44] proposed a high-dimensional feature selection
method based on multitask particle swarm optimization. One task
focuses on a more promising subset of features, while the other
focuses on the full set of features. Knowledge transfer is realized by
allowing individuals to choose the optimal position of another task
under a certain probability to generate offspring. Finally, better
solutions can be found in areas with more potential.

Jiao et al. [45] proposed a method to solve multi-objective
feature selection using multitask. The two goals of this method are
accuracy and the number of selected features, and an adjustment
mechanism based on direction vector is proposed. The direction
vector refers to the weight of the two tasks and then adjusts the
direction vector of the single-objective solution according to the
multi-objective solution. The diversity of the population is improved
by taking the optimal solution of a single objective as the exploration
space of multiple objectives, and at the same time, the similarity of
subsets is fully considered according to the Hamming distance
between feature subsets to reduce unnecessary search space.

B. POINT CLOUD REGISTRATION PROBLEM

The point cloud registration problem [46] is an important research
direction in point cloud data processing, which aims to find a rigid
transformation parameter so that the source point cloud can be
aligned with the target point cloud. When faced with multi-view
registration problems and point cloud data registration problems
containing a lot of noise and outliers, traditional methods are
usually difficult to solve and have poor robustness. In recent years,
EMTO has been used to solve difficult problems in point cloud
registration and has shown strong advantages.

Wu et al. [47] proposed an evolutionary multitask approach for
solving the problem of multi-view point cloud registration, called
multiform point cloud registration (MTPCR). They modeled the
multi-view registration problem as aMTO problem to solve. Among
them, a bi-channel knowledge sharing strategy was mainly designed
in detail, and an objective function considering local accuracy and
global consistency is established. Intra-task knowledge sharing
could speed up the optimization process by enabling information
transfer between auxiliary tasks and the original task. Inter-task
knowledge sharing avoids getting stuck in local optima by exploring
the commonalities among the original tasks. By utilizing the trans-
formation information between multiple sets of point clouds, the
multi-view registration problem could be better solved.

In order to simultaneously solve the problems of poor robust-
ness and falling into a local optimum in point cloud registration
methods, Wu et al. [48] proposed an EMTO-based point cloud
registration method. The method first constructs two related tasks,
one focusing on registration accuracy and the other focusing on
registration robustness. Then, a two-stage bidirectional knowledge
transfer strategy is designed to achieve efficient information shar-
ing between tasks. This method can guarantee its robustness while
guaranteeing accuracy.

Wu et al. [49] proposed an EMTO method with solution space
cutting to solve the local optimum problem in point cloud regis-
tration, called evolutionary multi-task registration with solution
space cutting (EMTR-SSC). This method used one task to search
for potential transformation information in the cut space to help the
complex task jump out of local optima, thereby further improving
the success rate of registration. Furthermore, a sparse-to-dense
strategy was devised to reduce the computational cost of redun-
dancy. An objective function that is robust to various overlap rates
is proposed. Therefore, the registration method has very remark-
able performance in terms of accuracy and success rate.

C. SPARSE RECONSTRUCTION PROBLEM

In real life, the sparse reconstruction problem widely exists in
computer vision, pattern recognition, signal processing, and other
fields. This problem aims at finding sparse solutions to large-scale
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systems of underdetermined coefficient equations, and it was
shown to be a non-convex optimization problem and a difficult
non-deterministic polynomial (NP) problem [50]. To solve the
sparse reconstruction problem, traditional methods used greedy
algorithm [51], relaxation theory [52], and MOO algorithm [53].
However, the above algorithms or theories all focus on solving the
sparse reconstruction problem of single measurement vector
(SMV), but there is no corresponding solution for the sparse
reconstruction problem of multiple measurement vector (MMV).
In practical applications, it is often the case that multiple sparse
reconstruction tasks are to be processed simultaneously, and these
different tasks often have similar sparse features. Based on the
above analysis, Li et al. [54] extended the EMTO framework and
proposed a new multitasking sparse reconstruction (MTSR)
framework. This method uses a single population to simulta-
neously optimize multiple sparse reconstruction tasks and effec-
tively solves the SMV and MMV sparse reconstruction problems
in a multitask environment. MTSR makes full use of the similar
sparse features between different sparse reconstruction tasks and
performs knowledge transfer within and between tasks among
candidate parent individuals, which greatly improves the conver-
gence speed of the algorithm. In addition, they took the sparse
unmixing problem of hyperspectral images as a practical case of
sparse reconstruction problems and applied the MTSR framework
to this problem, proving the efficiency of the proposed method for
solving sparse reconstruction problems.

The problem of reconstructing complex networks from time
series plays an important role in the design of collective dynamics
control systems. For the complex network reconstruction problem
(NRP), converting it into a sparse reconstruction problem and then
using a convex optimization algorithm to solve it is currently the
most popular method in academia. However, the existing algo-
rithms used to solve this problem only focus on the learning process
of a single network and have not tried to use the similar structural
features between networks for transfer learning. Since there are
often other networks with similar feature patterns to the network of
interest in practical applications, making full use of the similar
information between these different network reconstruction tasks
can greatly improve the accuracy and efficiency of network
reconstruction. Based on the above motivations, Shen et al. [55]
proposed the MFEA-Net algorithm. This method attempts to use
the EMTO algorithm to solve the sparse reconstruction problem
transformed from the NRP and simultaneously carry out the
learning and reconstruction processes of two networks on the
same evolutionary population. MFEA-Net regards each NRP as
a separate SOO task and uses MFEA to directly solve this difficult
NP problem of non-convex optimization. This solution replaces the
traditional method of converting the sparse reconstruction problem
into a convex optimization problem and then solving it. At the same
time, MFEA-Net designs an online learning strategy. This strategy
utilizes the population information continuously generated during
the optimization process to continuously learn the transfer matrix,
which not only alleviates the adverse effects of negative knowledge
transfer but also avoids manual parameter adjustment. In addition,
MFEA-Net also used the least absolute shrinkage and selection
operator [56] to initialize the population, which speeds up the
convergence speed of the algorithm.

D. DYNAMIC SCHEDULING PROBLEM

Dynamic schedule (DS) problem is a widely used problem, such as
workshop scheduling [57–59], computer internal resource

management scheduling [60–63], and resource scheduling on
cloud computing [64]. There are many methods to solve DS
problems. EA has been widely used to solve DS problem because
of its powerful search ability. At the same time, due to the poor
generalization ability of a single EA, EMTO is introduced into the
solution process of DS problems, which can maintain the solution
ability of the algorithm and have a strong generalization ability.

Zhang et al. [65] proposed a method to solve DS problem
based on multitask GP tree, which improved the traditional multi-
task framework according to the characteristics of genetic pro-
gramming. First of all, it is no longer necessary to evaluate the
proficiency factor of all individuals during initialization. Second, in
order not to waste resources on the evaluation of the parent
individual again, it is no longer necessary to mix the parent and
child, and only the child individuals are evaluated. Finally, the
number of individuals is kept the same for each task, which reduces
the computational cost. This algorithm successfully applies multi-
tasking to complex DS problems and proposes a new multitasking
framework based on GP. The proposed algorithm is more robust
and improves the quality of solution.

Zhang et al. [66] proposed a new agent-assisted multitask GP
method. It can significantly improve the effect of heuristic algo-
rithms in different scenarios and can effectively solve problems for
different evolutionary scheduling heuristic algorithms. This
method mainly uses a feature to determine the scheduling behavior
and designs an agent for each task to be solved. This agent is used
to improve the efficiency of problem-solving while transferring
knowledge to promising individuals, which can efficiently share
knowledge among different tasks.

In order to solve the multi-objective problem in the DS
problem, Zhang et al. [67] proposed a multitask and multi-
objective GP method based on multi-population, which can
effectively share knowledge for different tasks and generate better
individuals at the same time and can find Pareto frontier faster.
This algorithm is different from the traditional multitask algo-
rithm. It uses multi-population to solve different tasks and realizes
knowledge sharing through crossover operators in the population.
It improves the quality of solution by improving the diversity of
individuals.

E. COMBINATORIAL OPTIMIZATION PROBLEM

Due to its simple implementation and powerful search ability, EAs
can obtain robust solutions without too much prior knowledge, and
they have been successfully applied to combinatorial optimization
problems. However, traditional EAs only solve one task at a time.
On complex networks, there will be multiple combinatorial opti-
mization tasks to be solved at the same time. In order to solve this
problem, aMTO algorithm is introduced to efficiently solve several
combinatorial optimization problems at the same time.

Yuan et al. [68] proposed a new evolutionary computing
method based on MTO algorithm, introduced a new unified coding
method and a new survivor selection method to make MTO better
applied to combinatorial optimization problems. The method is
tested on four problems: traveling salesman problem, quadratic
assignment problem, linear scheduling problem, and job shop
scheduling problem. Through the unified search space, the effi-
ciency of knowledge transfer between different tasks is improved.
At the same time, the generated individuals are ranked according to
skill factors according to the new individual selection mechanism.
Only a part of individuals are selected for each ranking level to
evaluate their fitness, reducing the computational cost. In the test
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tasks, although there are still some negative knowledge migration,
most multitasking processing is still effective compared with
single task.

Zhou et al. [69] proposed an evolutionary multitask approach
to vehicle routing problem in combinatorial optimization. Because
the direct application of MFEA to the vehicle routing problem may
lead to the problem of invalid decoding, which reduces the
performance of MFEA, a replacement-based identical representa-
tion method and a splitting-based decoding operator are proposed
to solve this problem. This method obtains the actual solution by
removing the extra dimension whose value is greater than the given
dimension value. At the same time, the solution of the unified
search space is converted into the actual solution space using the
splitting-based decoding operator.

Feng et al. [37] proposed a method based on explicit EMTO,
which can better transfer knowledge than traditional implicit MTO.
This method constructs a sparse mapping between two tasks by
building a weighted l1 norm regularization reconstruction error
from one vehicle routing task to another, which can effectively
transfer knowledge between different tasks. Then, it calculates the
distance matrix between tasks through the optimized vehicle
routing problem solution to transfer knowledge and then uses
this knowledge to assist the target search process. This method
effectively improves the efficiency of computation by showing the
evolutionary multitasking and enriches the similarity measurement
between tasks.

IV. FUTURERESEARCHDIRECTIONS AND
CHALLENGES

EMTO method is a research hotspot in recent years. Since it was
proposed in 2016, EMTO has received extensive attention from
researchers. This paper summarizes the use and improvement of
EMTO, as well as the extensive application of EMTO in various
fields. Happily, the basic theories and applications in the field of
MTO have developed rapidly in recent years and have been well
applied to many research fields to solve practical problems [37,
70–73]. Compared with the original method, it has a better effect.
However, EMTO is still in its infancy and needs to solve some
problems and challenges. This section will explore some future
research trends and challenges of EMTO.

(1) More complete theoretical support
The current research on EMTO does not fully explain its
theoretical basis, such as how to transfer knowledge, what
knowledge to transfer, and the impact of negative transfer on
the evolution process. With the answers to these questions,
we can design more reasonable methods for the problems
encountered in the future, apply them to a wider field, and
improve the performance of the design algorithm.

(2) Reduce the impact of negative transfer
In the process of evolution, not all the knowledge transferred
by other tasks is effective for solving the current task. How to
reduce the impact of negative transfer of other tasks is a very
important problem, which will seriously affect the effect of
the solution. A method based on task function image to
consider task relevance is proposed, but theoretical research
on negative transfer effects is still needed.

(3) Reduce the high cost of computing
For EMTO, the current mainstream research focuses more on
the improvement of the accuracy of the current task after

knowledge transfer but does not take into account the
additional cost of computing. Now, there have been studies
focusing on the use of low-cost tasks to assist in solving
high-cost tasks [35,71]. However, it does not analyze
whether multitasking is effective at the same cost of com-
puting resources. A MTO method is still needed to effec-
tively solve the computational cost.

(4) Performance index
Refs. [73,74] have proposed some performance indicators for
multiple objectives, but this method based on comparison
and voting may conflict in some cases. In order to solve the
averaging problem under multiple objectives, a more rea-
sonable performance index should be designed.

(5) Improved performance and efficiency
In the face of more complex problems, the performance and
efficiency of EMTO still need to be further improved. The
current algorithms still have some problems when dealing
with large-scale tasks in the face of complex scenes, such as
more efficient adaptive knowledge transfer management
strategy, more effective coding scheme and the unified space
of multiple tasks, and more reasonable design of crossover
and mutation operators between different individuals. For the
above problems, many researchers have provided many
solutions, but for more complex and difficult scenarios,
the results are still not satisfactory.

(6) More applications
EMTO still needs to expand its application scope, like the
medical field [75]. Compared with practical engineering
applications and cutting-edge technical fields, EMTO is
more focused on solving academic research problems.
Only by creating practical economic value in practical ap-
plications can more researchers be engaged in research in this
field. At the same time, the application of specific practice
also needs further improvement of the theory. The two
complement each other and jointly promote the improvement
of EMTO theory and practice.

V. CONCLUSIONS AND OUTLOOK
In this review, the principle of EMTO was comprehensively
introduced, and the popular fields of EMTO in current research
and how to use EMTO to solve problems were summarized.
Finally, the remaining challenges and future research trends of
EMTO were analyzed. EMTO has effectively solved some pro-
blems existing in EA, improved the effect of EA, and has been
widely used. A more comprehensive summary of the most
advanced methods is needed. There are also some unique techni-
ques to be noted in different scenarios, which can improve the
performance of the algorithm more effectively.

With the continuous development of EMTO, it has occupied
a more important position in the academic and industrial circles.
It requires continuous efforts of researchers to break through
the existing challenges, continuously improve the performance
of the algorithm, and make EMTO play a greater role in the
future.
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