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Abstract: The inquiry process of traditional medical equipment maintenance management is complex, which has a negative
impact on the efficiency and accuracy of medical equipment maintenance management and results in a significant amount
of wasted time and resources. To properly predict the failure of medical equipment, a method for failure life cycle prediction of
medical equipment was developed. The system is divided into four modules: the whole life cycle management module constructs
the life cycle data set of medical devices from the three parts of the management in the early stage, the middle stage, and the later
stage; the status detection module monitors the main operation data of the medical device components through the normal value
of the relevant sensitive data in the whole life cycle management module; and the main function of the fault diagnosis module is
based on the normal value of the relevant sensitive data in the whole life cycle management module. The inference machine
diagnoses the operation data of the equipment; the fault prediction module constructs a fine prediction system based on the least
square support vector machine algorithm and uses the AFS-ABC algorithm to optimize the model to obtain the optimal model
with the regularized parameters and width parameters; the optimal model is then used to predict the failure of medical equipment.
Comparative experiments are designed to determine whether or not the design system is effective. The results demonstrate that
the suggested system accurately predicts the breakdown of ECG diagnostic equipment and incubators and has a high level of
support and dependability. The design system has the minimum prediction error and the quickest program execution time
compared to the comparison system. Hence, the design system is able to accurately predict the numerous causes and types of
medical device failure.
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I. INTRODUCTION
At present, the significant increase in the types and quantity of
medical equipment used in hospitals has led to an increasing
workload of medical equipment maintenance. Maintenance man-
agement has become the core of medical equipment management
[1,2]. Hospitals must devote a substantial amount of human and
material resources to the maintenance of medical equipment. To
maintain the quality of the management of failures and related costs
during the acquisition, maintenance, and disposal of medical
equipment and equipment by the appropriate staff, it is required
to investigate an efficient method for reliably predicting failures.

This study is organized as follows: in the second section, we
examine relevant perspectives on fault identification for medical
devices. This paper presents an entire life cycle failure prediction
system for medical devices in the third section; in the fourth
section, experimental analysis is conducted. The fifth section of
this study is the Conclusion.

II. RELATED WORK
Current medical equipment failure prediction mainly includes three
methods: Reference [3] studied the hardware failure prediction of

unbalanced time series data: Gaussian process artificial data
generation and the application of LSTMFCN in hardware failure
prediction. Three models were trained using sequence data: long-
short-term memory (LSTM), fully convolutional network (FCN),
and a combination of LSTMFCN reported by Karim et al. (Karim
et al., 2019). Finally, the highest F1 score of 87.45% and the highest
accuracy rate of 99.35% were obtained by using LSTMFCN.
However, this method needs to accumulate a large number of failure
mechanisms and models. Considering the particularity of some
medical devices, such methods require a lot of accumulation during
use. The fault diagnosis time is long. The method of reference [4]
studied the failure prediction method based on the critical analysis of
failure mode effects. It needs to prepare the same equipment with the
same technology and process. The cost of the application process is
high. Maneuverability is low. Reference [5] proposed a failure
predictionmethod based onLabVIEW,which predicted its operating
status by monitoring the change of a certain characteristic parameter
of the target. It has strong applicability.

III. PROPOSED PREDICTION SYSTEM
A. THE OVERALL STRUCTURE OF THE
PROPOSED SYSTEM

Medical equipment plays an essential role in assuring the safety and
efficacy of the hospital’s treatment procedure. The essentialCorresponding author: Ma Haowei, (e-mail: mhwfangzhang@gmail.com).
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maintenance and management of medical equipment are crucial for
ensuring its regular operation in medical activities and the efficacy
of patient treatment. As a result, intelligent theories such as an
inference engine and a failure prediction model are employed to
complete the improved prediction of the life cycle of medical
equipment failure based on the gathered life cycle data of medical
equipment. Figure 1 depicts the framework of the enhanced failure
prediction system for the whole life cycle of medical equipment.
The system consists of four primary modules: the entire life cycle
management module, the status detection module, the problem
diagnosis module, and the failure prediction module.

The proposed prediction system consists of 4 modules –

whole life cycle management module, site detection module, fault
diagnosis module, and fault prediction module. The whole life
cycle management module mainly contains data related to the life
cycle of medical equipment. The status detection module is
mainly composed of three parts: data acquisition, data preproces-
sing, and threshold monitoring. The whole life cycle management
module collects relevant data. After the preprocessing process,
the redundant data is cleared [5]. Through threshold monitoring,
the main operating data of medical equipment components are
monitored.

The main function of the fault diagnosis module is to diagnose
medical equipment faults based on the operation data of medical
equipment. It is done via an inference engine. The inference engine
consists of deterministic reasoning and fuzzy inference. Determin-
istic reasoning is used to diagnosis precise data, and fuzzy infer-
ence is used to diagnosis fault data.

The main function of the database is to store various types of
operating data, failure mode information, inference rules, predic-
tion results, and historical failure information required for medical
equipment fault diagnosis and prediction.

The fault prediction module contains two main parts, namely
the trend prediction of the characteristic data of medical equipment
and the prediction of the failure mode of the medical equipment.

Its main function is to predict failures and determine the reliability
of the prediction results [6]. Based on the failure prediction results,
the medical equipment health conclusion is obtained, which in-
cludes the medical equipment status monitoring results, equipment
maintenance auxiliary information, equipment failure alarms, and
equipment management-related information.

B. WHOLE LIFE CYCLE MANAGEMENT MODULE

Figure 1 depicts the system’s general structure framework, which is
used to analyze the entire life cycle management module. The
majority of the program is separated into three sections: early,
medium, and late management. The administration of medical
device equipment can be separated into the aforementioned three
sections in order to supervise and forecast each phase. Life cycle
management framework of medical device equipment is depicted
in Fig. 2.

The prophase management is mainly composed of the model
selection, purchase, and install [7]. Effective management of this
section can avoid the use of poor-quality medical devices. After
purchasing medical equipment, it needs to be installed. At the same
time, the device number is set, and the device-related data set is
constructed. Based on the differences in the functions of different
medical devices, the medical devices are divided into different
types, and the information of different types of medical devices is
managed uniformly.

The main function of mid-term management is to manage all
the information in the use of medical equipment [8]. The manage-
ment of this part can monitor whether failure of the equipment at
any time, so as to make the corresponding decision in time. During
the operation of medical equipment, various state index data during
the operation of different equipment are regularly monitored, and
the data are stored in the corresponding data set.

What is described in the post-management is the medical
equipment scrap information and disposal management
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information [9], including the treatment process under the condi-
tion that the medical equipment is scrapped or has no application
value. The management of this part can prevent the end-of-life
medical equipment from being put into use again.

C. FAULT DIAGNOSIS MODULE

The fault diagnosis module is based on the state monitoring module
and realizes the fault diagnosis of medical equipment through
different reasoning mechanisms. Figure 3 shows the structure
diagram of the inference engine.

As shown in Fig. 3, the inference engine mainly consists of
two parts [10], namely control management and diagnostic
inference.

(1) The main function of control reasoning is to realize the
transmission and control function of scheduling information
between different jobs in the reasoning engine.

(2) The process of diagnostic reasoning includes reasoning
techniques such as fuzzy reasoning and meta-rule reasoning.
Fuzzy reasoning is based on generalized fuzzy generative
rules and fuzzy reasoning algorithms. Meta-rules implement
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forward reasoning with the core of generative rules and
meta-inference engine.

D. DESIGN OF FAULT PREDICTION MODULE

1) LEAST SQUARES SUPPORT VECTOR MACHINE ALGO-
RITHM. The prediction model is constructed based on the least
squares support vector machine algorithm, that is, the prediction
model is constructed according to the general observation data of
the fluctuation of a certain operating data of the medical equipment
and equipment. The predicted value is output through the model,
thereby obtaining the state of the fluctuation amount of the medical
equipment and equipment operating data at a certain time in the
future. Reconstructing the linear space to determine the correlation
between input and output is the core work in the process of
predicting model construction [11–14].

Describe the predicted target value and model input value with
xt+w and fxt, xt+1, · · · , xt+w−1g, respectively. Based on this, a fault
prediction model for medical equipment is constructed. By trans-
forming t = 1, · · · , n − w, the learning samples of the support
vector machine can be obtained:

8>>>>>>>>>>><
>>>>>>>>>>>:

X =

2
6664
x1 x2 · · · xw
x2 x3 · · · xw+1
..
. ..

. . .
. ..

.

xn−w xn−w+1 · · · xn−1

3
7775

Y =

2
6664
xw+1
xw+2
..
.

xn

3
7775

(1)

According to formula (1), there is a one-to-one mapping
correlation between the input and output of the prediction model
[15,16]. Among them, w represents the embedding dimension, f
and F, respectively, represent the values before and after the
prediction model is mapped. The final prediction error FPE speci-
fication is used in the model, and the formula is described as
follows:

FPEðuÞ = n + u

n − u
ϕ2
k (2)

In formula (2), u represents the prediction error data mapping
value. ϕ2

k represents the prediction confidence level.
Under the condition that u fluctuates, FPEðuÞ also fluctuates

accordingly. From this, an optimal value uopt can be determined
to make the FPEðuÞ value the lowest. Under this condition, the
optimal embedding dimension w = uopt can be obtained.

According to the above formula, after obtaining the input,
output, and embedding dimensions of the medical equipment
failure prediction model, the support vector machine can be trained,
and the least square support vector machine regression function can
be obtained as formula (3):

yt =
Xn−w
t=1

aiUðxi,xtÞ + b (3)

In formula (3), a represents the regularization parameter,
b represents the width parameter, Uðxi, xtÞ represents the basis
function.

Based on formula (3), the predicted value of n + 1 points can
be obtained:

yn+1 =
Xn−w
t=1

aiUðxi, xn−w+2Þ + b (4)

At the same time, a set of data xn−w+2 =
fxn−w+2, xn−w+3, · · · , xn, xn+1g can be obtained. Among them,
�xn+1 is the predicted value of the n + 1, that is, �xn+1 = yn+1.

In the same way, the predicted value of the n + 2 can be
obtained:

yn+2 =
Xn−w
i=1

aiUðxi, xn−w+2Þ + b (5)

From this, the least squares support vector machine prediction
model of the u step is obtained:

yn+k =
Xn−w
i=1

aiUðxi, xn−w+kÞ + b (6)

In formula (6), xn−w+u = fxn−w+u, · · · , xn+1, · · · , xn+u−1g.
2) OPTIMIZATION ALGORITHM. In order to improve the accu-
racy of the least squares support vector machine model in predict-
ing medical equipment failures, the AFS-ABC algorithm is used to
optimize the regularization parameters and width parameters of the
least squares support vector machine model.

The specific process of the AFS-ABC algorithm is mainly to
optimize it with reference to the honey-collecting behavior of bees.
The optimal value of the output of the support vector machine
fitness function is the final optimization goal [17–21]. The interac-
tion and iteration between the data in the model are used to obtain
the optimal solution of the support vector machine fitness function.
x means nectar. Equation (7) describes the work of the reconnais-
sance bee:

xij = xminðjÞ + randð0,1ÞðxmaxðjÞ − xminðjÞÞ (7)

In formula (7), xij and randð0,1Þ, respectively, represent the
j dimensional coordinate of xj and an arbitrary number between 0
and 1.

Dxij represents the domain nectar source of the j dimension
update of xj, and formula (8) represents the behavior of leading and
following bees to implement domain nectar source search:

Dxij = xij + eijðxij − xkjÞ (8)

In formula (8), xk and eij, respectively, represent a nectar
source different from xj and an arbitrary number uniformly distrib-
uted in the range of [−1,1].

In the AFS algorithm, formula (9) is used to dynamically
modify the artificial fish search step:

Z = Zmin + exp

�
−30

�
g

R

�
p
�
Z (9)

In formula (9), Z and g, respectively, represent the artificial
fish search step and the current iteration number. R and p,
respectively, represent the upper limit of the number of iterations
and an integer greater than 1. Equation (10) is used to update the
artificial fish:

Xioext = Xp + Z
Xp − Xi

kXq − Xik
+ Z

Xmax − Xi

kXp − Xik
(10)

In formula (10), Xq and Xp, respectively, represent the co-
ordinates of the artificial fish and the center of the fish school after
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performing the foraging work. Xi and Xmax, respectively, represent
the current artificial fish coordinates and the optimal coordinates
obtained by the fish school [22,23].

According to the above analysis process, the optimized least
squares support vector machine model is obtained. The specific
process is as follows:

(1) The food source is initialized, and the lead bee is replaced
with artificial fish;

(2) Different artificial fish perform foraging work and update
their coordinates according to formula (10);

(3) Determine the profit rate data of different artificial fish and
update the bulletin board data according to the deter-
mined data;

(4) Lead the bee to be followed according to the probability to
select nectar sources to perform domain search work and to
update the domain nectar sources;

(5) The number of domain nectar source updates is determined.
If the update threshold is met, the nectar source is abandoned,

and a follower bee turns into a scout bee to form a new nectar
source; otherwise, proceed to (6);

(6) Whether it does meet the end criterion [24], if it does, the
optimal solution will be output and the optimization process
will end; on the contrary, the colony rate of return is deter-
mined, the bulletin board is updated, and proceed to (2).

IV. EXPERIMENTAL ANALYSIS
In order to verify the application effect of the medical equipment
failure life cycle refined prediction system designed in this article in
the actual medical equipment failure prediction, the X-ray machine,
electrocardiogram diagnostic instrument, and constant temperature
incubator used in a third-class hospital were selected. Each appli-
cation target selects eight state parameters, respectively, named
B11–B18, B21–B28, B31–B38. The system in this paper is used to
predict the failure of the above three application targets, and the
experimental results are as follows.
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Fig. 4. Prediction results of fault types of ECG diagnostic equipment.
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Fig. 5. The prediction results of the fault type of the constant temperature
incubator.
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A. FAILURE TYPE PREDICTION

For the ECG diagnostic apparatus and the constant temperature
incubator, the two application targets are set as B27 and B33
parameter failures. The system in this paper is used to predict the
failure types of ECG diagnostic equipment and constant tempera-
ture incubators, and the results are shown in Figs. 4, 5.

The reliability of this study will be based on the time function
of the model as a reference, and the reliability of the prediction is
mainly the prediction accuracy of the system to judge the equip-
ment from 0 to t time.

It can be seen from Fig. 4 that the support of B21, B26, and
B27 in different state parameters of the ECG diagnostic apparatus
is relatively high, while the reliability of B23 and B27 is relatively
high. Combining the support and reliability of the different state
parameters of the ECG diagnostic apparatus, B27 is the current
fault type of the ECG diagnostic apparatus, which is the same as the
set fault type.

It can be seen from Fig. 5 that the support of B33 and B36 in
different state parameters of the constant temperature incubator is
relatively high, while the credibility of B33, B34, and B38 is
relatively high. Combining the support and credibility of the
different state parameters of the constant temperature incubator,
B33 is the current failure type of the constant temperature incuba-
tor, which is the same as the set failure type. The results of Figs. 4, 5
show that the system in this paper can accurately predict the fault
type of the application target.

B. FAILURE CAUSE PREDICTION

The failure type and failure cause of each application target are set.
The failure type and failure cause of each application target
predicted by the system in this paper are compared with the actual
failure to verify the accuracy of the failure prediction of the system
in this paper. The results are shown in Table I.

Analyzing Table I shows that the prediction results of the
system failure types and failure causes in this paper are completely
consistent with the actual failure types and failure causes, which
shows that the system in this paper can accurately predict the failure
causes of each application target.

C. SYSTEM VERIFICATION

The sinc function is used to verify the system in this paper. This
function is commonly used in functional regression verification
problems. After preprocessing the experimental data, the embed-
ding dimension is determined according to the final prediction error
F specification, and the optimal least square support vector machine
model is obtained. Two models for the period term and the trend
term are constructed separately, and the experimental data are
implemented to predict. In order to highlight the advantages of the
system in this paper, the system based on failure mode and effect
analysis (Reference [4]) and the system based on LabVIEW
(Reference [5]) are used as comparative systems. The predictive
performance of different systems is shown in Fig. 6.

From Fig. 6, the prediction error of the system in this paper is
the smallest among the three systems. The calculation time of the
system program is also the shortest, which shows that the predic-
tion performance of the system in this paper is significantly better
than the comparison system.

V. CONCLUSIONS
The medical equipment failure life cycle refined prediction system
designed in this paper can accurately predict its failure category and

Table I. Failure Prediction Results

Application goal Actual failure type
System prediction
results in this paper

Actual cause
of failure

System prediction
results in this paper

X-ray machine Circuit failure Circuit failure Abnormal AC power supply Abnormal AC power supply

Mechanical failure Mechanical failure Mechanical deformation Mechanical deformation

Equipment aging Equipment aging Part wear Part wear

Computer software
program failure

Computer software
program failure

Computer resources conflict Computer resources conflict

Inadequate
maintenance

Inadequate maintenance Lack of lubricating oil Lack of lubricating oil

Electrocardiogram Mechanical failure Mechanical failure Part uanlie Part uanlie

Circuit failure Circuit failure Solder joints fall off Solder joints fall off

Equipment aging Equipment aging Part wear Part wear

Constant temperature
incubator

Inadequate
maintenance

Inadequate maintenance Mechanical connection
piece falls off

Mechanical connection
piece falls off

Circuit failure Circuit failure Disconnected Disconnected

Inadequate
maintenance

Inadequate maintenance Equipment contaminated
with dust

Equipment contaminated
with dust
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Fig. 6. Sinc function comparison results.
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failure cause. The system in this paper still has defects in
some aspects. Due to the limitation of research time, subsequent
optimization will optimize the system as a whole. On the basis of
accurately predicting failures, system performance has been
comprehensively improved. The key contributions of this study
are as follows: (1) This study designs an accurate prediction
system for the failure life cycle of medical devices, including a
four-module system. The empirical analysis shows that it can
work better. (2) This study optimizes the prediction system using
the AFS-ABC algorithm to obtain the optimal model with regu-
larization and width parameters for good prediction. (3) After
comparing with similar prediction systems, this study’s proposed
system has a minor prediction error and the shortest program
running time.
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