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Abstract:Recognition of human activity based on convolutional neural network (CNN) has received the interest of researchers in
recent years due to its significant improvement in accuracy. A large number of algorithms based on the deep learning approach
have been proposed for activity recognition purpose. However, with the increasing advancements in technologies having limited
computational resources, it needs to design an efficient deep learning-based approaches with improved utilization of
computational resources. This paper presents a simple and efficient 2-dimensional CNN (2-D CNN) architecture with very
small-size convolutional kernel for human activity recognition. The merit of the proposed CNN architecture over standard deep
learning architectures is fewer trainable parameters and lesser memory requirement which enables it to train the proposed CNN
architecture on low GPU memory-based devices and also works well with smaller as well as larger size datasets. The proposed
approach consists of mainly four stages: namely (1) creation of dataset and data augmentation, (2) designing 2-D CNN
architecture, (3) the proposed 2-D CNN architecture trained from scratch up to optimum stage, and (4) evaluation of the trained
2-DCNN architecture. To illustrate the effectiveness of the proposed architecture several extensive experiments are conducted on
three publicly available datasets, namely IXMAS, YouTube, and UCF101 dataset. The results of the proposed method and its
comparison with other state-of-the-art methods demonstrate the usefulness of the proposed method.

Keywords: computational resources; convolutional neural network; GPU memory; human activity recognition; softmax
classifier; training parameters

I. INTRODUCTION
In the current era of research and rapid developments in computer
vision applications, video-based human activity recognition is
considered as one of the most popular research fields. Additionally,
a human activity recognition system is beneficial for society in the
sense that it can automatically detect human activities in videos or
sensor inputs that occur in their day-to-day routine [1]. Human
activity recognition plays an important role in many applications,
including healthcare, video surveillance, driving safety, sports
applications [1,2], etc. Although several studies have been con-
ducted by computer vision scientists in this field and achieved
success to a certain extent, but human activity recognition is still a
challenging problem due to real-time processing, large intra-class
difference, fuzzy boundary between classes, etc. Still, people keep
on working to explore new technologies for activity recognition in
improving accuracy, reducing computational resources, and devel-
oping a simplified model. Most of the previous works were based
on handcrafted feature extraction-based techniques for activity
recognition. Since real-world scenes are complex and have a range
of varying information, handcrafted feature descriptors can grab
only abstract level of information which cannot truly represent each
activity class uniquely [2–4].

Inspired from the success of deep learning-based methods in a
number of computer vision applications [5–7], several CNN-based
human activity recognition methods were proposed. In [8], Yilmaz
et al. designed a deep neural network architecture for action
recognition and used a genetic algorithm for optimizing the
proposed network. In [9], Muhammad et al. proposed an applica-
tion for surveillance data based on the fusion of deep learning
feature and handcrafted feature. For the extraction of deep learning
features, they used pretrained VGG-19 deep learning architecture.
In [10], Jaouedi et al. used the Gaussian mixture model and Kalman
filter to extract the moving objects. The bounding box of the
extracted moving object is further processed by a gated recurrent
neural network for human action recognition. Leong et al. [11]
have proposed a novel semi-convolutional neural network (CNN)
deep learning architecture for human action recognition for video
datasets. They evaluated their proposed architecture on UCF-101
dataset. Yang et al. [12] proposed an asymmetric 3D CNN
architecture for video-based action recognition system. They
used micronets in the construction of 3D CNN architecture to
improve the performance of the architecture.

The methods discussed above focused on handcrafted and
deep learning-based architecture. Further, few of them were based
on the fusion of handcrafted features and deep learning features,
which were complex and take more computation time in the
prediction of activities. Further, in the presented techniques, 3-D
CNN architectures required more computational resources and
time [5]. However, the goal of a real-time application is alwaysCorresponding author: Om Prakash (e-mail: au.omprakash@gmail.com).

100 © The Author(s) 2023. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Journal of Artificial Intelligence and Technology, 2023, 3, 100-107
https://doi.org/10.37965/jait.2023.0163 RESEARCH ARTICLE

mailto:au.omprakash@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2023.0163


to develop a efficient algorithm with less computational resources
and improved performance.

However, in recent years, the CNN has outpaced traditional
handcrafted feature-based machine learning techniques due to its
automatic learning capability from the complex representations of
large visual data. But, with the recent advancements in the mobile
and embedded computing technologies that have limited computa-
tional resources, it encourages us to design deep learning-based
efficient human activity recognition system for limited computa-
tional resources and memory that yields promising results [5].
Motivated from these facts, we propose a novel 2-D CNN for
video-based human activity recognition for surveillance videos in
a realistic environment. One of the major contributions of the
proposed work is to design a lightweight 2-D CNN architecture
with very small convolutional filters for human activity recognition
from video data. The designed architecture have capability to be
trained on the devices having very limited computational resources,
and it has flexibility of training with small and large-size dataset. The
proposed architecture is trained from scratch on low GPU memory
with fewer trainable parameters as compared to the standard deep
learning architectures (e.g., AlexNet and VGGNet) and achieved
promising results. The considered proposed work consists of four
main stages: 1. collect dataset and used data augmentation technique
before training proposed CNN architecture in order to avoid over-
fitting problem; 2. design the 2-D CNN architecture; 3. train the
proposed 2-D CNN architecture from scratch and train it upto
optimum stage; and 4. evaluation the trained 2-D CNN architecture.

To prove the effectiveness of the proposed method, we have
tested it on three different publically available datasets [13–15] and
conducted several extensive experiments. The experimental results
of the proposed method are compared with the result of existing
standard deep learning architectures [6,16] and several existing
state-of-the-art methods [4,9–13,17–30]. The obtained experimen-
tal results demonstrated the effectiveness of the proposed method.

The rest of the paper is organized as follows: section II consists
of a detailed description of the proposed architecture and experi-
mentation are given in section III. The results and discussion are
presented in section IV and finally, section V presents the con-
cluding remarks of the proposed work.

II. THE PROPOSED METHODOLOGY
The objective of this work is to present a framework of human
activity recognition for realistic video-recorded from single or
multiple cameras. In this work, we introduce a simple and light-
weight 2-D CNN architecture which has the ability to learn
complex invariant features from given input frame sequences.
The proposed approach consists of four main stages:

i Data acquisition, which includes gathering video datasets
followed by preprocessing steps before feeding these frame
sequences into the network for training.

ii Design an efficient and simple 2-D CNN architecture.

iii Finally, we train the proposed 2-D CNN architecture from
scratch till it is converging.

iv Used softmax classifier for evaluation of the trained 2-D
CNN architecture.

A. PROPOSED ARCHITECTURE

Depending on the applications, the selection of the optimal deep
learning architecture is a challenging task. While designing

network architecture, we aim to design a simple and optimized
network that learns unique and discriminative patterns from input
data with fewer computational resources [5]. In recent years, a
number of deep learning models such as AlexNet, VGGNet
(e.g., VGG-16), GoogLeNet, etc. have been applied for image
classification and have achieved good accuracy. VGG-16 is a
16-layer CNN, and it has remarkable feature extraction ability
and achieves great success in image classification because it is
deeper than the AlexNet, has more distinct feature representation,
and has simpler and compact architecture than the GoogleNet like
architectures and has better generalization ability [5]. Therefore, it
has been used in a number of applications [6]. Therefore, motivated
from it, in order to achieve a good trade-off between complexity
and accuracy, we have designed a novel 2-D CNN architecture
which is deeper like VGG-16 along but with less number of
convolutional filters to reduce computational cost and time than
VGG-16 and can be trained on low GPU memory for human
activity recognition for realistic videos. We have opted simple and
effective architecture which can also be trained on low GPU
memory with fewer operational resources.

B. ARCHITECTURAL DETAILS

The proposed architecture for human activity recognition is shown
in Fig. 1. The proposed architecture is consisting of 10 convolution
layers (conv2-D_1 – conv2-D_10), four max-pooling layers (M1-
M4), and three fully connected layers. Each of the hidden layers are
equipped with the rectified linear unit (ReLU) activation function
to increase the nonlinearity in the network. ReLU increases the
nonlinear transformation to the input feature map of each layer, and
it makes the decision function more discriminative and speeds up
the training process [10,12]. All the convolution layers are pro-
cessed by the kernel of size 3 × 3 and stride 1 × 1 and max-pooling
uses 2 × 2 window size and stride (2, 2). Input to the proposed
architecture is an RGB image of size (128 × 128). We have
considered a very small convolution kernel (3 × 3) because it is
sufficient to grab unique discriminative features from very small to
that of large-size objects and has found improved performance in
image classification applications [6]. A detailed description of
kernel size, number of convolution filters, and the size of con-
volutional feature maps of the proposed architecture are given in
Table I.

After the convolution operation, each feature map is pro-
cessed by 1-pixel zero padding to keep the constant outcome of
each convolution layer. Dropout is used after the last convolution
layer to avoid overfitting. A stack of convolution layers which
has different depths in each layer followed by three fully con-
nected layers. The first two fully connected layers have 128
channels, and the third one has the number of channels equal to
the number of activity categories, that is, one for each class. The
last layer is followed by a softmax classifier to compute the class
score of each activity category. The considered architecture is
trained from scratch using publically available benchmark da-
tasets until the network keeps on converging. A detailed descrip-
tion of the proposed architecture is given in a subsequent
paragraph.

During the training network, we first feed input frame se-
quences of size 128 × 128 × 3 in the first convolution layer (Conv2-
D_1). In the first convolution layer, each input sequence is
processed by 32 convolution kernels of size 3 × 3 with different
random weights and stride 1. Mathematically Conve2-D_1 can be
defined as:
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λ1 = f ðw1 × Xi þ b1Þ (1)

where w1 represents weight matrix of first convolution layer with
size 3 × 3 × 32, bl is bias vector of size 1 × 1 × 32, xi represents i

th

training sample of jth activity category of size 128 × 128 × 3, and
f(.) denotes the ReLU activation function which process feature
maps to introduce the nonlinearity in the network and is mathe-
matically defined as:

ReLU = maxðλ,0Þ (2)

Since the ReLU layer has no parameters. Therefore, in this
layer, no learning is taking place. The output of the first convo-
lution layer (feature map of size 128 × 128 × 32) is utilized as
input for the second convolution layer (Conv2-D_2) and pro-
cesses it with 32, 3 × 3 convolution kernels and stride 1. The
conv2-D_2 gives 32 feature map which is again processed by
activation function that gives again feature map of size

128 × 128 × 32. Mathematically, it can be formulated as
follows:

λ2 = f ðw2 × λ1 þ b2Þ (3)

The obtained output feature map by conv2-D_2 is further pro-
cessed by max-pooling layer (M1) with a window size 2 × 2 and
stride [2,2] which outputs a feature map of size 64 × 64 × 32.

The reason behind using the stack of two layers followed by
max-pooling layer is that two convolution layer with kernel size
3 × 3 and stride 1 gives same effective receptive fields as one
convolution layer with 5 × 5 convolution kernel. Therefore,
using two convolution layers with kernel size 3 × 3 instead of
one convolution layer with kernel size 5 × 5 is advantageous
because it increases network depth and also introduces more
nonlinearity into the network by using two ReLU operations one
with each convolution layer and also reduces the number of
learnable parameters, that is, computational resources (i.e., two
stacks of convolution layer with 3 × 3 with C channels needs
2 × (32 × C2) = 18C2 parameters, whereas at the same time
single convolution layer with 5 × 5 kernel size needs 52 × C2 =
25C2 parameters).

The obtained feature map from max-pooling layer M1 is
further processed by the stack of two convolution layers
(conv2-D_3 and conv2-D_4) with 32, convolution kernels of
size 3 × 3 and 1 × 1 × 32 bias, and convolutional layer results
are followed by activation layer ReLU which gives 64 × 64 × 32
feature maps. Mathematically, it can be represented as follows:

λ3 = f ðw3 × λ2 þ b3Þ (4)

λ4 = f ðw4 × λ3 þ b4Þ (5)

The obtained feature map (64 × 64 × 32) is then again pro-
cessed by max-pooling layer (M2) with window size (2 × 2) stride
[2,2] that gives a feature map of size 32 × 32 × 32. The output of
the max-pooling layer M2 is utilized as input of convolution layer
5. Therefore, the obtained feature map by layer M2 (32 × 32 × 32)
is processed by the stack of three convolution layers (conv2-D_5,
conv2-D_6, and conv_2-D_7) with 64, 3 × 3 convolution kernels
and bias 1 × 1 × 64. It can be mathematically represented as
follows:

Fig. 1. The proposed 2-D CNN architecture for human activity recognition.

Table I. The architecture detail of feature map size, convo-
lution kernel size, and number of convolution kernel used in the
proposed architecture

Block Kernel size Kernel number Feature map

Conv2 D_1 3 × 3 32 32 × 128 × 128

Conv2-D_2 3 × 3 32 32 × 128 × 128

M1 2 × 2 – 32 × 64 × 64

Conv2-D_3 3 × 3 32 32 × 64 × 64

Conv2-D_4 3 × 3 32 32 × 64 × 64

M2 2 × 2 – 32 × 32 × 32

Conv2-D_5 3 × 3 64 64 × 32 × 32

Conv2-D_6 3 × 3 64 64 × 32 × 32

Conv2-D_7 3 × 3 64 64 × 32 × 32

M3 2 × 2 – 64 × 16 × 16

Conv2-D_8 3 × 3 96 96 × 16 × 16

Conv2-D_9 3 × 3 96 96 × 16 × 16

Conv2-D_10 3 × 3 128 128 × 16 × 16

M4 2 × 2 – 128 × 8 × 8
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λ5 = f ðw5 × λ4 þ b5Þ (6)

λ6 = f ðw6 × λ5 þ b6Þ (7)

λ7 = f ðw7 × λ6 þ b7Þ (8)

The obtained feature map after convolution layer 7 (conv2-
D_7) is processed by max-pooling layer M3, and this gives feature
map of size 16 × 16 × 64. These feature maps are again processed
by the stack of three convolution layers (conv2-D_8, conv2-D_9,
and conv2-D_10) with 96, 96, and 128, 3 × 3 convolution kernel
which results in feature map of size 16 × 16 × 128. Mathematical
conv2-D_10 can be represented as:

λ10 = f ðw10 × λ9 þ b10Þ (9)

The output of conv2-D_10 is again processed by max-pooling
layer M4 which results in feature map of size 8 × 8 × 128. The
obtained result of M4 layer is flattened and processed by three fully
connected layers (L = 1,2,3) in which two fully connected layers
(FC) have 128 channels and the last fully connected layer has
number of channels equal to the activity category of the taken
dataset, that is, one channel for each activity. Mathematical feature
vector computation at fully connected layer is as follows:

λFC = f ðwL × λ10 þ bLÞ (10)

where wL and bL represent weight vector and bias vector, respec-
tively, for a fully connected layer.

In the last FC layer, we have used a softmax classifier to
compute class scores, which allows us to interpret the output as a
probability. Categorical cross-entropy loss is utilized to measure
loss sometimes also called as error (cost) at the softmax layer.

Once we processed the input data to the network, we
compute the loss (error) of the network using the predicted
output at the last FC layer and their ground truth. Then the
computed loss is backpropagated from the last layer to the first
layer. The backpropagation algorithm provides us gradients of
the error which is then utilized to update the learning parameters
(weights and bias). In the training process with each epoch, we
repeatedly compute gradients of the loss function and perform
parameter updation using the above-mentioned procedure till the
network is converging. Therefore, in this way we keep on
training and updating learning parameters till we not reach the
minimum error. The overall flow of the proposed method is
shown in Fig. 2.

III. EXPERIMENTATION
In this section, we present experimental setups including imple-
mentation details, datasets, and evaluation criteria to measure the
performance of the proposed 2-D CNN architecture.

Fig. 2. The overall flow of the proposed method.
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A. IMPLEMENTATION DETAILS

To determine the empirical justification of the proposed work, we
performed several experiments on three different publically avail-
able video datasets [13–15]. These video datasets are firstly con-
verted into frame sequences before feeding into network for
training. For training and testing, both RGB frame sequences
have been used. The frame sequences are first resized to 128 ×
128 to reduce the computational resources and computation time,
then we used data augmentation techniques such as rotation,
translation, and zooming in order to expand the training dataset
which resolves the limitation of smaller dataset size, and this makes
the network to perform better generalization effect [31]. To imple-
ment the proposed CNN architecture, we used the Keras library and
experimented on Nvidia P2000 GPU having Intel® Xeon® CPU
E7-4809 processor. The implemented 2-D CNN architecture is
trained from scratch using ADAM optimizer [32] with momentum
0.9 and 0.99 and 0.001 learning rate.

B. DATASET DESCRIPTION

To evaluate the proposed architecture, we have taken five publi-
cally available benchmark datasets, viz. IXMAS [13], YouTube
[14], and UCF101 [15]. These datasets are briefly described as
follows:

IXMAS Dataset: It is a publically available multi-view dataset
in which videos were captured from different views of five
cameras [13]. This dataset consists of low-resolution, 13 daily
life activities performed by 11 actors. Its activity categories
were do nothing, check watch, crossing arms, etc. This dataset
was introduced by INRIA, France, in 2006.

YouTube Dataset: It is a publically available sports dataset
which consists of total of 11 activity categories [14]. The
videos are captured by 25 groups of individuals with more than
four video clips in it in which more than 100 sample videos
of each activity category. The video clips of each group
have some common features such as similar background,
same actor, and similar viewpoint, etc. These videos are
captured in a realistic environment and have challenges like
camera motion, the appearance of object and pose, object
scale, etc.

UCF101 Dataset: The dataset UCF101 [15] consists of
realistic user-uploaded video clips with a total of 13,320 video
clips. These video clips are captured under varying illumina-
tion conditions, cluttered scenes, etc. It is one of the most
challenging datasets of video-based human activity recogni-
tion system due to its large number of activity categories, a
large number of video clips, and also the unconstrained nature
of such video clips. This dataset consists of total 101 activity
categories ranging from daily life activity to sports. This
dataset can be further categorized into five groups:
(1) Human–Object Interaction, (2) Body-Motion Only,
(3) Human–Human Interaction, (4) Playing Musical Instru-
ments, and (5) Sports.

C. EVALUATION CRITERIA

To authenticate the usefulness of the proposed architecture, we
compared the proposed architecture with standard deep learning
architectures, that is, AlexNet and VGGNet (VGG-16) in terms of
fewer learnable parameters, per frame memory required (GPU
memory) in a single pass on training, classification accuracy,

and convergence rate (which is a measure of minimum epochs
taken to reach test accuracy at optimum value) [33].

IV. RESULTS AND DISCUSSION
In this section, we present extensive experiments and their out-
comes. Several experiments were conducted to evaluate the pro-
posed architecture and its usefulness. We performed experiments
on five publically available video datasets: IXMAS [13], YouTube
[14], and UCF101 [15]. The results were critically analyzed with
respect to other state-of-the-art methods.

A. EVALUATION OF THE PROPOSED 2-D CNN
ARCHITECTURE

To evaluate the effectiveness of the proposed architecture, Firstly,
we compared, the proposed architecture with standard deep learn-
ing architectures, that is, AlexNet [16] and VGGNet [6] (VGG-16)
in terms of learnable parameters and memory required per frame
and classification accuracy. Therefore, the proposed architecture
and standard deep learning architectures [6,16] are trained from
scratch on YouTube dataset [14]. The experimental results are
given in Table II.

From Table II, one can see that the proposed architecture is
giving comparable result (99.89% classification accuracy value) to
standard deep learning architectures but requires very fewer learn-
able parameters for training, that is, 1.4 million only and lesser
memory required, that is, 6.7 MB per frame which is smaller in
comparison to AlexNet (25MB/frame) and VGGNet (70.8MB/
frame). This demonstrates that the proposed architecture is com-
putationally efficient and requires less computational resources;
therefore, it is found suitable for devices having limited resources
(like low GPU memory).

In addition, we also presented the learning curve in Fig. 3. The
learning curves are drawn for both training versus validation
accuracy and training versus validation loss.

From Fig. 3(a) and (b), one can observe that the curves are
showing poor convergence as well as overfitting problems for
AlexNet and VGGNet architectures, that is, more learnable param-
eters than samples for training which show the learning capacity of
these networks are more than the data used for training. From
Fig. 3(c), one can see that the proposed architecture shows good
convergence and comparable results to the standard deep learning
architectures (AlexNet and VGGNet) in lesser memory and learn-
able parameters. This is due to the proposed architecture design
with a lesser number of neurons in each layer unlike AlexNet and
deeper architecture design like VGGNet, with very few computa-
tional resources. The deeper structure enables this model to extract

Table II. Comparison of proposed architecture with standard
deep learning architectures in terms of memory required for
feature map and learnable parameters

Architectures

Learnable
parameters
(million)

Feature map
(MB/frame)

Classification
accuracy (%)

AlexNet 71 25.0 99.56

VGGNet 134 70.80 99.00

Proposed
Architecture

1.4 6.70 99.89
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more abstract information and therefore represents each activity
class uniquely.

We again experimented the proposed architecture with the
RMSProp optimizer to see the role of the optimizer in the learning
and accuracy of the proposed architecture with the same learning
parameters and bath size as previous up to 1000 and 1500 epochs
from scratch and achieved accuracy of 98.54% at 1000 epochs and
97.93 at 1500 epochs. The learning curve for the RMSProp
optimizer of the proposed architecture is shown in Fig. 4.

From Figs. 3(c), 4(a), and (b), one can observe that the
proposed architecture performs well with the ADAM optimizer
than the RMSProp optimizer. This is due to the positive

accumulated gradient used in parameter updating that sometimes
kills the learning process due to a decrease in the effect of learning
rate in RMSProp. This is the reason why we used ADAM [32]
optimizer for further experimentation.

B. COMPARISON OF THE PROPOSED METHOD
WITH OTHER EXISTING METHODS

We compared the experimental results of the proposed 2-D CNN
architecture with other state-of-the-art methods to prove the effec-
tiveness of the proposed architecture. First, we experimented the
proposed architecture on IXMAS [13] dataset and achieved an
accuracy 99.58% at 2000 epochs. The results on the IXMAS
dataset for the proposed architecture and other methods used in
comparison [4,9,13,17,18,23,24,29] are given in Table III.

From Table III, we can observe that the proposed methods
achieve 99.58% classification accuracy which is a result comparable
to the methods proposed by Khan et al. [29], Elharrouss et al. [18],
and Kushwaha et al. [17] in less computational budget. This is due to
the extraction of more abstract information about the class of the data
which enables the proposed architecture to learn the complementary
and unique features of activities from the activity frame sequences of
multi-view environment. Thus, it reveals that the proposed architec-
ture is found suitable for multi-view camera environments.

In the next experiment, we used the YouTube dataset [14]. In
this dataset, we trained the proposed architecture from scratch and
achieved a classification accuracy 99.83% at 4000 epochs. The
classification accuracy of the proposed architecture and methods
used in comparison [9,20–22,26,27,29] is shown in Table IV.

From Table IV, it can be observed that the proposed method
achieves 99.83% classification accuracy which is comparable to the
result proposed by Khan et al. [29]. However, the method proposed
by Khan et al. [29] achieves the highest classification accuracy
(100%), but this method is more computationally complex than the

Fig. 3. Learning curves (first column – training versus validation
accuracy and second column – training versus validation loss) for
(a) AlexNet architecture, (b) VGGNet and (c) proposed architecture.

Fig. 4. Learning curve of proposed architecture on RMSProp optimizer
(a) at 1000 epochs and (b) at 1500 epochs.

Table III. Classification accuracy on the dataset IXMAS [13]

Methods Classification accuracy (%)

Kushwaha et al. [4] 99.50

Khan et al. [9] 95.20

Kim et al. [13] 77.20

Elharrouss et al. [18] 99.60

Saregano et al. [23] 89.75

Gnouma et al. [24] 92.18

Khan et al. [29] 99.60

Proposed Method 99.58

Table IV. Classification accuracy on YouTube [14] dataset

Methods Classification accuracy (%)

Khan et al. [9] 99.40

Wang et al. [20] 98.76

Zebhi et al. [21] 93.40

Meng et al. [22] 89.70

Abdelbaky et al. [26] 81.40

Afza et al. [27] 94.50

Khan et al. [29] 100

Proposed Method 99.83
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proposed method as discussed above. Therefore, the proposed
method is found computationally efficient and better in terms of
classification accuracy.

Finally, we conducted the experiments on the dataset UCF101
[15] which consists of 101 activity categories. To perform experi-
ment over UCF101 [15], we trained the network from scratch up to
25k epochs and achieved optimum classification accuracy value
96.23% at 15k epochs. Again, the classification accuracy was
calculated for the proposed method and other state-of-the-art
methods [10–12,17,19,20,25,28,30] used in the comparison. These
calculated accuracy values are given in Table V.

From Table V, we observed that the proposed architecture
achieved 96.23% classification accuracy which is comparable to
the other state-of-the-art methods. Here, we can see that the method
proposed by Chaudhary et al. [25] resulted in better classification
accuracy value 97.70%, but the method proposed by them is more
computationally complex than the proposed architecture. Because,
Chaudhary et al. [25] first construct depth images using frame
sequences which are used for training the CNN training. Then it
involves the extra computational burden of constructing the depth
images that require more computation time and operational re-
sources. Therefore, we again found that the proposed architecture is
computationally efficient and achieves comparable result to the
other state-of-the-art methods resulting in less computational re-
sources and low GPU memory.

Thus, from the extensive experiments on different challenging
datasets [13–15] and their results given in Tables II and
Tables III–V, we observed that the proposed architecture 2-D CNN
architecture is a simple and efficient that requires lesser learnable
parameters and therefore requires less computational resources
and, hence, less GPU memory for training than the standard
CNN architectures (see in Table II). Fig. 3(c) also reveals that
the proposed method is less prone to overfitting problems with
small-size datasets. Therefore, the proposed method is found
suitable for real-time applications having limited computational
resources and sample data.

V. CONCLUSIONS
In this paper, we presented a deep learning-based approach for
human activity recognition in a realistic and multi-view environ-
ment. We designed a simple and a computationally efficient,
lightweight two-dimensional 2-D CNN with a very small-size
convolutional kernel for activity recognition. The proposed archi-
tecture is found useful for range of challenging scenarios such as

human–human interaction, human–object interaction, varying illu-
mination, inter-class variation, low-resolution videos, etc. The
proposed 2-D CNN is fine-tuned and trained from scratch using
video frame sequences. The proposed method is also found less
complex than the standard architectures, require fewer learnable
parameters and memory per frame, which yields the requirement of
fewer computational resources such as low GPU memory for
training, and is found suitable for smaller size datasets as well.
The proposed architecture is trained and tested over several
publically available benchmark datasets [13–15]. The usefulness
of the proposed method was analyzed by comparing its results with
other existing methods. From the detailed analysis of experimental
results, it has been found that the proposed architecture produces
competitive results with high computational efficiency. From the
experiments and its exhaustive analyses, it has been found that the
proposed method performs well for high-level complex human
activities recorded in a multi-view and realistic environment.
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