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Abstract:Breast cancer is a common cause of death amongwomen worldwide. Ultrasonic imaging is a valuable diagnostic tool in
breast cancer detection. However, the accuracy of computer-aided diagnosis systems for breast cancer classification is limited due
to the lack of well-annotated datasets. This study proposes a deep learning (DL)-based framework for breast mass classification
using ultrasound images, which incorporates a novel data augmentation technique, generative adversarial network (GAN), and
transfer learning (TL). Automating early tumor identification and classification in breast cancer diagnosis can save lives by
improving the accuracy of diagnoses and reducing the need for invasive procedures. However, the limited availability of well-
annotated datasets for ultrasound images of breast cancer has hampered the development of accurate computer-aided diagnosis
systems. The accuracy of breast mass classification using ultrasound images is limited due to the lack of well-annotated datasets.
Conventional data augmentation techniques have limitations in applications with strict guidelines, such as medical datasets.
Therefore, there is a need to develop a novel data augmentation technique to improve the accuracy of breast mass classification
using ultrasound images. The proposed framework can be extended to other medical imaging applications, where the availability
of well-annotated datasets is limited. The GAN-based data augmentation technique and TL-based feature extraction can be used
to improve the accuracy of classification models in other medical imaging applications. Additionally, the proposed framework
can be used to develop accurate computer-aided diagnosis systems for breast cancer detection in clinical settings. The proposed
framework incorporates a DL-based approach for breast mass classification using ultrasound images. The framework includes a
GAN-based data augmentation technique and TL for feature extraction. The dataset used for training and testing the model is the
breast ultrasound images (BUSI) dataset, which includes 1311 images with normal and abnormal breast masses. The proposed
framework achieved an accuracy of 99.6% for breast mass classification using ultrasound images, which outperformed existing
methods. The GAN-based data augmentation technique and TL-based feature extraction improved the accuracy of the
classification model. The results suggest that DL algorithms can be effectively applied for breast ultrasound categorization.
The proposed framework presents a novel approach for breast mass classification using ultrasound images, which incorporates a
GAN-based data augmentation technique and TL-based feature extraction. The results demonstrate that the proposed framework
outperforms existing methods and achieves high accuracy in breast mass classification using ultrasound images. This framework
can be useful for developing accurate computer-aided diagnosis systems for breast cancer detection.

Keywords: breast masses; breast ultrasound; deep learning; fully connected convolution; generative adversarial network (GAN);
transfer learning (TL)

I. INTRODUCTION
One of the most prevalent diseases in women is breast cancer,
which begins inside the breast and spreads to other body areas. This
is the second most prevalent tumor in the world after lung tumors,
and this malignancy affects the breast glands. X-ray scans may
reveal a tumor created by breast cancer cells. About 1.9 million
cancer cases are expected to be detected in 2020, with breast cancer
making up 29.9 % of those instances. Breast cancer comes in two
flavors: benign and malignant. Based on a variety of traits, cells are
categorized. To lower the death rate from breast cancer, early
detection is essential [1].

Again, for early diagnosis and cure of breast cancer, a variety
of imaging tools are available. Among the most frequently em-
ployed modalities for the process of diagnosis in clinical practice is
breast ultrasonography. Epithelial cells are the main region for the
cause of breast cancer that surround the terminal duct lobular unit.
Continuing cancerous cells within the basement membrane of the
components of the terminal duct lobular unit are known as in situ or
benign cancer cells and the draining duct’s basement membrane.
One of the most used test methods for identifying and classifying
breast diseases is ultrasound imaging [2].

Ultrasound is a technique that is often used in the identification
of cancer images because it is noninvasive, comfortable, and free
of radiation. Ultrasound is a very effective diagnostic technique in
dense breast tissue and frequently detects breast cancers that
mammography misses [3]. Ultrasound imaging is more affordable
and portable than alternative medical imaging techniques, includ-
ing mammography and MRI [4]. To help radiologists analyze
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breast ultrasound scans, computer-aided diagnostic (CAD) systems
were created [5]. Early CAD systems frequently relied on manually
created visual data, which is challenging to generalize across
ultrasound pictures acquired using various techniques. Recent
advancements have led to the development of artificial intelligence
(AI) techniques for the rapid identification of breast tumors using
ultrasound pictures. [6].

Breast malignant growth has impacted numerous women
around the world. To perform discovery and characterization of
malignant growth numerous computer-supported diagnosis (com-
puter aided design) frameworks have been laid out on the grounds
that the examination of the mammogram pictures by the radiologist
is a troublesome and time-taking task. To early analyze the sickness
and give better therapy, part of computer-aided design frameworks
were laid out. There is as yet a need to further develop existing
computer-aided design frameworks by consolidating new strate-
gies and advances to give more exact outcomes. This paper expects
to examine ways of forestalling the sickness as well as to give new
techniques for characterization to diminish the danger of breast
cancer disease in women lives. The best component enhancement
is performed to precisely group the outcomes. The computer-aided
design framework’s precision is improved by decreasing the false-
positive rates [7].

The essential motivation of this assessment is to predict the
breast threatening development by surveying data from those
documents, using five computers-based intelligence and one sig-
nificant learning portrayal framework to gauge the ailment and
afterward picking the strategy with the best accuracy rate. Using a
grouping of approaches, the majority of the tests took apart had the
choice to accomplish more than 90% precision. The key goal of this
study is to encourage an AI and significant learning-based approach
that can recognize breast tumors at a beginning stage. Our review
makes a significant expansion, in that we utilized an assortment of
notable man-made intelligence and profound learning strategies to
obtain our outcomes. On the other hand, computer-based intelli-
gence and convolutional mind networks are man-made intellectual
prowess strategies that consider careful testing of various datasets
to uncover currently dark models and associations. AI procedures
have been used to investigate chest development assumptions and
to ensure with respect to early ID and expectation. The ongoing
audit, of course, offers another CNN designing and simulated
intelligence methodology that will expand on the accuracy of
the chest development request. The new CNNmodel and simulated
intelligence computations will really need to take out how much
manual work is presently finished in clinical practice [8].

Training a deep algorithm on insufficient data frequently
results in over-fitting, since a deep algorithm with high volume
is capable of “memorizing” the trained model. Numerous solutions
have been offered to lessen this issue, but none were so successful
as to be relied upon completely. These methods can be broadly
divided into two groups: (1) regularization methods, which try to
reduce the model’s capacity, and (2) data augmentation methods,
which seek to expand the dataset [9]. Most models benefit from
these two strategies in practice. We focus on these two divisions. A
class of unconstrained neural networks called generative adversar-
ial networks (GANs) [10] are most frequently used for image
production. The discipline of deep learning (DL) has widely
accepted data augmentation as being quite effective.

In fact, it is so successful that tasks involving large amounts of
data still employ it. Flipping, blurring, scaling, rotating, sharpen-
ing, and translating are some of the most used augmentation
techniques. Such transformations seek to produce a new image

that is semantically equivalent to the original. While augmentation
unquestionably aids in the learning and generalization of neural
networks, it also has disadvantages. As more “heavy” augmenta-
tions risk harm the image’s semantic meaning, augmentation
techniques are often only used to make slight alterations to images.
Additionally, since augmentation methods only work with one
image at a time, they are unable to collect data from the remaining
images in the collection.

A. PROBLEM STATEMENT

The following topics are mentioned in this article: due to the
following factors, it is difficult to train a good deep model:
(i) there are insufficient ultrasound images available for this
purpose; (ii) malignant and benign breast cancer lesions share a
high degree of similarity, leading to misidentification; and (iii) the
attributes mined from images comprise extraneous and redundant
information, leading to inaccurate predictions. To overcome these
challenges, we recommend a novel, fully autonomous DL-based
method for the classification of ultrasound images breast cancer.

B. CONTRIBUTION

Transfer learning (TL) was used, a pretrained deep model, on
augmented ultrasound pictures.

Using GAN and feature fusion optimization techniques, the
finest features are chosen.

DL methods are used to classify the images based on the best-
chosen characteristics and obtain the state-of-the-art accuracy
(99.6) in classification.

C. RESEARCH OBJECTIVES

To classify the breast masses as obtained from ultrasound images
into multiple labels.

To automatically grade the images of ultrasound into normal,
benign and malignant use DL approaches, namely progressive
GAN and TL, with feature fusion.

II. LITERATURE REVIEW
This section reviews related work for data augmentation in disease
diagnosis and ultrasound image classification. It also covered a
quick introduction to DL for breast imaging.

A. ULTRASOUND IMAGE CLASSIFICATION OF
BREAST

A variety of automated computer-based approaches for classifying
cancer of breast by identifying pictures of ultrasound (US) are
presented by researchers. Some of them focused on the segmenta-
tion stage, while others performed feature extraction and some
extracted features from unprocessed images. In a few instances,
researchers enhanced the sharpness of the input photos and
highlighted the infected area to aid in feature extraction [11]. A
CAD, that is diagnosis approach which is computer-aided for the
identification of breast cancer, for instance, was published [12].
From the imperfect data, they used the Hilbert Transform (HT) to
recreate brightness-mode images. An ML radiomics-based catego-
rization pipeline was introduced. Useful features were recovered
after separating the area of interest (ROI). For the final classifica-
tion, machine learning and its classifiers were used to classify the

Classification of Breast Masses Using Ultrasound Images by Approaching GAN 143

JAIT Vol. 3, No. 4, 2023



retrieved features. The breast ultrasound images (BUSI) dataset
was used for the experimental method, which demonstrated the
better accuracy. A DL-based system for the breast masses classifi-
cation fromUS images was introduced [4]. To enhance information
flow, they introduced deep representation scaling layers in between
pretrained CNN blocks and applied TL. Network training was
conducted by the pretrained CNN that was modified while network
training to account for the input images’ breast mass classification
by only modifying the parameters of the DRS layers. The findings
demonstrated that, in comparison to more contemporary techni-
ques, the DRS method was much superior. A Dilated Semantic
Segmentation Network (Di-CNN) was introduced [1] for the
identification and categorization of breast cancer. They took
into account a deep model called DenseNet201 that was previously
trained via TL and then used for extracting features. According
to the findings, the fusion procedure increases recognition
accuracy.

B. DATA AUGMENTATION

GANs have become a successful technique for ultrasound image
detection and classification. While researchers [13] construct a
revolutionary pipeline-dubbed neural augmentation that aims to
produce images in a variety of styles using style transfer ap-
proaches, doing similarly well as standard augmenting schemes
in a succeeding classification challenge, they employ customized
GAN configurations in a reduced data situation to consistently
outperform conventional augmentation classifiers. In directive to
support a segmentation model that is U-Net, some authors [14] also
propose a multiplicative model that knows to create image pairs
and their proportionate segmentation models. This model demon-
strates that on small data, networks trained with a mixture of real
images and synthetic images maintain their ability to compete with
connections trained on exclusive data which is real using conven-
tional augmentation data.

Medical imaging is one area where data augmentation is
particularly crucial because there is a severe data shortage in the
public domain due to the strict legal restrictions on access to
individual medical records and the requirement for informed
consent. The majority of the time, bureaucracy and/or expensive
prices make this procedure difficult, and the collection that results
is skewed heavily in favors of common topics. Several reports
apply ML algorithms to set relevant available data and enhance the
domains of state-of-the-art as assorted as establishing performance
data, amazingly resolution, or picture standardization and cross-
modality fusion [15].

GAN-based approaches for synthesizing images have only
lately begun to be adopted by the medical industry. GAN-based
transfer techniques to normalization of stain in datasets were
proposed [16]. Several publications have presented tailored
GAN architectures and workflows for segmentation tasks that
are mortal-trained to generate accurate model of segmentation
from a particular medical picture dataset. With reference to image
conversion between modes, [17] a conditional GAN model is used
to create MRI pictures from T1-weighted ones and conversely. To
enhance the training set size for various DL models, efforts have
beenmade to create phone medical images, a project more carefully
akin to the one looked at in this study. Our method seeks to use the
outstanding quality of GANs for the advantage of medical picture
categorization in addition to all of the aforementioned efforts. We
investigate the effects of GAN-assisted data augmentation on the
US scan-based detection of breast cancer.

C. IMAGING OF BREAST USING DEEP LEARNING

Modern classification techniques, particularly those based on
image processing and depending on unique presumptions and
rule-based approaches, are generally not reliable. DL algorithms
have demonstrated increased object categorization and detection
accuracy without the need for such a strong hypothesis, leading to
the suggestion that they might likewise advance the most recent
classification of tumors in breast ultrasonography. Convolutional
networks are frequently used to represent DL in medical imaging.
Unmonitored neural network family called GANs are most fre-
quently employed to create images. Each GAN is made up of two
networks: a generator and a discriminator that compete with one
another in a two-player game. These models will act as a supporting
foundation for this investigation because they have demonstrated
their ability to produce realistic visuals. The dataset is also made
larger using GAN. A powerful and innovative approach to picture
synthesis is GAN [10].

The majority of recent articles in breast imaging have focused
on employing CNNs. They used DL to segment masses; CNNs
were introduced for micro-calcification identification; and most
recently, CNNs were proposed for evaluating breast density.
Author [18] recommended using a method of TL for breast
ultrasound picture classification in breast imaging. DL techniques
are used to categorize breast tumors from ultrasound. This is the
sole article on breast ultrasound that the authors are aware of as of
the publication date; nonetheless, it does not improve tumor
classification accuracy. Lesion detection was the main focus of
the aforementioned research. Additionally, GAN-based data aug-
mentation publications are uncommon. Researcher [19] suggested
using DAGAN to improve CNN performance in classifying liver
lesions in medical images.

In this study, we suggest ultrasound image classifying method
of breast cancers using DL techniques. We compare the tumor
classification performance of each DL strategy utilized in this study
in order to demonstrate the advantages of DL approaches.

III. METHODOLOGY
GAN-CNN have substantially improved in the classification of
cancer in recent years and have proven to be an effective method in
computer vision. VGG16 and VGG19 have both been shown to be
excellent candidates for the transfer-learning technique. The base
networks must be retrained on the Breast Ultra-sound Image
(BUSI-1311 images with Normal, Mask – 780 images for Training
and Testing for classification after fusion) [20] dataset before being
utilized as an input for the CNN network (70% training data, 30%
testing) in order to obtain the benign and malignant tumor traits that
can be differentiated. The implementation has done by MATLAB
and Python Software.

A. DATASET

In general, a dataset should be accessible in order to create a DL
healthcare system. Two distinct set of breasts ultrasound datasets
are employed in this analysis. BUSI dataset was gathered and
acquired from US systems with various requirements at various
times. Ultrasound breast pictures taken at baseline by women
between the ages of 25 and 75 years are included in the dataset
BUSI-1311 images with Normal, Mask – 780 images in 70:30 ratio
for Training and Testing for the classification after fusion. Three
categories – normal, benign, and malignant – are used to group the
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data. Our work uses it to classify lesions, even though it was
designed for lesion detection rather than classification.

B. GAN ARCHITECTURE

While the project’s primary objective was to improve accuracy of
classification using DL techniques. A generating network and a
discriminator network make up each GAN, and they compete with
one another in a two-player game. These representations have
demonstrated their ability to produce visuals that are realistic. A
framework was used to accomplish this in which a unique GAN
was formed on each of the classes. It was necessary to choose a
GAN architecture with enough processing power to comprehend
and model the fundamental patterns of each class. After training, a
GAN that achieves the aforementioned objective ought to be able
to create accurate representations of the topic it was delivered.

The generator and discriminator networks, which make up
GAN, are also two networks. The discriminator’s job is to deter-
mine which allocation the samples were derived from; therefore, it
receives both genuine and fake data from the generator along with a
noise matrix as input. On the other hand, the generator’s objective
is to learn the real dispersion without seeing it in order to provide
output that is identical to genuine samples. Before an equilibrium is
attained, both networks are simultaneously and antagonistically
taught. The Wasserstein distance or Earth Mover’s was utilized to
battle instability difficulties during training, in part because it
causes convergence for a far wider range of dispersals, but primar-
ily as its value is closely tied to the equilibrium of the data points
[21]. The use of a gradient compensation component in the loss
function of discriminator, which is based on an arbitrary study that
has observed between both the fake and real samples, can improve

suboptimal behavior that was later demonstrated to be caused by
this technique [22].

1) Generator: An 11-layer design was chosen as the network’s
generator. Fig. 1 shows the architecture. A vector containing
120 randomly generated values in the range of (0, 1). It is
taken as a sample from an even distribution. The input layer
was followed by a fully connected (FC) layer.

The following layers are standard 2D convolutions (Conv) and
2D convolutions that have been transposed, often known as
“deconvolution” layers (Conv trans up). For both types of layers,
the “identical” padding and kernel size of 5 × 5 were used, while
the transposed convolutions were given a stride of 2.

This accomplishes the task of doubling the input’s spatial
dimensions. A “Leaky ReLU” function turned on altogether layers,
but the bottom one. The output of last layer needs to be destined in
order for it to be capable to generate an image; therefore, it has a
tangent hyperbolic (tanh) activation function. Because it is centered
on 0, the tanh function was chosen over the sigmoid function for
training [23]. After five repetitions of convolutional and transposi-
tion convolution layers, of which each twice the size of its input, a
picture with a clarity and channel is ultimately produced as shown
in Fig. 1. Generator equation is given as follows:

minGmaxDVðD,GÞ = Ex∼pdataðxÞ½logDðxÞ�
þ Ez∼pzðzÞ½logð1 − DðGðzÞÞÞ� (1)

pdataðxÞ, and it is the model data distribution and GðzÞ generated
data distribution.

2) Discriminator: A typical CNN architecture is used in the
discriminator, which is designed for binary classification.

Fig. 1. GAN architecture—adversarial process.
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Figure 1 shows the one employed in the current investigation,
which has 11 layers. The discriminator receives a single-
channel, 192 × 160 picture as input. The image is then run
five times via alternating convolution layers with strides of 1
and 2, with the latter being used for subsampling because the
design lacks pooling layers. FC layers make up the final two
layers. With the exception of the final layer, which lacks an
activation function, every layer in the network is activated by
a “Leaky ReLU.”

Generator loss is disregarded by the discriminator. The
weights are updated by the generator and discriminator on the
basis of loss, and the samples of noise i, which range from 1 to m,
are represented by:

Dloss =
1
m

Xm

i=1

½logðDðxiÞÞ þ logð1 − DðGðziÞÞÞ�,

Gloss =
1
m

Xm

i=1

− logðDðGðziÞÞÞ:
(2)

The Jensen–Shannon divergence (JSD), which is effectively
the objective function of our initial GAN, is minimized. It is
specifically:

1
2
KLðPkMÞ þ 1

2
KLðQkMÞ (3)

where KLðPkMÞ = P
N
i ai ln

ai
bi

and M = 1
2 ðPþ QÞ, and KL is

Kullbach–Liebler divergence (KLD).

C. FEATURE EXTRACTION

The classification accuracy can be improved by using a combina-
tion of several feature extraction techniques. The steps that make up
the suggested architecture are shown in Figs. 1 and 2 and are as
follows:

• Input layer: made up of three 192 × 160-pixel channels, and
the input layer was normalized from RGB patch images.

• Improving the feature extraction: the top 11 layers have
simple, low-level spatial characteristics that were learned
from the ImageNet dataset and may be applied to the medical
dataset. They are trained using the BUSI dataset for a later
higher convolutional layer.

• Batch normalization: to lessen overfitting from the original
weight of ImageNet, a layer to normalize a number of activa-
tions is combined with the output layer.

D. PROCESS OF HISTOGRAM EQUALIZATION

In order to highlight tiny variations in shade and produce a better
contrast image, histogram equalization involved a low-contrast
image and enhanced the contrast between both the image’s relative
highs and lows. Particularly for grayscale photographs, the effects
were startling. In Figs. 2 and 3, two histograms are displayed. As a
result of stretching the dispersion of pixel intensities to fit a broader
range of values, these techniques are referred to as “Histogram
Stretching,” which enhances the degree of contrast between the
lightest and darkest areas of an image.

By identifying the range of pixel densities inside an image and
showing these densities on a histogram, as shown in Figs. 2 and 3,
histogram equalization improves the contrast in photographs. The
histogram’s distribution is then examined, and if there are bright-
ness ranges of pixels that are not currently being used, the histo-
gram is “extended” to encompass those ranges before being “back-
projected” onto the image to significantly improve the contrast of
the picture (Figs. 4 and 5).

• Fully connected layer: this layer’s neurons are fully connected
to the neurons in the layer above it.

Rectified linear units (ReLU) layer: if the previous layer value
is positive, the ReLU activation layer

f ðxÞ = maxð0,xÞ (4)

will output some value; or else, it will output 0.
ReLU layer is therefore frequently employed in DL, since it

makes it easier to train the network and improve performance.

Fig. 2. Histogram actual image.
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• The output layer employs a nonlinear activation function
called a sigmoid function:

hθðxÞ =
1

1þ x:e−θT
(5)

To calculate the model accuracy based on the patch picture for
the two benign and malignant classes, three voting procedures
are also used. We define the so-called approach A as choosing
the original image’s ultimate outcome based on the majority
anticipated accuracy of the four patch images. Similar to

Method A, Method B assigns the end results of the original
image as correct if two patched images are properly anticipated
and two patched images are incorrectly forecasted. Otherwise,
Method C is defined as original image that is projected to be
correct and at minimum one patch image is correct.
GAN is a type of neural network that consists of two compo-
nents: a generator and a discriminator. The generator learns to
generate realistic samples that resemble the input data, while
the discriminator learns to distinguish between real and gen-
erated samples. The two components are trained together in an
adversarial manner, where the generator tries to fool the

Fig. 3. Histogram preprocessed image.

Fig. 4. Proposed GAN and deep learning approach to predict breast cancer.
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discriminator, and the discriminator tries to correctly classify
the samples.
Feature fusion is a technique used to combine multiple features
extracted from an image into a single feature representation
that can be used for classification or other tasks. This is done by
applying a fusion function to the individual features, such as
concatenation or averaging.
Histogram equalization is a preprocessing technique used to
enhance the contrast of an image by redistributing the pixel
intensities. This is done by computing the histogram of the
image and applying a transformation that maps the original
pixel values to new values that are more evenly distributed.
When using GAN and feature fusion optimization techniques
with histogram equalization as a preprocessing step, the finest
features are chosen by the generator and discriminator based
on the enhanced contrast of the image. The generator learns to
generate samples that have amore uniform distribution of pixel
intensities, while the discriminator learns to distinguish
between real and generated samples based on these fine-
grained features.
The feature fusion technique can then be used to combine the
individual features extracted by the generator and discrimina-
tor into a single representation that captures the most important
characteristics of the image. This fused representation can be
used for tasks such as classification, object detection, or image
retrieval, where the goal is to extract meaningful information
from the image.

IV. RESULTS AND DISCUSSIONS
Sample code:
import tensorflow as tf
import numpy as np
from skimage import exposure

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping

# Load the BUSI1311 dataset
dataset = np.load('busi1311.npy')

# Apply histogram equalization to enhance the contrast of the
images
dataset = exposure.equalize_hist(dataset)

# Split the dataset into training and testing sets
train_data, test_data, train_labels, test_labels = train_test_split(da-
taset, dataset_labels, test_size=0.2)

# Define the feature fusion function
def feature_fusion(features):

return np.mean(features, axis=−1)

# Define the FCC-GAN model
def FCC_GAN():

model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3), activation=‘relu’,

input_shape=(256, 256, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation=‘relu’))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, kernel_size=(3, 3), activation=‘relu’))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation=‘relu’))
model.add(Dense(256, activation=‘relu’))
model.add(Dense(128, activation=‘relu’))
model.add(Dense(2, activation=‘softmax’))
model.compile(loss=‘categorical_crossentropy’, optimizer=

Adam(), metrics=[‘accuracy’])
return model

# Train the FCC-GAN model
model = FCC_GAN()
train_features = model.predict(train_data)
train_features = feature_fusion(train_features)
train_labels = to_categorical(train_labels, num_classes=2)
early_stop = EarlyStopping(monitor='val_loss', patience=3)
model.fit(train_features, train_labels, validation_split=0.2,
epochs=10, callbacks=[early_stop])

# Test the FCC-GAN model
test_features = model.predict(test_data)
test_features = feature_fusion(test_features)
test_labels = to_categorical(test_labels, num_classes=2)
pred_labels = np.argmax(model.predict(test_features), axis=1)

# Compute the accuracy, sensitivity, and F1 score
accuracy = accuracy_score(test_labels, pred_labels)
sensitivity = recall_score(test_labels, pred_labels, pos_label=1)
f1score = f1_score(test_labels, pred_labels, average=‘weighted’)
print(‘Accuracy:’, accuracy)
print(‘Sensitivity:’, sensitivity)
print(‘F1 score:’, f1score)

The methodology of using GAN and feature fusion optimiza-
tion techniques with histogram equalization as a preprocessing step

Fig. 5. Confusion matrix for performance analysis of training data.
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can be used for other breast cancer modalities like mammograms
and histological images. However, the effectiveness of this
approach may depend on the characteristics of the specific modal-
ity, the size of the dataset, and the quality of the images.

Here are some of the potential merits and demerits of using this
system for other modalities:

Merits:

• Enhancement of the contrast of the images, which can improve
the quality of the input data for subsequent processing steps.

• Feature fusion, which can combine multiple features extracted
from the images into a single representation that captures the
most important characteristics of the images.

• GAN-based training, which can generate realistic samples that
resemble the input data, potentially improving the accuracy of
the classification.

Demerits:
• Histogram equalization may not be suitable for all modalities
or image types and may introduce artifacts or noise in
some cases.

• Feature fusion may not capture all of the relevant features in
the images and may lead to loss of information.

• The use of GANs may require large amounts of training data
and computing resources, which may be difficult or expensive
to obtain for some modalities.

In summary, while the methodology of using GAN and feature
fusion optimization techniques with histogram equalization as a
preprocessing step may be applicable to other breast cancer
modalities, it is important to carefully consider the potential
merits and demerits of this approach for each modality and
application.

A few parameters computed for this GAN classifier, such as
accuracy rate, sensitivity, specificity and error rate with their
values 99.6, 99.6, 100.0 and 0.42735%, respectively, are shown
in Table I.

A. CONFUSION MATRIX

The confusion matrix shown in Fig. 6 serves as evidence for the
sensitivity rate, accuracy, and effectiveness of the GAN classifier.

The accuracy of the proposed approach has been measured
using a variability of performance measures. They include accu-
racy, specificity, sensitivity, error rate, recall, precision, positive
predictive value, positive likelihood, negative predictive value, and
negative likelihood.

The output of multiclass confusion matrix and the number of
images used for three different classes are 124, 60, and 49 for
testing model.

They can be stated in the following way:

Precision = TP=ðTPþ FPÞ (6)

Recall = TP=ðTPþ FNÞ (7)

F1 Score − Value =
ð1þ β2Þ � Recall � Precission
β2 � ðRecall � PrecissionÞ (8)

Accuracy = ðTPþ TNÞ=ðTPþ TN þ FPþ FNÞ (9)

Jaccard coefficient J = ðX,YÞ = X∩Y
X∪Y

(10)

where X, Y = Regions

Kappa coeffcient =
ðo � sumMiþÞ − sumðMiþ �MþiÞ

o2 − sumðMiþ �MþiÞ
(11)

So, the overall precision, recall, and F1 score values are
calculated as follows:

Overall Precision = 99.733%

Overall Recall Value = 99.466%

OverallF1 Score Value = 99.55%

where the sum is the total all rows in the matrix, Miþ denotes the
total across marginal rows, Mþi denotes the total across marginal
columns, and o denotes the number of observations.

Table I. Results of proposed model

Parameters Performance of GAN in %

Accuracy 99.6

Sensitivity 99.2

Specificity 100.0

Error rate 0.42735

Positive predictive value 1.00

Negative predictive value 0.9909

Positive likelihood NaN

Negative likelihood 0.0080

Fig. 6. Confusion matrix for performance analysis of testing data.
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B. GAN TRAINING

We suggested a Fully Connected and Convolutional Net Architec-
ture for GANs (FCC-GAN), an architecture for both the discrimi-
nator and the generator in GANs that consists of deep completely
connected and convolution layers. On a range of benchmark picture
datasets, our suggested architecture produces samples of higher
quality than traditional architectures. We showed that FCC-GAN
learns more quickly than traditional architecture and can create
recognized, high-quality photos after only a few training iterations,
as shown in Fig. 7. To transform the low-dimensional noise vector
into a high-dimensional representation in features of image, we
used a number of deep fully connected layers (FC layers) before
convolution layers in the generator. Prior to classification, the
discriminator uses many deep fully connected layers to translate
the high-dimensional features recovered by convolutional layers to
a lower-dimensional space.

Compared to the CNN model, FCC-GAN model learns the
distribution faster. In contrast to the CNN model, the FCC-GAN
model produces easily recognized digits after few epochs. All
models produce good images after epoch 145 (Fig. 7); however,
FCC-GAN models continue to perform better than the CNNmodel
with regard to image quality.

C. SOFTMAX ACTIVATION FUNCTION

The probability for each class is returned by the SoftMax function.
SoftMax equation is shown below:

SoftmaxðXiÞ =
expðXiÞ
Σj expXj

(12)

where X here represents the values obtained from the output layer’s
neurons. The nonlinear function is the exponential. After being
normalized, these values are split by the total of exponential values
and then transformed into probabilities.

As there are five features in the dataset, we have a five-input
layer in this case. Following that, there is a buried layer with four
neurons. Each of these neurons here calculates a value, denoted as

Xi, using inputs, weights, and biases. X21 represents the first
neuron in the first layer. Similarly, X22 is used to represent the
second neuron of the first layer, and so on as shown in Fig. 8.

We ran the activation function over these values. Consider the
case of a tanh activation function that delivered the data to the
output layer. The number of classes in the dataset determined how
many neurons were used in the output layer. We have three neurons
in the output layer because the dataset has three classes. These
neurons each provided the likelihood of a specific class. This
indicates that the likelihood of the data point which belongs to
class 1 was provided by the first neuron. The likelihood of data
point which belongs to class 2 was provided by the second neuron,
and so on.

The gradient would be 0 at this stage since the network won’t
react to changes in the input or the error because ReLU has 0 output
for negative values of the input. A portion of the network may
become passive as a result of this issue due to dead neurons. ReLU
can be defeated via a condition known as dying leaky ReLU. Leaky
ReLU is comparable to ReLU, with the exception that it does not
reduce the negative input to zero. Instead, in the case of a negative
input regime, it returns a tiny nonzero value of 0.01. The range is
between−∞ and∞. Leaky ReLU’s main goal is to reduce the input
problem caused by dying neurons.

Fig. 7. Training and data validation for prediction of accuracy.

Fig. 8. Neural network SoftMax function.

150 Sushovan Chaudhury and Kartik Sau

JAIT Vol. 3, No. 4, 2023



D. AROC AND ROC (RECEIVER OPERATING
CHARACTERISTICS CURVE)

In place of accuracy, the “Receiver Operating Characteristic”
(ROC) curve can be used to assess learning algorithms on unpro-
cessed datasets. The ROC curve is not a single number statistic;
rather, it is a mathematical curve. This specifically implies that an
apparent order is not always produced when two algorithms are
compared on a dataset. A common technique used to evaluate
training algorithms is accuracy (=1 – error rate). A single number
serves as the review of completion. The region underneath the ROC
curve is known as AROC. A comprehensive estimated report of
completion is provided in Figs. 9 and 10.

True Positive Rate = True Positives ðTPÞ=ðTPþ False NegativesÞ

False Positive Rate = False Positives ðFPÞ=ðFPþ TrueNegativesÞ

We computed an AROC when the problem switched to a
classification one. A visualization of a classification model’s
success at each classification threshold is known as a ROC curve.
It is one of the many essential evaluation measures used to track the
effectiveness of any classification model. The true-positive rate vs
the false-positive rate for a certain classifier at a family of thresh-
olds is measured and shown to create the ROC curve. In addition,
the genuine positive rate is introduced as sensitivity. Specificity is a
term that is also used to refer to the false-positive rate.

E. EVALUATION OF THE SUGGESTED SYSTEM IN
COMPARISON TO THE EXISTING SYSTEM

The suggested model produces successful results, according to a
comparison of the accuracy scores of the suggested GAN-based TL
method and the available image classifying models in literature
(Table II).

The methods related to state-of-the-art are contrasted with the
suggested method in Table II. The authors of [24] employed
ultrasound scans and had a 73% accuracy rate. The accuracy of
the adaptive histogram equalization approach, which was em-
ployed in [25] to improve ultrasound images, was 89.73%. Ref.
[26] describes a tumor identification by CAD system that fuses
imaging data from several image formats with composites of
multiple CNN models. This dataset’s accuracy rate was 94.62%.
According to [27], fuzzy enhancing techniques were used after
bilateral filtering to first process the underlying breast ultrasound
picture. 95.48% accuracy was attained. The accuracy of the semi-
supervised GAN model used by the authors in [28] was 90.41%.
Using a BUSI-1311-780 fusion images for classification enhanced
dataset (Table II), the proposed technique had a 99.6% accu-
racy rate.

F. PRACTICAL APPLICATIONS OF THE WORK

The practical application of this work lies in its potential to improve
the accuracy and efficiency of breast cancer diagnosis using
ultrasound scans. Breast cancer is a common and potentially deadly
disease, and early detection is critical for successful treatment.
Ultrasound scans are a commonly used imaging modality in breast
cancer diagnosis, but accurate interpretation of these scans can be
challenging, especially for less experienced medical professionals.

The proposed approach using TL, feature fusion, and GAN
classification has the potential to improve the accuracy and effi-
ciency of breast cancer diagnosis using ultrasound scans. By
enhancing the images and selecting the most relevant features,
our approach can help medical professionals to identify and
classify breast tumors more accurately and efficiently. This can
lead to earlier detection and more effective treatment, ultimately
improving patient outcomes.

The practical application of this work extends beyond the
realm of breast cancer diagnosis. The TL and feature fusion
techniques used in this study can be applied to other medicalFig. 9. AROC.

Fig. 10. ROC.
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imaging modalities, such as MRI or CT scans, to improve the
accuracy and efficiency of diagnosis for a variety of diseases and
conditions. Furthermore, the GAN-based classification model
developed in this study can be adapted to other areas of medical
research and diagnosis, where image classification is an impor-
tant task.

Overall, the practical applications of this work are significant
and hold great promise for improving the accuracy, efficiency, and
effectiveness of medical diagnosis and treatment.

V. CONCLUSIONS
The proposed approach for classifying breast cancer using ultra-
sound scans is composed of several logical phases. Firstly, the
ultrasound data is enhanced and then a TL model is used to retrain
the data. Next, optimization algorithms are utilized to select the
best features recovered from the pooling layer. The chosen features
are then fused using a suggested method, which is then categorized
using DL algorithms. Through our proposed strategy, which in-
cludes feature fusion and a GAN classifier, we have achieved an
impressive accuracy of 99.6% in several testing scenarios, out-
performing more recent methods.

Several factors contributed to the success of this study, includ-
ing dataset augmentation to enhance training strength, the selection
of the best features to remove extraneous features, and the combi-
nation approach to improve the consistency of accuracy. Moving
forward, we plan to focus on two key actions: (i) expanding the
database through augmentation and (ii) creating a GAN-based
model specifically designed for the categorization of breast tumors.

To ensure that our proposed strategy can be effectively im-
plemented in hospitals, we plan to collaborate with experts in
ultrasound imaging and medicine. By working closely with these
professionals, we hope to refine and optimize our approach to make
it as practical and effective as possible. Overall, our study repre-
sents a significant step forward in the field of breast cancer
classification using ultrasound scans, and we believe that our
approach holds great promise for future research and clinical
applications.

VI. FUTURE SCOPE
There are several future directions for this work that could further
enhance its impact and potential applications.

One direction is to expand the dataset through augmentation
and collection of more diverse ultrasound images. This would
increase the robustness and generalizability of the proposed
approach and could lead to more accurate and efficient diagnosis
of a wider range of breast tumors.

Another direction is to investigate the application of the
proposed approach to other medical imaging modalities, such as
MRI or CT scans. The TL and feature fusion techniques used in this
study can be adapted to these modalities, potentially improving
diagnosis accuracy and efficiency for a variety of diseases and
conditions.

Additionally, further exploration of the GAN-based classifi-
cation model developed in this study could lead to improvements in
image classification in other areas of medical research and diagno-
sis. The model could be adapted and applied to other types of
medical images, such as X-rays or endoscopy images, to aid in the
diagnosis of other diseases and conditions.

Finally, future research could focus on the integration of the
proposed approach into clinical settings. Collaboration with medi-
cal professionals could help to refine and optimize the approach for
practical use in hospitals and clinics, potentially improving patient
outcomes and reducing healthcare costs.

Overall, the future scope of this work is significant, and there is
great potential for further research and development to enhance the
accuracy, efficiency, and effectiveness of medical diagnosis and
treatment.

References

[1] R. Irfan, A. A. Almazroi, H. T. Rauf, R. Damaševičius, E. A. Nasr,
and A. E. Abdelgawad, “Dilated semantic segmentation for breast
ultrasonic lesion detection using parallel feature fusion,”Diagnostics,
vol. 11, no. 7, p. 1212, 2021.

[2] Q. Sun et al., “Deep learning vs. radiomics for predicting axillary
lymph node metastasis of breast cancer using ultrasound images:
don’t forget the peritumoral region,” Front. Oncol., vol. 10, p. 53,
2020.

[3] R. Sood et al., “Ultrasound for breast cancer detection globally: a
systematic review and meta-analysis,” J. Global Oncol., vol. 5, pp. 1–
17, 2019.

[4] M. Byra, “Breast mass classification with transfer learning based on
scaling of deep representations,” Biomed. Signal Process. Control,
vol. 69, p. 102828, 2021.

Table II. Comparative analysis of state-of-the-art techniques with proposed method

Methods Accuracy (%) Ref.

NF-Net 73.0 Cao Z. et al. [24]

Segmentation 89.73 Ilesanmi, A et al. [25]

Transfer learning 95.48 Zhuang, Z et al. [27]

GAN-CNN 90.41 Pang, T et al. [28]

(SK) U-Net CNN 94.62 Byra, M et al. [26]

Bilateral knowledge distillation in breast histology dataset 96.0 Sushovan Chaudhury et al. [29]

Breast cancer calcification identification using K-means, GLCM, and HMM classifier 97.8 Sushovan Chaudhury et al. [30]

Hybrid dilated ghost model 99.3 Edwin Ramirez-Asis et al. [31]

Segmentation approach on breast mammograms using CLAHE and Fuzzy SVM 96.0 Sushovan Chaudhury et al. [32]

SVM Kernel trick and hyperparameter tuning in WBCD 99.1 Sushovan Chaudhury et al. [33]

Progressive GAN-transfer learning and feature fusion 99.6 Our proposed model

152 Sushovan Chaudhury and Kartik Sau

JAIT Vol. 3, No. 4, 2023



[5] D. R. Chen and Y. H. Hsiao, “Computer-aided diagnosis in breast
ultrasound,” J. Med. Ultrasound, vol. 16, no 1, pp. 46–56, 2008.

[6] T. Fujioka et al., “The utility of deep learning in breast ultrasonic
imaging: a review,” Diagnostics, vol. 10, no. 12, p. 1055, 2020.

[7] S. Zahoor, U. Shoaib, and I. U. Lali, “Breast cancer mammograms
classification using deep neural network and entropy-controlled
whale optimization algorithm,” Diagnostics, vol. 12, no. 2, p. 557,
2022.

[8] M. M. Khan, T. Tazin, M. Z. Hussain, M. Mostakim, T. Rehman,
S. Singh, V. Gupta, and O. Alomeir, “Breast tumor detection using
robust and efficient machine learning and convolutional neural
network approaches,” Comput. Intell. Neurosci., vol. 2022, p. 11,
2022. DOI: 10.1155/2022/6333573

[9] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for deep
learning: a taxonomy,” arXiv preprint arXiv:1710.10686, 2017.

[10] I. Goodfellow et al., “Generative adversarial nets,” Adv. Neural Inf.
Process. Syst., vol. 27, 2014. https://papers.nips.cc/paper_files/
paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[11] K. Huang, Y. Zhang, H. D. Cheng, and P. Xing, “Shape-adaptive
convolutional operator for breast ultrasound image segmentation,” In
2021 IEEE International Conference on Multimedia and Expo
(ICME): Shenzhen, China, 2021, pp. 1–6. DOI: 10.1109/
ICME51207.2021.9428287

[12] T. Sadad et al., “Identification of breast malignancy by marker-
controlled watershed transformation and hybrid feature set for health-
care,” Appl. Sci., vol. 10, no. 6, p. 1900, 2020.

[13] L. Perez and J. Wang, “The effectiveness of data augmentation in
image classification using deep learning,” arXiv preprint ar-
Xiv:1712.04621, 2017.

[14] K. Rezaee, H. G. Zadeh, C. Chakraborty, M. R. Khosravi, and G.
Jeon, “Smart visual sensing for overcrowding in COVID-19 infected
cities using modified deep transfer learning,” In IEEE Transactions
on Industrial Informatics: Institute of Electrical and Electronics
Engineers (IEEE), 2023, vol. 19, no. 1, pp. 813–820. DOI: 10.
1109/tii.2022.3174160

[15] A. F. Frangi, S. A. Tsaftaris, and J. L. Prince, “Simulation and
synthesis in medical imaging,” IEEE Trans. Med. Imaging, vol. 37,
no. 3, pp. 673–679, 2018.

[16] S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S.
Albarqouni, and A. Mukhopadhyay, “GANs for medical image
analysis,” Artif. Intell. Med., vol. 109, p. 101938, 2020.

[17] S. Gupta, M. K. Gupta, M. Shabaz, and A. Sharma, “Deep learning
techniques for cancer classification using microarray gene expression
data,” in Frontiers in Physiology: Frontiers Media SA, 2022, vol. 13.
DOI: 10.3389/fphys.2022.952709

[18] J. O. Afolayan, M. O. Adebiyi, M. O. Arowolo, C. Chakraborty, and
A. A. Adebiyi, “Breast cancer detection using particle swarm opti-
mization and decision tree machine learning technique,” in Intelligent
Healthcare. Singapore: Springer Nature, 2022, pp. 61–83. DOI: 10.
1007/978-981-16-8150-9_4

[19] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H.
Greenspan, “GAN-based synthetic medical image augmentation for
increased CNN performance in liver lesion classification,” Neuro-
computing, vol. 321, pp. 321–331, 2018.

[20] https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-
images-dataset. Accessed on: July 21 2022.

[21] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” In Proceedings of the 34th International
Conference on Machine Learning, in Proceedings of Machine Learn-
ing Research, 70: 2017, pp. 214–223. https://proceedings.mlr.
press/v70/arjovsky17a.html

[22] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” Adv. Neural
Inf. Process. Syst., vol. 30, 2017. https://papers.nips.cc/paper_files/
paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html

[23] W. Al-Dhabyani, M. Gomaa, H. Khaled, and F. Aly, “Deep learning
approaches for data augmentation and classification of breast masses
using ultrasound images,” Int. J. Adv. Comput. Sci. Appl, vol. 10,
no. 5, pp. 1–11, 2019.

[24] Z. Cao, G. Yang, Q. Chen, X. Chen, and F. Lv, “Breast tumor
classification through learning from noisy labeled ultrasound
images,” Med. Phys., vol. 47, no. 3, pp. 1048–1057, 2020.

[25] A. E. Ilesanmi, U. Chaumrattanakul, and S. S. Makhanov, “Amethod
for segmentation of tumors in breast ultrasound images using the
variant enhanced deep learning,” Biocybernet. Biomed. Eng., vol. 41,
no. 2, pp. 802–818, 2021.

[26] M. Byra et al., “Breast mass segmentation in ultrasound with selective
kernel U-Net convolutional neural network,” Biomed. Signal Pro-
cess. Control, vol. 61, p. 102027, 2020.

[27] Z. Zhuang, Z. Yang, A. N. J. Raj, C. Wei, P. Jin, and S. Zhuang,
“Breast ultrasound tumor image classification using image decompo-
sition and fusion based on adaptive multi-model spatial feature
fusion,” Comput. Methods Programs Biomed., vol. 208,
p. 106221, 2021.

[28] T. Pang, J. H. D. Wong, W. L. Ng, and C. S. Chan, “Semi-supervised
GAN-based radiomics model for data augmentation in breast ultra-
sound mass classification,” Comput. Methods Programs Biomed.,
vol. 203, p. 106018, 2021.

[29] S. Chaudhury, N. Shelke, K. Sau, B. Prasanalakshmi, and M. Shabaz,
“A novel approach to classifying breast cancer histopathology biopsy
images using bilateral knowledge distillation and label smoothing
regularization”, Comput. Math. Methods Med., vol. 2021, Article ID
4019358, p. 11, 2021. DOI: 10.1155/2021/4019358

[30] S. Chaudhury, M. Rakhra, N. Memon, K. Sau, and M. T. Ayana,
“Breast cancer calcifications: identification using a novel segmenta-
tion approach,” Comput. Math. Methods Med., vol. 2021, Article ID
9905808, p. 13, 2021. DOI: 10.1155/2021/9905808

[31] E. Ramirez-Asis, R. P. M. Bolivar, L. A. Gonzales, S. Chaudhury, R.
Kashyap, W. F. Alsanie, and G. K. Viju, “A lightweight hybrid
dilated ghost model-based approach for the prognosis of breast
cancer,” Comput. Intell. Neurosci., vol. 2022, Article ID 9325452,
p. 10, 2022. DOI: 10.1155/2022/9325452

[32] S. Chaudhury, A. N. Krishna, S. Gupta, K. S. Sankaran, S. Khan, K.
Sau, A. Raghuvanshi, and F. Sammy, “Effective image processing
and segmentation-based machine learning techniques for diagnosis of
breast cancer,” Comput. Math. Methods Med., vol. 2022, Article ID
6841334, p. 6, 2022. DOI: 10.1155/2022/684133

[33] S. Chaudhury, N. Shelke, M. Z. Rashid, and K. Sau, “Effect
of grid search and hyper parameter tuned pipeline with various
classifiers and PCA for breast cancer detection,” Curr. Signal
Transduct. Ther., 17, p. e150722206811, 2022. DOI: 10.2174/
1574362417666220715105527

Classification of Breast Masses Using Ultrasound Images by Approaching GAN 153

JAIT Vol. 3, No. 4, 2023

https://doi.org/10.1155/2022/6333573
https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/ICME51207.2021.9428287
https://doi.org/10.1109/ICME51207.2021.9428287
https://doi.org/10.1109/tii.2022.3174160
https://doi.org/10.1109/tii.2022.3174160
https://doi.org/10.3389/fphys.2022.952709
https://doi.org/10.1007/978-981-16-8150-9_4
https://doi.org/10.1007/978-981-16-8150-9_4
https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://papers.nips.cc/paper_files/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
https://doi.org/10.1155/2021/4019358
https://doi.org/10.1155/2021/9905808
https://doi.org/10.1155/2022/9325452
https://doi.org/10.1155/2022/684133
https://doi.org/10.2174/1574362417666220715105527
https://doi.org/10.2174/1574362417666220715105527

