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Abstract: Tomato crops are considered the most important agricultural products worldwide. However, the quality of tomatoes
depends mainly on the nutrient levels. Visual inspection is made by farmers to anticipate the nutrient deficiency of the plants.
Recently, precision agriculture has explored opportunities to automate nutrient level monitoring. Previous work has demon-
strated that a convolutional neural network is able to estimate low nutrients in tomato plants using images of their leaves.
However, the performance of the convolutional neural network was not adequate. Thus, this work proposes a novel convolutional
neural network-based classifier, namely, CNN+AHN, for estimating low nutrients in tomato crops using an image of the tomato
leaves. The CNN+AHN incorporates a set of convolutional layers as the feature extraction part, and a supervised learning method
called artificial hydrocarbon network as the dense layer. Different combinations of the architecture of CNN+AHN were
examined. Experimental results showed that our best CNN+AHN classifier is able to estimate low nutrients in tomato plants with
an accuracy of 95.57% and F1-score of 95.75%, outperforming the literature.
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I. INTRODUCTION

Nowadays, one of the most important food sources is the agricul-
tural production field, and more than 30% of the human food
consumption is lost in some phases of the supply chain. There are
multiple open problems in agricultural production in some of the
phases involved in the supply chain process and plant care pro-
cesses. One of the most relevant affectations in agricultural pro-
duction is the problem derived from poor plant care with 40% of
affection, being reactive to pests and diseases of the plants [1].
Based on data from Food and Agriculture Organization, an esti-
mated 1.3 billion tons of food is lost or wasted every year in the
world [2]. Moreover, the waste existing during the production
phase reaches 28% of the total evaluated [2]. On the contrary, food
waste in Latin America is considered to be 127 million tons per
year which means 9.8% of world waste [2]. Thus, having efficient
agricultural practices allows obtaining an optimum use of the crop,
a reduction of environmental pollution, and reduction of waste [3].
At present, these practices allow the farmer to supply the necessary
amount of nutrients to the plants, at the time they need them.
Specifically, the tomato represents one of the most important
economic and agricultural products in the world [4]. Due to the
production standards that this fruit has achieved over the years, it
has allowed the demand to have increased considerably, nationally,
and internationally due to its quality, performance, and profitabil-
ity. In Mexico, tomato crops have increased by 50% over the years.
Thus, in 2010, more than 54 thousand hectares for its cultivation
were destined. In 2014, based on data obtained by the Mexican
Agrifood and Fisheries Information Service (SAGARPA, from
Spanish), tomato crops took second place while chili cultivation
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continued taking first place in crops in Mexico [4]. Moreover,
Mexico is considered the main tomato supplier worldwide with
a market share of 25.11% of all world exports [5].

Tomato is a perennial plant that grows as an annual crop
belonging to the Solanaceae family which includes different crops
such as chili peppers, potatoes, eggplant, among others [6]-[9].
Tomato harvesting can be carried out throughout the year. How-
ever, it is important to consider that extreme low-and-high tem-
peratures can damage the plant [10].

One of the difficulties with the tomato crops is nutrient
deficiency due to its impact on the quality of the plant and the
fruits. Nitrogen, phosphorus, and potassium are known as primary
nutrients vital for many plants including tomatoes. Multiple
research works [11], [12] have reported symptoms in the leaves
of tomato crops where those nutrients are deficient (see Fig. 1 as
reference). For example, large leaves of the plant change from
green to yellow, and the small ones turn pale when there is a lack of
nitrogen. Leaf veins of the plant turn purple color in absence of
phosphorus, and lacking potassium turns the edges of leaves yellow
[13]. Tomato, over decades, has become one of the most used crops
as commercial and homegrown crops due to that this product is
used in a large number and variety of international dishes and
can be consumed in different presentations, which allows its high
acceptance by users and is one of the sources of vitamins and
minerals present in their diet [14]. As a result, searching for tech-
nological and innovative solutions to enhance the best practices in
these kinds of crops has increased. For example, precision agri-
culture and robotics have been implemented [15], as well as sensor-
based and vision-based monitoring [16]-[20]. In a previous work
[13], we designed a simple convolutional neural network (CNN)
that was able to predict the nutrient deficiency in tomato crops
using an image of their leaves. After different experiments, results
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Fig. 1. Examples of images in our dataset. It shows different views of the
tomato leaves. For instance, yellow leaves represent deficit of nitrogen,
purple veins in leaves are related to deficit in phosphorus, and deficit of
potassium are those leaves with yellow edges.

show that this CNN model performed with an accuracy of
86.59% [13].

In this work, we propose a novel CNN-based model, namely,
CNN+AHN, for estimating low nutrients in tomato crops using an
image of the tomato leaves, as part of a vision-based monitoring
system (as shown in Fig. 2). The architecture of this CNN+AHN
model comprises a set of convolutional layers, as feature extraction,
and an artificial hydrocarbon network (AHN) model as the dense
layer. Roughly speaking, AHN is a supervised learning method
[21] that models data using carbon networks as inspiration that
promotes modular organization of data, structural stability of data
packages, and inheritance of packaging information [22].

In this regard, our proposed CNN+AHN is able to detect if
a tomato plant has low nitrogen, potassium, or phosphorus. For
designing, we first build a CNN model using Bayesian optimization
to define a suitable architecture (number of convolutional layers)
and other hyperparameters for the training process. Then, the dense
layer of the CNN is replaced with an AHN to improve the
performance of the full network. We train and test the CNN+AHN
using a public dataset that we released previously [13]. For com-
parison purposes, we compare our CNN+AHN with three models:
our CNN model developed in [13], the single CNN model, and
a CNN+AHN with an intermediate feature reduction layer. The
results show that our best CNN+AHN model is able to estimate
low nutrients in tomato plants with an accuracy of 95.57%.

The main contribution of this work consists of developing
a new classification model, that is, CNN+AHN, for monitoring
nutrients deficiencies in tomato crops based on images of their
leaves. To the best of our knowledge, this is the first time that a
combined CNN-and-AHN architecture is developed.

The remainder of the paper is organized as follows: Section II
presents the related work of relevant technologies used in agricul-
ture, giving some examples. Section III presents our methodology
for building and evaluating the CNN+AHN model. Section IV
presents the results of our CNN+AHN model. Finally, Section V
highlights the conclusion of this work.

Il. RELATED WORK

One of the major improvements over the years in agricultural
technology has been the robotics field. Robotics have been adopted
in multiples countries and regions and have become more popular.
In Japan, for example, Noguchi and Barawid [23] presented the
usage of mobile robots in the form of tractors to perform the
necessary tasks within the rice, soybean, and wheat crop. These

tasks as sowing of seeds, cultivation of plants, fertilization, and
monitoring of the crops, and harvest of the final product. The
project was designed to cover large farmland, focusing on user
safety with the use of multiple inexpensive sensors and having
a system for locating and searching for better trajectories.

Different investigations have been carried out to protect crops
from climate change and pollution factors. In [16], Hemming ef al.
presented a room equipped with different robots, sensors, and
specialized areas in each type of cultivated plant. This room can
control temperature, humidity, and pressure, allowing it to adapt to
any type of plant. However, this has not been fully automated,
requiring human intervention to perform certain tasks such as
supervision of the tasks performed by the robots or detection of
the color of the fruits to be harvested.

To achieve high quality in the cultivated food and crop safety
for the user and the final product, the use of robotics in agriculture
has been successfully applied, and projects based on good agricul-
tural practices have been carried out with the help of measurement
tools, performance sensors, and analysis software seeking to
implement a controlled harvest [15].

The use of vision-based applications in agricultural problems
has incremented over the years, for example, to calculate the
necessary amount of treatment to achieve specific exterior matura-
tion of freshly harvested oranges for final consumption, a project
based on image processing was carried out to detect their coloration
[24]. To perform the evaluation, it was necessary to have an
Android device and the use of its camera. The calculation obtained
from the detected image shows the amount of treatment necessary
based on the established color indices. Furthermore, vision-based
systems have been used for color detection and analysis of the
tomato during its growth [17]-[20], and thus finding the ideal date
to harvest and sell the product. Also, this type of technology has
been used during the phase of accommodation and distribution of
the product, where the tomato can be classified as defective or
nondefective, and mature or immature for its separation.

Hence, based on the detection of the color of fruits, it is
possible to determine the ripeness of the fruit at different stages of
the supply chain, being the principal ones during the growth and the
harvest of the plant. There are different works based on the color of
the fruit peel to be evaluated. For example, in [25] the authors
analyzed the coloring of papaya for its final harvest. With this, it is
sought to obtain better products for sale and final consumption
without having to use physical and chemical processes to obtain the
required maturation.

As described before, the previous projects have the advantage
of using accessible technologies for a better quality of the final
product; however, it only focuses on the analysis of a single fruit
(e.g., tomato or papaya) and its harvest time, not on the rest of the
plant and its complete life cycle.

Deep learning methods in vision-based problems have been
used to analyze the characteristics of the leaves of different plants
and thus to detect diseases or pests. In [26], it is presented a system
capable of detecting the lack or excess of nutrients in plants. It is
important to work with plant pests and diseases to save on re-
sources such as pesticides; however, it is important to focus on
plant nutrients and deficiency thereof to obtain healthy plants and
quality products. For example, the authors in [27] present a one-
dimensional fully convolutional network to quantitatively analyze
the nicotine composition of tobacco leaves using near-infrared
spectroscopy data via the cloud. A similar work [28] using the
residual network is proposed for classifying regions of tobacco
cultivations.
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In this work, we take advantage of deep learning to analyze the
leaves of the tomato crops for detecting nutrients deficiency. An-
other successfully vision-based application of deep learning [13] is
where with a simple CNN predicting the nutrient deficiency in
tomato crops using an image of their leaves, the results show that
this CNN-based work achieved 86.59% of accuracy metric using
the same dataset used in this work [13].

The current work is based on our previous research [13] in
which we showed that a simple nonoptimized CNN model is able to
perform an accuracy of 86.59%. For that, we collected and released
a public dataset of tomato leaves with their nutrient levels. Then,
we performed four different experiments using the original dataset,
a set of enhanced images from the dataset, the original images
augmented with others from the Internet, and the enhancement of
the original plus the augmented images. In contrast, the current
work assumes that a CNN model is able to perform the classifica-
tion task of low nutrients detection. Then, we improve the archi-
tecture of the CNN via Bayesian optimization and the inclusion of
the AHN model at the dense layer. We outperformed our previous
work as shown in Section IV.

lll. MATERIALS AND METHODS

This section describes the CNN+AHN classification model for
estimating the low nutrients in a tomato plant using an image of
its leaves as input. This CNN+AHN model is part of a vision-based
monitoring system for tomato plants. The details of the overall
monitoring system and the development of the proposed CNN+AHN
model are described in the following, as well as the description of the
machine learning methods implemented in this work.

A. FUNDAMENTALS

First, we describe in general the machine learning methods—CNN
and AHN—implemented in this work.

1) CNNs. These networks have three factors involved in their
learning process: sparse interaction, parameter sharing, and quasi-
variant representation [29], [30]. CNN is a multilayered neural
network that consists of two different types of layers: convolution
layers (c-layers) and sub-sampling layers (s-layers). C-layers and s-
layers are connected alternately and form the feature extraction part
of the network. The input data pass through convolutions using
trainable filters. After that, a pooling layer is implemented to re-
shape the features in a one-dimensional array that is input into a
fully connected network used for classification. Typically, the fully
connected network works similarly to a standard multilayered
perceptron with a Softmax layer at the output [29], [30].

2) AHNs. AHN is a supervised learning method [21] that models
data using carbon networks as inspiration. It loosely simulates the
chemical rules involved in hydrocarbon molecules to find a way for
representing the structure and behavior of data [31]. Its key feature
can be described as the ability to package data in units of so-called
molecules. Then, packages are organized and optimized through
heuristic mechanisms based on chemical assumptions that are
encoded in the training algorithm [22].

A molecule consists of a kernel function with a set of weights,
as in (1), where x € R" is the feature vector of the input data, H; is
a set of weights namely the hydrogen values, o is a vector of
weights namely the carbon value, and k <4 is the maximum
number of hydrogen values associated to one molecule. Jointly,
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those weights are known as molecular parameters, and they
resemble the hydrogen and carbon atoms of a hydrocarbon mole-
cule in nature.

n k<4

plak) =) 0,y Hyx. (1)
i=1

r=1

Molecules are arranged in groups so-called compounds. Those
are structures that represent nonlinearities among molecules. They are
associated with a functional behavior as in (2), where m is the number
of molecules in the compound and %; is a partition of the input.x such
that X; = {x|argmin;(x — ;) =j}, and u; € R" is the center of the
Jj-th molecule [22]. In fact, X; N%; = @ if j; # j,. The compound
behavior written in (2) is known as linear chain of m molecules since
it is similar to organic chains in chemical nature [31].

¢1(x,3) X €
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Compounds can interact among them in definite ratios a,,
namely, stoichiometric coefficients or simply weights, forming a
mixture S(x). It is represented in (3), where ¢ is the number of
compounds in the mixture and «, is the weighted factor of the ¢-th
compound. The latter can be calculated using the least-squares
estimates method [31].

50 =Y aw() 3
=1

The literature has reported different training algorithms for
AHN. They differ in terms of how to approach the learning process
of the molecular parameters and the centers of molecules. In this
work, we adopted the stochastic parallel extreme (SPE-AHN)
training algorithm, and further details can be consulted in [22].

B. VISION-BASED MONITORING SYSTEM

The CNN+AHN is immersed in a vision-based monitoring system.
The system comprises three main steps. The first one is taking
a photograph of a tomato plant (Section III-B-1). The second is to
preprocess the image for resizing and contrast enhancement
(Section III-B-2). And the third is to use the CNN+AHN model
to classify the type of low nutrient detected in the plant (Sec-
tion III-C). The overall system is depicted in Fig. 2.

1) NUTRIENTS LEVEL IN TOMATO PLANTS DATASET. In this
work, we use a previous dataset that we obtained from this
monitoring system [13]. The dataset was collected for 10 weeks,
from tomato plants harvested in separate pots (one per primary
nutrient) located in the backyard of a house in Mexico City,
Mexico. The backyard consisted of a direct sunlight place with
temperatures ranging from 22°C to 28°C. Three plants were grown
in the pots and were added with the primary nutrients—nitrogen,
phosphorus, and potassium—once per week. The level of nutrients
was measured using Rapitest chemical nutrient testers soil kits. In
the end, 596 images of 3024 X 4032 px size were stored in the
dataset: 213 lacking nitrogen (nitrogen), 168 lacking potassium
(potassium), 94 lacking phosphorus (phosphorus), and 121 with
normal level of nutrients (normal). Examples of images in the
dataset are shown in Fig. 1.
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Fig. 2. Schematic of the vision-based monitoring system for detecting low nutrients in tomato plants.

2) IMAGE PREPROCESSING. In our previous work [13], we
proved that contrast enhancement and image resizing improve the
performance of the machine learning classifier. In the current work,
we adopted the same preprocessing for the images to be consistent
with the comparative process.

First, we apply contrast enhancement to the original images
emphasizing the color of the leaves using the gamma transformation
to the Red-Green-Blue (RGB) channels [32], as shown in (4), where
r is the input gray level (red, green, or blue intensity values) to the
gamma transformation, L is the maximum intensity value in the
channel, s is the resulting output gray level, and [a,b] is the input
range of gray levels to enhance. For all images in the experimenta-
tion, the y value was set to 1, and we used the following input range
of gray levels to contrast enhancement: [0.2 % (L — 1), 0.6 % (L — 1)]
for the red channel, [0.3 % (L —1), 0.7 (L —1)] for the green
channel, and [0,(L — 1)] for the blue channel.

0 r<a
wx)=q (L-1[" a<r<b. 4
(L-1) r>b

Then, we reduce the original images (3024 x 4032 px) to 28 X 28 px
size to reduce the computing task in the CNN+AHN model.

C. DEVELOPMENT OF THE CNN+AHN MODEL

The proposed CNN+AHN model consists of a set of convolu-
tional layers that act as the feature extractor, and an AHN as
the dense layer (Fig. 3). To design this architecture, first, we
train and optimize a simple CNN model using a dataset of tomato
leaves images with low nutrients labels. Then, we use the feature
extraction layers of the CNN as the first part of our model, and
we place an AHN in sequence. Later, we train the AHN for the

classification task, to finally obtain the proposed CNN+AHN
model.

1) CNN MODEL BACKBONE. We propose a CNN as a backbone
that receives as input a 28 X 28 px size of an RGB color image.
The image inputs into a sequence of three convolutional layers with
8, 16, and 32 filters of 3 X 3 size. Each of these layers follows with a
rectified linear unit (ReLU)-based layer and a max-pooling layer
that reduces the spatial size of the maps. Finally, there is a fully
connected layer with a Softmax layer of four units. The output of
the CNN is a class label of the low nutrient estimated in the image.
The possible classes are nitrogen, phosphorus, potassium, and
normal. It is worth noting that this CNN architecture was obtained
using a Bayesian optimization method [33] that searched in the
following hyperparameters: the number of convolutional layers
(from 1 to 5), the initial learning rate (from 0.001 to 0.01), and the
regularization term (from 1x 107! to 1x 1072). The number
of filters and the filter sizes of the convolutional layers were
fixed.

We used the stochastic gradient descent with momentum
algorithm for training, and the optimized hyperparameters: Three
convolutional layers, 0.005044 as initial learning rate, and regula-
tion term of 1.6792 x 10719,

2) AHN AS DENSE LAYER. To develop the CNN+AHN model,
after training the CNN, we isolate the first three convolutional
layers with their respective ReLLU-based and max-pooling layers.
Then, we place an AHN in sequence. We use Bayesian optimiza-
tion to determine the suitable number of molecules (from 1 to 20) in
the AHN model, as the only hyperparameter. The output of the
AHN is, then, connected to a Softmax layer to perform the
classification task. Fig. 3 shows the architecture of the proposed
CNN+AHN model.

To train the AHN dense layer, we input the images into the
CNN and we get the output of the last max-pooling layer. These

RGB image 8 filters 16 filters 32 filters 4 molecules
28x28 3x3 3x3 3x3
3 3 3 5
c el c 28 c o] =
o ET o ] ET o ] ET o © Nitro
=1 B = B = B - gen
3 o) £ > b= £ 3 82 £ zZ. % — Phosphorus
S e 8 = rs = S Xy e I*g — Potassium
> S8 o Z S0 o z o0 £ < £
5 35 e S 35 e S 25 e £ — Normal
M | —
S [v4 e o Q [v4 2]

Input image

Fig. 3. Architecture of the proposed CNN+AHN model. It receives an input RGB image of the tomato leaves with 28 x 28 px resolution. Then, this
image goes through the three convolutional-based layers and the AHN dense layer. Finally, the estimated class is output using a Softmax layer.
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outputs were used as inputs to the AHN, and the same class labels
were used as targets. We used the SPE-AHN algorithm to train the
AHN with four molecules.

3) FEATURE REDUCTION LAYER. The literature reports that
large number of features in data might reduce the predictability
power of the AHN [22]. To minimize the impact of large number of
features from the last convolutional layer, we propose to implement
a feature reduction layer in the CNN+AHN before the AHN. To do
s0, we use principal components analysis (PCA) [34] to reduce the
number of features. This reduction layer takes the convolutional
features as input, then principal components are computed, and
finally, a subset of the & first components are selected that explain a
given degree, that is, threshold p, of data variance. For this work,
we select a threshold of p = 97% of explained variance. Finally,
those k components are the inputs of the AHN layer.

D. EVALUATION

We evaluate the performance of the CNN+AHN classifier with
widely used metrics in machine learning [35]: accuracy (5),
precision (6), sensitivity (7), specificity (8), and Fl-score (9),
where TP refers to true positives, TN to true negatives, FP to
false positives, and FN to false negatives.

TP+ TN
accuracy = , )
TP + TN + FP + FN
TP
sion= 1P ]
precision = - P ©)
tivit TP o
sensitivity = —————,
YTTP+FP
TN
ficity = -V .
specificity N L FP ®
Fl-score = 2 % precision * sensitivity ©

precision + sensitivity

From our previous work [13], we determined that the training
of models is better with an augmentation of the dataset. In this
regard, the current work adopts the same augmentation procedure
that consists of 84 images retrieved from the Internet. Those were
collected manually by inspection, and the level of nutrients was
tagged using the information in the description of the web sources.
The augmented images were also preprocessed in the same way as
the original images.

TABLE |
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All the experiments were implemented in MATLAB using the
Deep Learning Toolbox, and a personal computer Dell with
processor Intel Core 17-8850H at 2.6 GHz, six CPU cores, and
16 GB in RAM.

IV. RESULTS AND DISCUSSION

We compare the performance of the CNN+AHN classifier with the
CNN model reported in our previous work [13]. Also, we made
different configurations to validate the effectiveness of the pro-
posal, e.g., the single CNN model (backbone), the CNN+AHN,
and the CNN+AHN with a PCA layer.

For the experiments, we conduct a fivefold cross-validation
approach for each of the models. In Table I, we report the mean and
standard deviation of each model with respect to the performance
metrics.

Table I shows that the baseline CNN model reported in [13]
performs with an accuracy of 86.59 + 2.34%. It is far from the new
results found in this work. For instance, the CNN backbone
classifier performs with an accuracy of 93.83 + 1.72% and the
proposed CNN+AHN gets an accuracy of 95.33 +£0.17% and
95.36 + 0.23% when no having and having PCA layer, respec-
tively. This gives an insight that the combined CNN+AHN im-
proves the performance of the single CNN model in all the metrics.
Moreover, the standard deviation of the single CNN model is
slightly larger than the one computed with the CNN+AHN.

Fig. 4 shows the confusion matrix of the best model obtained
during the cross-validation using the CNN+AHN with PCA layer
(accuracy: 95.57%, Fl-score: 95.75%, precision: 95.94%, sensi-
tivity: 95.61%, specificity: 98.40%). It can be observed that mainly
all images are well classified with the target low nutrients, except
where the target class is potassium, and the model incorrectly
classifies the image as nitrogen. This can be explained since low
nitrogen is related to yellow leaves and low potassium to leaves
with yellow edges. This condition is difficult to discriminate
visually.

A. DISCUSSION

The experimental results show that the proposed CNN+AHN with
PCA layer is the best model in terms of all performance metrics
evaluated in this work. As noticed, the single-optimized CNN
classifier found in this work is better than the previous baseline
CNN. Also, the optimized CNN classifier is able to transfer the
feature extraction layers into the CNN+AHN in which the response
is slightly better in all the metrics (mean and standard deviation).
However, the CNN+AHN with PCA layer does not represent a
major improvement. A reasoning to choose CNN+AHN with PCA
layer as the best model, in contrast with the CNN+AHN without
the PCA layer, is that the feature reduction impacts positively in the
number of learning parameters that has the AHN. In this regard, the

Performance Evaluation of the CNN+AHN and the Different Configurations

Model Accuracy (%)

F1-score (%)

Precision (%) Sensitivity (%) Specificity (%)

Baseline CNN [13] 86.59 (2.34) 81.36 (1.87)
Single CNN (backbone) 93.83 (1.72) 93.72 (1.64)
CNN+AHN 95.33 (0.17) 95.23 (0.20)
CNN-+AHN and PCA layer 95.36 (0.23) 95.39 (0.22)

81.22 (1.54) 81.94 (2.68) 93.05 (1.07)
93.56 (1.64) 93.92 (1.68) 97.80 (0.65)
95.43 (0.21) 95.18 (0.26) 98.34 (0.07)
95.48 (0.35) 95.39 (0.19) 98.35 (0.08)

Bold numbers represent the best performance in the metric. The representation of numbers is: mean (standard deviation).
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Fig. 4. Confusion matrix of the best CNN+AHN with PCA layer
classifier (accuracy: 95.57%, Fl-score: 95.75%, precision: 95.94%,
sensitivity: 95.61%, specificity: 98.40%).

AHN associated to the one without the PCA layer has 28,224
learning parameters while the AHN with PCA layer only has 5,634,
that is, a significant reduction.

The advantages of our method are that the CNN+AHN
classifier significantly improves the vision-based monitoring sys-
tem for anticipating the insufficiency of primary nutrients in tomato
crops using only images from leaves. Also, it is validated that the
CNN+AHN works with different images with no restrictions on
how to take the photograph (angle or distance). Some weaknesses
of the proposed CNN+AHN are that the dataset is very limited, so a
large dataset is required for robust validation. Also, the CNN
+AHN was not evaluated for different intensity light. Also, the
resizing preprocessing might delete interesting features that were
not taken into account in this research. Finally, the CNN+AHN
was validated in tomato leave images, thus no other crops are
considered so far.

To this end, and to the best of our knowledge, this is the first
time that the combination of CNN and AHN is done for a vision-
based monitoring system to detect low nutrients in tomato plants.
Therefore, we consider our current work to be very promising for
future precision agriculture applications. Currently, we manually
photograph the tomato leaves. Later, we could adopt the drone
approach [36] to automatically and systematically photograph the
tomato leaves based on the planned paths to extend our research to
massive farming lands.

V. CONCLUSIONS

This work proposed a CNN+AHN classifier to estimate low
nutrients—nitrogen, phosphorus, or potassium—in tomato plants
using an image of their leaves. The method consisted of a hybrid
model divided into two parts. The first comprises a set of

convolutional layers that act as the feature extraction process.
Then, a PCA layer was used to reduce the number of features
that enters to the final layer comprised of an AHN with a Softmax
function. We optimized the CNN backbone and the AHN
separately.

Based on the comparative results, against the baseline CNN
from previous work and different architecture configurations of the
CNN+AHN, we validated that the CNN+AHN with PCA layer
performs the best in terms of accuracy, F1-score, precision, sensi-
tivity, and specificity. Also, the incorporation of the PCA layer
allows us to propose a lighter version (in terms of the learning
parameters) of the CNN+AHN.

Currently, we manually photograph the tomato leaves. For
future work, we could adopt the drone approach [36] to automati-
cally and systematically photograph the tomato leaves based on the
planned paths to extend our research to massive farming lands.
Applying the methods to other agriculture products is also possible.
Also, we are considering increasing the original dataset, conduct-
ing a robust comparative study with sensitivity analysis of the
different hyperparameters that might influence the CNN+AHN
model, and developing a multilabel classifier to predict a combi-
nation of low nutrients in the same plant.
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