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Abstract: Tmages are frequently affected because of blurring, and data loss occurred by sampling and noise occurrence. The
images are getting blurred because of object movement in the scenario, atmospheric misrepresentations, and optical aberrations.
The main objective of image restoration is to evaluate the original image from the corrupted data. To overcome this issue, the
multiobjective reptile search algorithm is proposed for performing an effective image deblurring and restoration (MORSA-IDR).
The proposed MORSA is used in two different processes such as threshold and kernel parameter calculation. In that, threshold
values are used for detecting and replacing the noisy pixel removal using deep residual network, and estimation of kernel is
performed for deblurring the images. The main objective of the proposed MORSA-IDR is to enhance the process of deblurring
for recovering low-level contextual information. The MORSA-IDR is evaluated using peak signal noise ratio (PSNR) and
structural similarity index. The existing researches such as enhanced local maximum intensity (ELMI) prior and deep unrolling
for blind deblurring (DUBLID) are used to evaluate the MORSA-IDR. The PSNR of MORSA-IDR for image 6 is 30.98 dB,

which is high when compared with the ELMI and DUBLID.

Keywords: deep residual network; estimation of kernel; image deblurring and restoration; multiobjective reptile search algorithm;

noisy pixel removal; peak signal to noise ratio

I. INTRODUCTION

The base of various image processing applications is the data
collection in the way of digital images. Higher standards of image
processing are essential in numerous science and engineering fields,
whether seen from the perspective of human or machine vision. A
precise and reliable data collection is key to enhancing all image
types with enhanced quality [1-3]. The images captured in low-light
circumstances cause degradation such as higher noise, low bright-
ness, and low contrast. The degraded images create difficulty in
different essential tasks such as object detection, semantic segmen-
tation, and object tacking. Hence, it is essential for developing an
appropriate image enhancement approach to obtain an image with
enhanced quality from degraded inputs [4—6]. On the other hand, the
camera movement or lens defocusing also caused blurred images
[7,8]. The profile of blur is mainly based on the intensity dissemina-
tion that is related to the spreading of point images in the blur area [9].

Image restoration and representation are considered two chal-
lenging tasks in computer vision. Image restoration is the process
of reforming a high-quality image from degraded versions,
e.g., blurry and noisy. In image representation, the sparse coding
enabled an effective representation of signals with only fewer
active elements [10]. Image restoration also referred to as image
in painting where the automatic restoration of the damaged image
region is accomplished; therefore, the image is obtained is naturally
and a person who is not familiar with the original image cannot
observe the restoration [11]. Image deblurring aims to achieve a
sharp image by eliminating the blur from a degraded image. Image
deblurring is one of the common steps; however, it is highly
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mandatory in the computer vision field [12—14]. The low frame
rates/low shutter speeds, object motions, and camera shakes are
affected image/video quality which resulted in information loss.
Elimination of such blurring is used to restore the image that is used
in numerous applications such as moving object segmentation, text
recognition, facial detection, and so on [15]. Image restoration is
highly complex to resolve or achieve a single result because of ill-
posed character issue [16]. The aforementioned limitations are
considered as a motivation for this research to perform an effective
image deblurring and restoration.
The contributions are concise as follows:

e The MORSA is used in this research for performing effective
threshold and kernel parameter computations. The reptile
search algorithm (RSA) is chosen mainly because of its
effective equilibrium between exploitation and exploration.

e The threshold from MORSA is used to perform the noise
removal DRN, where noisy pixels are identified and replaced
with new pixels. Further, the kernel estimation along with
MORSA was performed to enhance the deblurring process.

The paper is sorted as follows: Section II gives the existing
research related to the image restoration and deblurring process.
The image deblurring and restoration using MORSA are detailed in
Section III. The results of the proposed method are given in
Section IV. Moreover, the Discussion and Conclusion of this
research are given in Sections V and VI

Il. RELATED WORK

The existing research developed for performing the image deblur-
ring and restoring is given in the following section.
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Sadok, et al. [17] developed a regularized dispersion particle
filter (RDPF) to accomplish restoration. The developed RDPF
depends on the Hidden Markov Model (HMM) and the utilization
of the exponential dispersion unit and expectation maximization
(EM) approach. The EM and Newton Raphson approach were used
to calculate the unknown variance noise and dispersion parameters.
The extended EM developed in this work was used to deal with
non-Gaussian noise. On the contrary, the developed RDPF was
required a huge amount of iterations to restore the image.

Malik, et al. [18] presented a Self-Operational Neural Network
(ONN) for handling image restoration issues. This Self-ONNs have
generative neurons that have the capacity for synthesizing the nodal
operator by leveraging Taylor polynomials. The Self-ONN offers an
optimal balance among the number of parameters and performance
of denoizing than the convolutional networks. The denoizing using
Self-ONN mainly depends on the weight values, whereas the
performance was degraded when the weight was less in the network.

Hu, et al. [19] developed enhanced local maximum intensity
(ELMI) prior for deblurring the image. This ELMI was the combi-
nation of local maximum gradient (LMG) prior and local maximum
intensity (LMI) prior. The ELMI was motivated by the principle of
the high value of local patch pixels, and gradients were reduced
along with the blurring process. The integration of LMG into LMI
was used to enhance the latent image as well as it was useful in kernel
estimation. However, the developed ELMI incorporated a huge
amount of nonlinear operations while deblurring the image.

Li, et al. [20] presented the interpretable neural network
structure namely deep unrolling for blind deblurring (DUBLID)
approach. The DUBLID depends on the recasting of a generalized
total variation regularized methodology in a neural network and
their parameter optimization through custom backpropagation. The
developed DUBLID has the advantage of interpretability as well as
this DUBLID recovered the kernel similar to the ground truth. The
DUBLID was required to incorporate the noisy pixel discovery for
improving the deblurring performances. However, an extra hard-
ware support such as graphics processing unit (GPU) was required
for faster deblurring process.

Eqtedaei, A. and Ahmadyfard, A [21] developed multiscale
approach according to the maximum a posterior (MAP) structure to

Table . Literature survey
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perform the image motion deblurring. In this MAP-based
approach, the blurry image was represented in various scales.
The k-means clustering was used to segment an each scale of
the image. For an each scale, the blur kernel was computed by
utilizing the image data in dominant edges. From the coarser levels
in a coarse-to-fine manner, the blur kernel was computed in
pyramid’s finest level. The developed MAP-based approach
does not require complex considerations for estimating the inter-
mediate latent image. The time consumption was high, when the
sharp image was recovered in pyramid’s finest level.

Zhao et al. [22] presented an image-deblurring context-aware
multiscale convolutional neural network namely CDMC-Net. Two
different stages such as multiscale network and cross stage feature
aggregation (CSFA) were developed for restoring the latent sharp
images, whereas CSFA was used for improving the information
flow communication. The multiscale blurry images were processed
in a coarse-to-fine manner. Moreover, the multistrip feature extrac-
tion was used to obtain long-range context information in various
scenarios. The developed neural network failed to deblur the low-
light images because strong edges of image were mistakenly
considered as structural edges.

The literature survey along with the advantages and limitations
is given in the following Table I.

The limitations found from related work are inefficient de-
blurring for low-light images and higher time consumption for
sharp images. The noisy pixel discovery is essential for an effective
deblurring over the images. The DRN is used in this research to
identify the noisy pixels. Next, the MORSA is used in two different
processes such as threshold calculation for noise removal and
kernel estimation. After computing the threshold values, the noisy
pixels are deblurred by using the kernel estimation. Further, the
salient edges information is used to estimate the noisy kernel in less
time for sharp images.

lll. PROPOSED METHOD

The MORSA is developed for performing image restoration and
deblurring to improve the PSNR. In general, the meta heuristic
algorithm has the best learning strategy, so it is considered for

Author name Proposed method

Advantages

Limitations

Sadok, et al. [17] The restoration of images was

achieved by using the RDPF filter.

The Self-ONN with generative
neurons was developed to handle the
image restoration issues.

The ELMI which is the combination
of LMG and LMI prior was devel-
oped for deblurring the image.

Malik, et al. [18]

Hu, et al. [19]

Li, et al. [20] The interpretable neural network
structure, i.e., DUBLID, was devel-

oped for image deblurring process.

Eqtedaei, A. and The multiscale approach according
Ahmadyfard, A to the MAP structure was developed
[21] to perform the image motion
deblurring image.
Zhao et al. [22] A context-aware multiscale convo-
lutional neural network (CDMC-
Net) is developed for deblurring the

image.

The non-Gaussian noise was handled by
using the extended EM in RDPF.

The tradeoff among the number of
parameters and performance of de-
noizing were achieved by Self-ONN.

The latent image was improved by using
the integration of LMG and LMI.

The developed DUBLID recovered the
kernel similar to the ground truth
because of its interpretability.

The developed MAP-based approach

does not require complex considerations
for estimating the intermediate latent

The context information from different
scenarios were obtained by using the
multistrip feature extraction.

The developed RDPF required a huge amount
of iterations to restore the image.

The weight values of Self-ONN decide the
denoizing performances during image
restoration.

The ELMI required a huge amount of non-
linear operations while deblurring the image.

An extra hardware support such as graphics
processing unit was required for faster de-
blurring process.

The time consumption was high when the
sharp image was recovered in pyramid’s finest
level.

However, the CDMC-Net failed to deblur the
low light images because strong edges of
image were mistakenly considered as struc-
tural edges.
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Fig. 1. Block diagram of the proposed method.

automatic selection of optimal threshold instead of manual calcu-
lation. Therefore, this research considered the MORSA to ensure
the selection of best threshold values. The MORSA is used in two
different stages such as threshold calculation for noise removal and
kernel estimation. The threshold computation using MORSA is
used to effectively discover and remove the noisy pixel using DRN.
Further, MORSA is also used in the kernel estimation to deblur the
image by computing the optimal kernel parameters. The block
diagram of the proposed method is shown in Fig. 1.

A. DATA ACQUISITION AND DISCOVERY OF
NOISY PIXELS USING DRN

Consider the image obtained from the database is H with the
dimension of U XV, and it is given as input to noisy pixel
identification. The recording process creates different irrelevant
consequences such as blurring and noise in the images observed in
various situations. The location of the pixel for the input image (H)
is represented as H (u,v). The noisy pixels are discovered by using a
deep residual network (DRN), which has various layers such as
residual blocks, convolutional (Conv), intermediate pooling, and
the linear classifier.
The steps processed in the DRN are provided as follows:

* The computation process of Conv layer is expressed in equa-
tions (1) and (2).

E-1 E-1

BZd(H) = Z Z Xa,S'H(u+a),(v+s) (1

a=0 s=0

Ci—1
Bld(H) = Z X, «H )
Z=0

where the recording coordinates are denoted as u and v; X denotes
the kernel matrix E X E, which also referred as learnable parameter;
the kernel matrix’s position index is denoted as a and s; the size of
kernel for input neuron Z is denoted as X,, and cross-correlation
operator is denoted as *.

» Next, the pooling layer is incorporated among Conv layer, and
it is used for minimizing the feature map’s spatial size. Each
slice and depth of feature map were operated by selecting the
average pooling layer.

e The DRN uses the rectified linear unit (ReLU), i.e., the
nonlinear activation function that is used to process the image.

Equation (3) expresses the ReLU function.

0, K<O0
ReLU(H) = { K K0 3)

where feature is denoted as K.

* The input layers are normalized in batch normalization func-
tion by scaling and adjusting the activation functions for
enhancing the training speed and reliability.

* The shortcut link among the Conv layers is referred by residual
blocks. The input is attached with output, when the input and
output are same. If the dimensions are different, the dimension
matching factor is used to match the input and output.

* The linear classifier discovers the noisy pixels from the input
image, once the process of the Conv layer is done in DRN.

B. STATISTICAL MODEL-BASED NOISE
REMOVAL

A new pixel is identified for each noisy pixel by using the statistical
model. Equation (4) is used to eliminate the noise pixel, when it is
deliberated as a noise pixel.

H¢(u,v)

Hr(uv) = { H(u)

where the new pixel value is denoted as H¢(u,v). The chosen noise
pixels are utilized for computing the new pixel value. Initially, a
H(r,q), i.e., 3x3 window is generated based on noisy pixels
followed by it is evaluated with the input image H (u,v). Equivalent
pixel value is chosen and denoted as A by evaluating the image
H(r,q) with H(u,v). These matched pixels are utilized for further
processes. The new pixel value is calculated, when the A is higher
than the threshold s,. Otherwise, the noise pixel is interchanged
with the original input image in the chosen 3 X 3 window. The
parameters such as X,, R and J are used to create the new pixel
value by utilizing the f(u,v) as shown in equation (5).

f(u’v) = F(Xd’R”]) (5)

where the initial value is chosen by X, is denoted as J and the
absolute function calculated utilizing the adjacent pixel value is
denoted as R is expressed in equation (6).

R=abs(H(r,q) —H(r +u—3,q+v-3)) (6)

if Buy) =1 } @

Otherwise
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The X, is discovered by a prefixed window according to the
absolute result. But, the X, is fixed as zero where d differs
according to the prefixed window # that is shown in equation (7).

Xg=X;+ (E;(uy)XR) 1<d<n @)

A X,’s rounding process is computed as round (X,/8) that is
denoted as b. For X, the process of sorting is estimated such that
the preliminary value X is chosen as J. Equation (5) is rewritten as
shown in equation (8).

— U=,
f(u’v)z{l 21, J>10

Otherwise

1 ®)

The f(u,v) is compared with the threshold s,. A function G is
created, when the f(u,v) > s, as shown in equation (9).

axy.

Go { sum(%5);

fluv)

where the mean value of the adjacent pixel is denoted as y, and c; is

fixed as 4. The new pixel is calculated based on equation (10),
when G > s;.

w > S3 (9)

Otherwise

_ Gy _ S (H () Bluy)
Gy > B(u,v)

The threshold parameters of the statistical models such as
S1, §2, and s3 are calculated using the MORSA algorithm.

(10)

C. THRESHOLD CALCULATION FOR NOISE
REMOVAL USING MORSA

In this phase, MORSA is used for discovering the optimal values of
the threshold for the statistical model. For an effective computation
of new pixels, it is essential to select the threshold values for noisy
pixels. In general, the conventional RSA is motivated by the
encircling, hunting, and social behavior of crocodiles. The iterative
process of MORSA and its objective function calculation are
detailed in the following sections.

1) ITERATIVE PROCESS OF MORSA. In MORSA, the explora-
tion and exploitation are obtained by the motion of the crocodile
while encircling the target prey. The parameters of MORSA are
mentioned as follows: population size = 50, dimension =3, and
iterations = 150. There are two different kinds of motions such as
high and belly walking based on encircling actions during the
exploration phase. Equation (11) represents the location update of
MORSA. If iteration (7) is lesser than the 7' /4, the high walking is
initialized, where T defines maximum iteration; otherwise, the
belly walking is done as per equation (11).

Vi) X =iy (£) X u—RF () (1) X1, 1<%

)’(i,j)(”rl):{ (11)

Vi (6) Xy, ) XES(t) X1, 1<2% and t>%

where y(; ;) is position j of solution i; the best solution is denoted as
¥ (¢); the random value among [0,1] is r; the hunting parameter is
?(ij) (¢) that is formulated in equation (12); u is set to 0.1; RF (ij) 18
reduce function, which is expressed in equation (13); r; — r4 are
random numbers; y(,, ; are random location; and the evolutionary
sense ES(r) is expressed in equation (14);

biijy = ; (1) X DV i)

Vi (1) = Yy
RF ) = J*OTZ
Y €

(12)

13)
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1
ES(I)=2><r3>< 1—? (14)

where € is a small value and DV ;;) denotes the difference value
expressed in equation (15).

ij) — My
—a+ Y(ij) (y)

DV,
(i) Bi(t) + (UB, - LB;) + ¢

5)
where an average location is denoted as M (y;), and it is expressed
in equation (16). A lower and upper limits of MORSA are LB; and
UB;, and a is fixed as 0.1.

1 n
M(y;) = n Z V(i)
=1

Next, the exploitation, i.e., hunting is accomplished that used
two approaches such as hunting coordination and hunting collab-
oration. The MORSA performs the hunting coordination when the
condition of t < 3 % and t > 2% are satisfied; otherwise, the hunting
cooperation takes place as shown in equation (17).

B;(1) X P (1) xr, 1<3Land1>2%

ii [+1 = ! 17
iy (t+1) {Bj(t)_q,(iJ)(;)xg_RF(iJ)(t)xr,thandt>3§( .

(16)

The iteration of MORSA is repeated until the specified itera-
tion is met, or the best solution is obtained in the selection process.
The computational complexity of MORSA is O(T X PS X Dim),
where T defines maximum iteration;population size is denoted as
PS, and dimension is denoted as Dim. The objective function used
to find the optimal threshold is derived in the following section.

2) OBJECTIVE FUNCTION OF MORSA FOR NOISE REMOVAL.
The optimal threshold for noise removal is chosen according to the
objective function expressed in equation (18). The solution with a
lesser value is selected as the optimal solution, i.e., optimal
threshold values for the statistical model.

Objl = N |t X I, + log(R(J(G),G)) (18)
where Obj1 denotes the objective function for noise removal; the
hyperparameter is denoted as 7; the first term denotes the generative
subnetwork to obtain enhanced output that is close to the images with
higher contrast and the second term offers enhanced outcome which is
indistinguishable from images with higher contrast. The derived fitness
function is used to find the optimal threshold of s;, s,, and s; for a
statistical model. After that, it was used to perform noise removal.

The Pseudo code for MORSA-based threshold calculation is
shown in Algorithm 1.

Algorithm 1: MORSA-based threshold calculation.
Input: Noisy central pixel
Output: Computation of threshold values based on the proposed
MORSA
Initialize the population
Fitness function evaluation
While (end criteria failed to satisfy)
For each population
Update the solution
End for
Fitness function evaluation
Find the best solution
Update the population
End while
Best solution is returned
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D. KERNEL ESTIMATION-BASED IMAGE
DEBLURRING

After removing the noisy pixels, the image is further processed by
image deblurring, which is accomplished by kernel estimation. The
estimation of kernel is represented in equation (19) according to the
hyper-Laplacian model.

min|[VH - gx VK3 +pllglliig(2) 20,3 Jg(s)=1,0<x<1 (19)
Zz

The aforementioned equation (19) is used to preserve the
sparsity; however, it does not display the blur kernel’s continuity.
The noisy kernel is estimated using the salient edges VK. The term
N(g) expressed in equation (20) is used to control the gradients to
preserve the kernel continuity.

N(g) = #{z/|9.8(z) + [9kg(2)| # O[} (20)

Where an amount of the pixel with nonzero gradients is
denoted as N(g). Accordingly, the estimation of the kernel is
written as shown in equation (21).

min[VH* - g X VK|3 + pllg|lf + oN(g);

8(2) 20, Y g(x)=1 @1

where the parameter utilized for controlling the smoothness g is
denoted as . Equation (21) is modified as shown in equation (22).
Further, it is minimized with the iterative reweighted least square as
shown in equation (23).

min|[VH = g X VK[3 +pllgli ¢() 20, D g =1 (22)
Z

min|g - g3 +o.N(8) (23)

Further, the parameters of p and ¢ are also identified by using
the same MORSA, and the objective function for kernel estimation
is given in the following section.

E. OBJECTIVE FUNCTION FOR KERNEL
ESTIMATION

The iterative process of kernel estimation using MORSA is similar
to “Kernel Estimation-based Image Deblurring.” A quadratic
programming function is used to calculate the objective measure
for creating a matrix. Consequently, the search agents are evaluated
by utilizing the objective function for kernel estimation (Obj2) as
expressed in equation (24).

Obj2=05XHxXDXH'+ CF xH' 4)

where the matrix is denoted as D and the coefficient function’s
transpose is denoted as CF'.

IV. RESULTS AND DISCUSSION

This section provides a comparison of the proposed method with
the existing methodologies. The proposed method is developed and
executed in MATLAB R2020a, which is operated under 16GB
RAM and an i5 core processor. The proposed method is used to
accomplish image representation and restoration by deblurring the
images. Here, the performances are evaluated in terms of PSNR
and SSIM, which are expressed in equations (25) and (26).

2

PSNR = 10logy (1%”) 25)
SSIM(E,h) — (27[(3’111 + ¢1)(2§eh + ¢2> (26)

2+ + 1) (E+E+ o)

where the maximum image pixel value is denoted as m,,,,; mean
square error is denoted as MSE; pixels are denoted as e and /; mean
pixel value is denoted as 7, and #;; pixel variance is denoted as &,
and &,; covariance of pixels is denoted as &,;,; and ¢ & ¢, are used
for stabilization.

A. PERFORMANCE ANALYSIS

The sample images processed in this proposed method for perform-
ing the image representation and restoration are shown in Fig. 2.
The 6 images considered for the evaluation of MORSA-IDR are
referred as iml, im2, im3, im4, im5, and im6.

These sample blurred images are processed under the pro-
posed method to deblur the given input. For example, a im6 shown
in Fig. 2 is processed, and the deblur output is obtained using the
proposed method as shown in Fig. 3. The PSNR and SSIM of
deblurred im6 are 30.98 dB and 0.93.

The fitness function graph for MORSA with different opti-
mizations such as particle swarm optimization (PSO) and Grey
wolf optimization (GWO) is shown in Fig. 4. The objective
function considered for noise removal is used to converge the
MORSA is faster than the PSO and GWO.

The PSNR is analyzed for different optimization and deblur-
ring models as shown in Table II. Here, two different block sizes
such as 3 X 3 and 5 X 5 are considered for analyzing the restoration
performances. In that, different optimization includes particle
swarm optimization (PSO) and Grey wolf optimization (GWO),

im3

im4 m5 imé6

Fig. 2. Sample blurred images.

m==) MORSA-IDR =)

Blurred input

Deblurred output

Fig. 3. Restoration using proposed method.

JAIT Vol. 3, No. 4, 2023



0.14

0.13

012

011

0.1

PSO
GWO
MORSA

0.09 [

Fitness

0.08

0.07 [

0.06

0.05

0.04 | | | | | \
20 40 60 80 100 120 140
No.of Iteration

Fig. 4. Fitness function.

whereas the different deblurring include convolutional neural
network (CNN) and U-net. Further, PSNR comparison for different
optimization methods is shown in Fig. 5. This analysis shows that
the MORSA and proposed deblurring methods provide better
performances than the other approaches. For example, the
PSNR of MORSA for iml1 is 31.021 dB, whereas PSO obtains
28.578 dB and GWO obtains 29.593 dB. The developed MORSA
provides better performance than the PSO and GEO because of its
effective equilibrium among the exploration and exploitation
operations. Moreover, the kernel estimation computes new pixel
for the noisy pixel of blurred image based on estimated threshold
from MORSA. Accordingly, this kernel estimation is used to
perform an effective deblurring of images which further helps to
improve the PSNR.

Similar to PSNR analysis, the SSIM also analyzed for different
optimization and deblurring models as shown in Table III. Further,
the graph for SSIM for different optimizations is shown in Fig. 6.
From this analysis, it is found that the SSIM of proposed MORSA
and deblurring model provides better performances than the PSO,
GWO, CNN, and U-Net. For example, the SSIM of MORSA for
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Fig. 5. PSNR graph for different optimization methods.

iml is 0.881, whereas PSO obtains 0.678 and GWO obtains 0.793.
Since the searching operations of MORSA such as exploration and
exploitation’s equilibrium result in optimal parameters of threshold
and kernel. The MORSA achieves higher structural similarity
because of effective identification of threshold and kernel parame-
ters for deblurring and restoring the input images.

The runtime, memory, and entropy analysis for different block
sizes such as 3 X 3 and 5 x 5 are shown in Table IV. This analysis
shows that the runtime for 3 X 3 block size is varied between 6.18s
and 9.04s, whereas the 5 X 5 is varied between 6.34s and 9.11s. On
the other hand, the memory used during the simulation is varied
from 3.04KB to 5.88KB for 3 x 3, while memory of 3.81KB to
7.22KB is used for 5 X 5. Further, the entropy for 3 X 3 block size is
varied between 6.44 and 7.58, whereas the 5 X 5 is varied between
5.97 and 6.84.

B. COMPARATIVE ANALYSIS

Existing researches such as ELMI [19], DUBLID [20], and MAP
[21] are used to compare the MORSA-IDR method. The ELMI
[19], DUBLID [20], and MAP [21] have processed the im6 shown
in Fig. 2, so the comparison is done for the same as shown in
Table V. Further, the graphical illustration for the PSNR for
MORSA-IDR with ELMI [19] and DUBLID [20] is shown in
Fig. 7. This comparison depicts that the MORSA-IDR outperforms

Table Il. PSNR analysis of proposed method
PSNR (dB)
Different optimization Different deblurring methods
Block size Images PSO GWO MORSA CNN U-Net Proposed
3x3 iml 28.578 29.593 31.021 30.002 28.615 31.021
im2 24.113 25.600 28.947 26.204 24.810 28.947
im3 23.281 24918 29.081 28.892 27.080 29.081
im4 24.200 27.399 30.114 28.575 26.656 30.114
im5 26.082 28.984 31.215 29.963 29.040 31.215
im6 25.082 27.128 30.988 29.236 28.520 30.988
5%x5 iml 27.889 28.790 30.798 28.973 27.940 30.798
im2 23.284 24.162 28.204 28.101 26.143 28.204
im3 22.544 24.069 28.633 26.343 24.841 28.633
im4 24.098 26.386 29.680 27.626 25.877 29.680
im5 25.256 27.084 30.668 29.583 24.545 30.668
im6 24.621 27.021 30.182 29.673 26.807 30.182
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Table Ill. SSIM analysis of the proposed method
SSIM
Different optimization Different deblurring methods
Block size Images PSO GWO MORSA CNN U-Net Proposed
3%x3 iml 0.678 0.793 0.881 0.808 0.768 0.881
im2 0.513 0.609 0.913 0.894 0.871 0.913
im3 0.581 0.618 0.910 0.875 0.859 0.910
im4 0.622 0.799 0.893 0.864 0.861 0.893
im5 0.615 0.884 0.908 0.891 0.886 0.908
im6 0.682 0.728 0.935 0.908 0.901 0.935
5%5 iml 0.667 0.766 0.834 0.794 0.683 0.834
im2 0.492 0.601 0.905 0.788 0.725 0.905
im3 0.558 0.611 0.909 0.879 0.822 0.909
im4 0.609 0.781 0.885 0.771 0.734 0.885
im5 0.608 0.880 0.899 0.804 0.768 0.899
im6 0.678 0.719 0.921 0.907 0.884 0.921
1 Table V. Comparative analysis for MORSA-IDR
0.8
0.6 Methods PSNR (dB) SSIM Runtime (s)
% ' ELMI [19] 30.45 0.921 NA
“ 04 DUBLID [20] 29.83 0.892 0.08
0.2 MAP [21] NA NA 13
0 MORSA-IDR 30.98 0.935 7.99
im1 im2 im3 im4 im5 imé
Different optimization methods 315
30.98
B PSO mGWO MORSA 31
o 30.45
- : — 5 305
Fig. 6. SSIM graph for different optimization methods. P>t
Z 30 29.83
a
29.5
Table IV. Runtime, memory, and entropy analysis 29
Block size Images Runtime (s) Memory (KB) Entropy ELMI [19] DUBLID [20]  MORSA-IDR
3%3 iml 8.31 3.04 7.01 Methods
im2 7.24 4.37 6.45
im3 811 5.88 754 Fig. 7. Graphical representation for the PSNR.
im4 9.04 3.19 6.44
im5 6.18 4.08 7.22 the noisy pixel discovery to further enhance the deblurring per-
imb 7.99 501 758 formances. Due to utilization of GPU, the runtime of DUBLID [20]
5%5 iml 8 .64 384 6.84 is less when compared to the proposed MORSA-IDR. The main
. 729 501 6.7 goal of the MORSA-IDR is to increase the PSNR and SSIM of
l.m ' ’ ' restored images. So, the MORSA-IDR achieved high PSNR and
im3 8.31 722 6.18 SSIM with significant runtime when compared to the DUBLID
im4 9.11 3.81 5.97 [20]. The combination of noisy pixel discovery using DRN and
im5 6.34 6.01 6.37 kernel estimation along with MORSA help to enhance the deblur-
im6 8.08 5.22 6.09 ring and restoration performances.

well than the ELMI [19], DUBLID [20], and MAP [21]. For
example, the PSNR of MORSA-IDR for im6 is 30.98 dB, whereas
the ELMI [19] obtains 30.45 dB and DUBLID [20] obtains
29.83 dB. The ELMI [19] and DUBLID [20] have to incorporate

V. DISCUSSION

This section provides the brief discussion about the results obtained
from the MORSA-IDR to ensure the image deblurring and resto-
ration. At first, the results of MORSA-IDR are compared with
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different optimization and deblurring models. The results show that
the MORSA-IDR achieves the better PSNR and SSIM than the
PSO, GWO, CNN, and U-Net approaches. For example, the PSNR
of MORSA-IDR is 30.668 dB, which is high when compared with
the PSO, GWO, CNN, and U-Net. Further, the MORSA-IDR is
compared with the ELMI [19], DUBLID [20], and MAP [21] in
comparative analysis section. The MORSA-IDR outperforms well
than the ELMI [19], DUBLID [20], and MAP [21]. For example,
the PSNR of MORSA-IDR for im6 is 30.98 dB, which is high than
the ELMI [19] and DUBLID [20]. In this research, the DRN-based
noisy pixel discovery and MORSA-based kernel estimation are
used to enhance the image deblurring and restoration perfor-
mances. The MORSA-IDR works well for unstructured and low
light images during the image deblurring and restoration. However,
if MORSA-IDR processed under highly unstructured images, it
creates huge impact in the PSNR and SSIM measures.

VI. CONCLUSION

In this research, effective image deblurring and restoration are
achieved based on the detection and replacement of noisy pixel and
image deblurring processes. Initially, the DRN is used for discov-
ering the noisy pixel from the input, and the statistical model is used
for removing the noisy pixel. The optimal threshold values for the
statistical model are identified using the MORSA, which resulted in
the calculation of new pixels for noisy pixels. Later, kernel
estimation along with MORSA was developed for enhancing
the image deblurring process. Therefore, the low-level contextual
data from the corrupted image are acquired by using the developed
MORSA-IDR method. The outcomes of MORSA-IDR show that it
outperforms well than ELMI and DUBLID. The PSNR of
MORSA-IDR for image 6 is 30.98 dB, which is high when
compared to the ELMI and DUBLID. In the future, the novel
optimization algorithm can be used for improving the deblurring
performances under highly unstructured images.
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