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Abstract: Lesion segmentation of medical images is an important component of smart medicine. The development of deep
learning technology is followed by rapid advancement in lesion segmentation technology of medical images. Though the present
segmentation technology can retain spatial features, insufficient spatial features are retained with low segmentation accuracy. Our
proposed PST-UNet model combines transformer with U-shaped structure and better infuses encoder’s multiscale features by
using convolution fusion module. PST-UNet model adopts two types of block Swin transform at encoder and decoder ends,
respectively. Renal lesion data tend to present a normal distribution. Therefore, to preserve more spatial features and enhance the
precision of renal lesion segmentation, Swin transformer block and full (Gaussian error linear unit) activation function are
introduced at the encoder end. Similarly, at the decoder end, Swin transformer block, full GELU activation function, upsampling,
and jumper wires from the convolution fusion module are also introduced.
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I. INTRODUCTION
With the popularization of medical imaging technology and equip-
ment, more and more ultrasound, magnetic resonance imaging
(MRI), computed tomography (CT), and other imaging methods
are available for medical diagnosis. These diagnostic technologies
are increasingly and widely used in clinical research and treatment
plans in daily life [1]. In the diagnostic analysis of medical images,
medical image segmentation usually forms an important step [2],
such as renal medical image segmentation, retinal OCT image
segmentation [3,4], and abdominal CT scan segmentation
[5,6]. Although clinically experienced professional doctors may
provide very accurate segmentation, it is often costly and labor-
intensive in terms of standard clinical settings. By contrast, auto-
matic lesion segmentation of medical images can greatly reduce
labor and increase efficiency, so automatic medical image segmen-
tation technology [7] is demanding in clinical diagnosis and
scientific research. Nevertheless, the current medical image seg-
mentation technology has poor long-term context dependence and
cannot retain more spatial features, so the segmentation accuracy is
not high, which leads to great possibility of misdiagnosis, high
missed diagnosis rate, and difficult advancement of automatic
diagnosis.

CNN-based UNet [8] model is extensively used in modern
medical image segmentation. By replacing pooling operation with
resampling, UNet helps to restore fine-grained information of the
target object, but the feature map constantly gets smaller during
convolution, resulting in fewer spatial features. Pooling operation
[9] reduces the feature vector output by the convolutional layer and
improves the result at the same time. Nonetheless, it has limitations
due to long-term dependence relationship [10,11], cannot easily
adapt to individual difference changes in size, shape, and texture

[7], nor is it able to extract more spatial features. Transformer
(ViTs) [12] solves the problem of long-term dependency, but is
inferior to CNN and RNN in local feature capture. TransUNet [5]
combines the advantages of both transformer and UNet, but it will
create massive computing requirements for high-resolution images
and cannot maintain local continuity around the face, resulting in
failure to retain more spatial features. DS TransUNet [8] establishes
long-term dependence between different scale features, which also
effectively integrates multiscale feature representation from
encoder to improve computing efficiency. However, it cannot
extract higher and more global spatial features. In order to extract
more spatial features, we put forward a U-shaped network with
PST-UNet network framework (positive distribution data Swin
transformer), which establishes a long-term dependency relation-
ship between different scale features. While integrating multiscale
feature representation from encoder more effectively, it preserves
spatial feature information to the maximum extent to improve the
segmentation accuracy.

In order to enhance the accuracy of kidney medical image
segmentation and retain more spatial features, a PST-UNet network
model was developed. This model yields superior segmentation
accuracy in medical CT image segmentation. The rest of the paper
is organized as follows. Section II presents the RELATED
WORKS. Section III introduces THE PROPOSED METHOD.
Section IV introduces the EXPERIMENTS AND DISCUSSION.
Section V presents CONCLUSIONS.

II. RELATED WORKS
Based on application of CNN network in medical image segmen-
tation, Neerav Karani et al. [13] designed a segmented CNN to
connect two subnetworks and test time adaptability as a way to
solve the robustness problem. [1] BANet also has encoder and
decoder network structure like UNet, but it uses pyramid edge
feature extraction module to collect two-dimensional image edgeCorresponding author: Xuemei Shi (e-mail: 784909013@qq.com).
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information, which coordinates with cross-feature integration mod-
ule CFF to achieve information complementation between features
at different levels. MUNet [14] is a medical image segmentation
framework based on feature pyramid to enable accurate segmenta-
tion of medical image. [15] Shi Tianyi fused 2DUnet and direc-
tional field models with 3DUnet models to form a lesion
segmentation method featuring multimodel fusion. Medical image
segmentation architecture DDU-Net [16] has two encoders and a
decoder, which is applicable to skip connection of dual encoder
network. The above-mentioned CNN-based image segmentation
models [17] have been successfully applied to solve various
problems in computer vision by using encoder and decoder frame-
work for image segmentation tasks. Nonetheless, the selection of
threshold value and regional division criteria is greatly affected by
image intensity or texture information, and there is insufficient
ability in global context connection, so limited spatial features are
retained and segmentation accuracy is restricted.

In terms of transformer application in medical image seg-
mentation, Swin transformer [8] introduced sliding window
mechanism and achieved great success in downstream tasks.
ConvNeXt [2] of pure convolutional neural network model
was redesigned based on standard ResNet to replace Swin trans-
former. By using an improved medical image segmentation
program, ConvNeXt has significantly reduced the number of
parameters. TransUNet [5] established a self-attention mecha-
nism from sequence to sequence and a hybrid CNN-transformer
architecture was used to employ detailed high-resolution spatial
information from CNN features and the global context encoded
by transformers. Then, upsampling was performed on the self-
attention features encoded by transformers, and accurate posi-
tioning was achieved by combining different high-resolution
CNN features skipped from the coding path. In the medical image
segmentation model TransUNet+ [8], a feature enhancement
module was designed to strengthen skip connection for fusion
of multiscale features, but edge feature information was still
insufficient. TransUNet+ follows the U-shaped structure of
TransUNet, which also contains the CNN encoder, transformer
encoder, and CNN decoder. Skip connection was redesigned
using column vectors of the score matrix to enhance skip char-
acteristics. DS TransUNet [7] was established based on dual-scale
encoding mechanism, which used a dual-scale encoder based on
hierarchical Swin converter to learn multiscale features. Each
medical image is segmented into nonoverlapping blocks at large
scale and small scale, respectively. With the two blocks of
different scales as input, the proposed dual-scale encoder subnet-
work can effectively extract coarse-grained feature representa-
tions of different semantic scales. In the same way as the
traditional U-shaped architecture, the extracted context features
will be upsampled by the designed decoder and fused with the
unified feature representations from the encoder by skip connec-
tions. The network based on TransUNet not only possesses ability
of CNN to extract local features but also enjoys the advantage of
transformer in remote context capture, which makes up for the
CNN defects. At the same time, the accuracy of medical image
segmentation is enhanced through the self-attention mechanism.
Although the existing TransUNet series models can retain spatial
features, retained spatial features are insufficient, so CT renal
medicine images have a low accuracy in lesion segmentation.

In order to retain more spatial features and improve the lesion
segmentation accuracy of renal medical images, the PST-UNet
network model was designed to enable better accuracy in medical
CT image segmentation.

III. THE PROPOSED METHOD
In this paper, the PST-UNet architecture model will be introduced
in detail, as shown in Fig. 1. The PST-UNet network has a UNet
structure composed of FB module, PSTP module, PSTU module,
and SSM module. The FB (dual-scale fusion block) module fuses
the feature information integrate and recognize more spatial fea-
tures. PSTP module performs downsampling and linear transfor-
mation of the information derived from PST as a preparation for the
stacking of small Swin transformer blocks in the next layer.
Through hierarchical method, PST uses Swin transformer to
introduce GELU [18] according to the characteristics that the
segmentation data of renal lesion tend to be normally distributed
in this project, so that more features of different scales can be
captured. The PSTU module inputs the upsampled feature infor-
mation to the PST module to retain more spatial feature informa-
tion. SSM samples the image information and simultaneously
sends the image information and sampled feature information to
the output end, so as to retain more spatial features and achieve
better segmentation accuracy of renal lesion. The whole PST-UNet
network constitutes the UNet structure, in which the encoder part
has PSTPmodule, encoded information as the FB input, and the FB
output is used as the decoder input, while decoder is composed of
PSTU module and SSM module.

A. PSTP MODULE

As the core part of self-attention module transformer [8], it allows
global dependence and context extraction of renal lesion features,
and it uses global attention of the aggregate sequence to reconstruct
each token of the sequence. The self-attention mechanism con-
structs query vector, key vector, and value vector based on input
vector. The three matrices are WQ∈ Rdmodel×dq , WK∈ Rdmodel×dk , and
WV∈ Rdmodel×dv . The formula for constructing these three vectors is
as follows:

qi = xiW
Q, ki = xiW

K , vi = xiW
V (1)

xi is an element in the input sequence, and the matrix can be
calculated in the same way:

Q = XWQ K = XWK V =XWV (2)

Then, based on these three vectors, one input xi is reconstructed
into the new vector zi:

zi = softmaxðqiKT=
ffiffiffiffiffi
dk

p
ÞV (3)

where Q, K, and V are query vector, key vector, and value vector,
respectively; dk is the embedding dimension, and qi is a query.

The combined influence of all input sequences on each loca-
tion, i.e., self-attention value, is calculated as

The self-attention mechanism establishes a global dependence
relationship and has a larger receptive field than CNN, which
strengthens the receptive field and accesses more context informa-
tion. However, the self-attention mechanism is a result of filtering
out unimportant information and screening out important informa-
tion, which has inferior effective information extraction capability
than CNN. In order to extract more spatial effective information
and improve the precision of renal lesion segmentation, PSTP
module was proposed.

As shown in Fig. 3, PSTP boasts PST module function and
patch downsampling function. PSTP adopts two-scale encoder
mechanisms to extract different scale features. First, a given
R3 ×H ×W image is converted into a patch embedded sequence
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with two scales of R(H/4 ×W/4) ×C and R(H/8 ×W/8) × C. Then,
as the input of two parallel PSTPS, a PST module performs rough
and fine parallel encoder of the two scales information. After
coding, the two kinds of information are segmented into patches
and downsampled to reduce the resolution and increase the depth
dimension. Meanwhile, in order to collect more valuable multiscale
spatial integration features, the two kinds of downsampled feature
information are connected to the input end of FB module for
subsequent processing. Parallel PSTP modules have four stages for
rough feature and fine feature parallel encoder, as shown in Fig. 2.

The PST module consists of small Swin transformer block and
full GELU activation function, as shown in Fig. 3. Swin

transformer block and full GELU activation function are used in
the four stages of encoder: stage1∼stage4.

For the lesion data of renal medical images, it is preferably to
extract as much continuous feature information as possible. None-
theless, some piecewise linear functions such as ReLU are un-
smooth, and some breakpoints are not differentiable. For instance,
zero point is nondifferentiable. When processing data, the mean
value of neural network is usually required to be 0. As the
activation function of renal lesion data, ReLU will affect the
network segmentation accuracy.

The above suggests that, considering the normal distribution
characteristics of renal medical image data in this project, GELU
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Fig. 1. PST-UNet system model.
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activation function should be selected. That is, Swin transformer is
used in every stage of encoder, then ReLU activation function is
replaced completely and GELU activation function is used in all.
Two scales are adopted at the same time. Coarse-grained features
can be located at large scale, while finer grained features can be
captured at smaller scale. In this way, it is possible to extract more
comprehensive spatial feature information, enhance the model
robustness, and improve the segmentation accuracy. First, the
medical image was segmented by convolution operation into n
(H/n,W/n) patches and mapped into C-dimension by linear embed-
ding. Each patch did not need extra position information, which
was input into the PST module of each stage as patch tokens (small
block images composed of multiple pixels by linear mapping) for
Swin transformer block and full GELU activation function proces-
sing. In the encoder part, when the characteristic information goes
through stage1∼stage3, the number of PST-transformed tokens
gradually decreases, with dimension gradually increased. Then,
2 × 2 adjacent feature patches of each group are patch merged and
spliced together for 2× resolution downsampling. The data of
tokens are reduced by an exponential multiple of 2. The image
dimensions are increased by the same exponential times of 2 at
the same time. At stage1∼stage4, the image resolution output is
H/n ×W/n, H/2n ×W/2n, H/4n ×W/4n, H/8n ×W/8n, respec-
tively, with corresponding dimensions being C, 2C, 4C, and 8C,
respectively.

B. FB MODULE

In order to retain more spatial features, semantics should be
integrated and fused. Thus, the fusion block FB (dual-scale fusion
block) is proposed [7].

The FBmodule employs a multihead attention mechanism and
utilizes a standard transformer to generate tokens of a specified size
based on the feature map of each branch. These tokens are
subsequently combined with the token sequence generated by
another branch, and self-attention is performed. At each stage,
the module only carries out two single-layer self-attention opera-
tions, enabling more nonlinear transformations and enhancing the
network’s feature learning capability. The module is capable of
integrating and fusing features of two scales obtained.

C. PSTU MODULE

The PSTU module is proposed to retain more spatial features and
improve the segmentation accuracy of renal lesions, as shown
in Fig. 3.

The decoder end has three PSTU modules, each of which
includes a Swin transformer block, a full GELU activation func-
tion, upsampling, and jumper wire from the FB. In stage 4, the
encoder outputs PSTU after FB processing as the initial input at the
decoder side. In every stage, the decoder increases the upsampling
resolution of the feature map by 2 times and reduces the output
dimension by 2 times. Therefore, the output resolutions of these
three stages are (H/16) × (W/16), (H/8) × (W/8), (H/4) × (W/4),
respectively, and the dimensions are C, 2C, and 4C, respectively. In
PSTU, the input feature information is first upsampled twice and
then connected with the features mapped by jumper wire at the
stage corresponding to encoder. Then, the aggregated features are
output to Swin transformer to model the remote dependence of
Swin converter, and GELU activation function is used for all.
GELU maximally saves the spatial features for data with normal
distribution characteristics, and the data of renal lesion features
normal distribution. Hence, more long-term dependent features can
be extracted during the upsampling to acquire more comprehensive
global context information, so that more spatial feature information
can be retainedmore effectively to improve the lesion segmentation
accuracy in renal medical imaging.

D. SSM MODULE

In order to better retain spatial features and improve the segmenta-
tion accuracy of renal lesions, the SSM module was proposed,
which consists of the left-half SSM and the right-half SSM, as
shown in Fig. 2. The original image information is input into the
left-half SSM of the module and then the left-half SSM performs
3 × 3 convolution of the original image features. By downsampling
via the GELU layer, more local resolution features of (H/2) × (W/2)
are obtained. In the meantime, the PSTU output of the decoder in
the first stage is used as the input of the right-half SSM, and the
feature information after downsampling of the left-half SSM is also
sent to the right-half SSM through the jumper wire. The right-half
SSM fuses the two input features, implements 3 × 3 convolution,
and performs upsampling through the GELU layer. At the same
time, through connection with another jumper wire, the left-half
SSM sends the original image feature information to the right-half
SSM for feature fusion at different scales, so that spatial features of
the image are retained more accurately. Finally, the upper and
lower sampling features are connected with the underlying feature
mapping of the original image to output the original image.

Swin transformer block

All GELU

patch

subsample

ST
PST

downsampling
downsampling

Fig. 2. PSTP module and swing transformer blocks.
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Upper sampling
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Fig. 3. PSTU module.
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E. LOSS FUNCTION

To measure image similarity, the Dice coefficient is utilized, and
the images are augmented and trained using simple data augmen-
tation techniques. The first method is Lwiou, which represents the
weighted intersection over union IOU loss. It is used to calculate
and optimize the model during iterations. The second method is
Lwbce, which represents the weighted binary cross-entropy loss
function. This loss function is also effective in determining the
similarity between the predicted image and the label. During the
training phase of this project, the loss function comprises both Lwiou
and Lwbce. The most sensitive outputs to the training results are the
encoder’s fourth stage, Ls4, and the decoder’s first stage, Ls1, as
shown in Figure S1. Therefore, the total loss function of this
training phase is

L = αLwiou þ βLwbce þ δLs4 þ γLs1

The hyperparameters α, β, δ, and γ are empirical values. Specifi-
cally, it is recommended to set α and β to 0.2, while δ and γ should
be set to 0.2 and 0.6, respectively.

IV. EXPERIMENTS AND DISCUSSION
In this chapter, we conducted a comparison between our proposed
lesion segmentation method that utilizes kidney medical imaging
data and the state-of-the-art DS-TransUNet approach. Furthermore,
we carried out ablation studies on the PST-UNet network to
examine the influence of various network modules on the accuracy
of the segmentation results.

A. DATASETS

KiTS2019 is a competition item for the MICCAI19. We need to
train 2D dataset, read 2D slices from 3D CT body data to segment
renal tumor lesions. From 2010 to 2018, patients with one or more
kidney tumors at the University of Minnesota Medical Center were
candidates for the database, and the KiTS2019 dataset was labeled
with 2 categories: kidney and kidney tumors. We used 45424.png
CT kidney datasets. Each png image had a file resolution of

256 × 256 × 3, with 7995 data for training datasets, 1090 data
for validation datasets, and 36339 data for test datasets.

B. IMPLEMENTATION DETAILS

PST-UNet networks of two scales were used, with one encoder based
on swin_base_patch4_window7_224 and the other encoder based on
swin_tiny_patch4_window7_224, both of which were pretrained and
initialized. The model was trained with an SGD optimizer, with the
learning rate initialized to 0.01, the momentum at 0.9, and the weight
decayed to 1e-4. PyTorch and PyCharm were used to establish all the
network models, and the models were trained on A100-SXM4-80GB
GPU. All the network models were trained for 1000 rounds, but
cosine annealing and early stop were set in the experiment to adjust
the learning rate, and multiscale methods were used for training of all
experiments. Simple data enhancement was also carried out by
random rotation, vertical flip, and horizontal flip.

Table I. Comparison of the segmentation effect of existing
UNet networks on renal tumor lesions

Framework Year Dice

DS-TransUNet 2023 0.91276

3D U-Net [20] 2019 0.8504

Residual 3D U-Net [20] 2019 0.8573

Preact. Res. 3D U-Net [20] 2019 0.8513

2D Unet [21] 2020 0.6775

3D UNet [21] 2020 0.7823

Table II. Ablation experiment

Framework Year Dice Precision Recall mIOU

DS-TransUNet 2023 0.91276 0.93693 0.80861 0.77584

PST-UNet+
GELU(ours)

2023 0.92350 0.93499 0.89028 0.78109

PST-UNet+
GELU+
FB(ours)

2023 0.92381 0.93502 0.87114 0.782518

Fig. 4. Comparison of modules used for ablation experiment.
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In this experiment, Dice, the intersection over union mIOU,
precision, recall of the two sets of label values, and predicted values
were used as the main evaluation indexes to measure the similarity
between predicted value and real label value.

C. COMPARISON WITH EXISTING METHODS

Experiments were carried out on the tumor lesion segmentation
dataset of renal medical imaging to verify the segmentation

Renal lesion label under DS-TransUNet: 

 

Renal lesion test results under DS-TransUNet:

 

Renal lesion label under PST-UNet+GELU: 

 

Renal lesion test results under PST-UNet+GELU:  

 

 

Renal lesion label under PST-UNet+ GELU +FB: 

 

 

Renal lesion test results under PST-UNet+ GELU+FB: 

 

Fig. 5. Ablation test.
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accuracy of DS-TransUNet against the dataset. DS-TransUNet
adopted double scale, one patch of which was (4,4) and the other
patch was (8,8). The combination of two branches (4,8) and
double-scale encoder mechanism were experimentally studied.
In addition, comparison was made with other different U network
architectures, such as 3D U-Net [19] with network structure similar
to standard U-Net [20]. Instead of using simple convolution,
residual 3D U-Net in encoder [20] and preactivated residual blocks
3D UNet [20] and 2D Unet [21] were used. In addition, 3D UNet
[21] of 3D full convolutional neural network based on UNet
architecture with the results shown in Table I.

In Table I, 3DU-Net variants have relatively low segmentation
accuracy, DS-TransUNet network has optimal segmentation
effect on renal lesions, with a segmentation accuracy of
0.91276, which is obviously superior to the previous UNet net-
work. It suggests that Swin transformer has greater potential than
the previous UNet.

D. ABLATION STUDY

In order to correctly evaluate the ability of each module in the
proposed PST-UNet network framework in segmenting lesions in
renal medical imaging, an ablation study was performed on the
segmentation of renal lesions. All the ablation experiments adopted
dual-scale encoders, including two scales of [128,256,512,1024]
and [96,192,384,768]. Themainmodules used in the ablation study
include

1) Instead of using our ablation module, only the DS-TransUNet
network was used to check the dice, precision, recall, and
mIOU values of the network in terms of segmentation of renal
lesions. The experimental results are shown in Table II:

2) Introduction of full GELU

The full GELU activation function was used in the PST-UNet
network framework model. At encoder and decoder ends, GELU
activation function was used instead in standard 2-dimensional
convolution to improve the ability of extracting continuous spatial
features. The experimental results are shown in Table II.

3) Introduction of full GELU and use of FB module

Full GELU was introduced into PST-UNet model, and joint
convolution FB module was used for fusion at different scales
to extract as much continuous spatial feature information as
possible. Then, the extracted multiscale continuous spatial features
were fused to achieve the optimal segmentation accuracy of renal
lesions. The experimental results are shown in Table II:

According to Table II:

1) When only the DS-TransUNet network was used, the accu-
racy rate, precision rate, recall rate, and average intersection
over union of renal lesion segmentation were 0.91276,
0.93693, 0.80861, and 0.77584, respectively, which were
relatively low compared to the use of our ablation module.

2) When PST-UNet network used full GELU activation func-
tion, the accuracy rate, the precision rate, recall rate, and
average intersection over union of lesion segmentation in
renal medical imaging were 92350, 0.93499, 0.89028, and
0.78109, respectively. Compared with renal lesion segmen-
tation using DS-TransUNet, the accuracy rate was increased
by 0.01074, the precision rate was decreased by 0.00194, the
recall rate was increased by 0.08167, and the average inter-
section over union was increased by 0.00525. This indicated
that the precision of renal lesion segmentation was superior to

DS-TransUNe network when only GELU module was intro-
duced into the proposed PST-UNet network.

3) The accuracy rate of lesion segmentation in renal medical
imaging was 0.92381 when both GELU and FB were used in
PST-UNet network, which was 0.01105 higher compared to
the use of DS-TransUNet, respectively. This suggested that
renal lesion segmentation had optimal precision when GELU
and FB were used in the proposed PST-UNet network, as
shown in Fig. 4.

In visualizations with reference to different ablation modules,
the test results of renal lesion data were compared, as shown
in Fig. 5.

It can be found that undersegmentation occur in the segmen-
tation of renal lesions by DS-TransUNet, PST-UNet +GELU,
which some lesions were not detected. PST-UNet+GELU+ FB
had stronger global context encoding and semantic differentiation,
better noise inhibition effect, with fewer false positives in the test.

V. CONCLUSIONS
The paper proposed two types of windows and Swin transformer
[8,24] and a parallel encoder mechanism PST-UNet network
model, which were used in the lesion segmentation of medical
images. This network model reserved more spatial features and
enhanced the segmentation accuracy. By introducing GELU+ FB
module, it became possible to extract more continuous, multiscale,
and advanced spatial fusion features, with the lesion segmentation
accuracy higher compared to the existing methods, which was
expected to improve the level of smart medicine.
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