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Abstract: There is a widespread agreement that lung cancer is one of the deadliest types of cancer, affecting both women and men.
As aresult, detecting lung cancer at an early stage is crucial to create an accurate treatment plan and forecasting the reaction of
the patient to the adopted treatment. For this reason, the development of convolutional neural networks (CNNs) for the task of
lung cancer classification has recently seen a trend in attention. CNNs have great potential, but they need a lot of training data and
struggle with input alterations. To address these limitations of CNNSs, a novel machine-learning architecture of capsule networks
has been presented, and it has the potential to completely transform the areas of deep learning. Capsule networks, which are the
focus of this work, are interesting because they can withstand rotation and affine translation with relatively little training data.
This research optimizes the performance of CapsNets by designing a new architecture that allows them to perform better on the
challenge of lung cancer classification. The findings demonstrate that the proposed capsule network method outperforms CNNs
on the lung cancer classification challenge. CapsNet with a single convolution layer and 32 features (CN-1-32), CapsNet with a
single convolution layer and 64 features (CN-1-64), and CapsNet with a double convolution layer and 64 features (CN-2-64) are
the three capsulel networks developed in this research for lung cancer classification. Lung nodules, both benign and malignant,
are classified using these networks using CT images. The LIDC-IDRI database was utilized to assess the performance of those
networks. Based on the testing results, CN-2-64 network performed better out of the three networks tested, with a specificity of
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98.37%, sensitivity of 97.47% and an accuracy of 97.92%.

Keywords: capsule network; computed tomography; deep learning; image classification; lung cancer

I. INTRODUCTION

As a result of the widespread usage of tobacco products, the
number of fatalities from lung cancer among males skyrocketed
throughout the majority of the twentieth century, contributing
significantly to the overall increase in cancer mortality. More
than 1600 people in the United States lose their lives to this disease
every day, with a projected total of 608,570 deaths in 2021 [1]. To
save lives, early detection of lung cancer is essential because
symptoms do not appear until the disease has progressed, yet
diagnosis at an earlier stage improves the likelihood of a successful
outcome from treatment [2]. The use of medical imaging is
essential in the early diagnosis of cancer. It is well-known that
medical imaging has been employed for early cancer identification,
appraisal, and procedure follow-up [3]. Processing and analyzing a
huge volume of medical images manually can be a time-consuming
and error-prone process [4]. Classification algorithms based on
models sort incoming data into categories based on shared traits.
By examining several computed tomography (CT) scans [5],
researchers have found that early detection of lung cancinoma
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[6] using pattern analysis can save lives. Therefore, starting in
the early 1980s, computer-aided diagnosis (CAD) systems were
used to aid clinicians in efficiently interpreting medical
images [7,8].

Deep learning techniques [9], which have had tremendous
success in the realm of natural image identification and recognition
[10], are now being applied to a wide variety of challenges and
modalities in the field of medical image analysis [11]. In many
medical image processing tasks, the deep convolutional neural
network (CNN) model [12] of deep learning has proven to be vastly
superior to the previous state-of-the-art methods. Among the many
deep learning methods, CNN [13] have seen the most use in
analyzing pulmonary nodules. CNNs have been successfully im-
plemented in lung cancer CAD systems, yielding good outcomes.
The primary motivation behind the development of Capsule Neural
Network (CapsNet) [14] was the need to decrease the volume of the
training set, which is typically massive in the case of CNN [15].
The output of a CNN, another type of neural network, is propor-
tional to the amount of the training set. The inability to adapt to the
shifting perspectives of CNN is one of the biggest flaws of the
network [16]. CNN may fail to recognize an image if its orientation
is flipped [17]. Here, CapsNet makes use of the fact that shifting
one’s perspective has a nonlinear effect on individual pixels but a
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linear effect on individual objects. A group of capsules is known as
a CapsNet. An entity in an image is represented by a capsule, which
is a collection of neurons. An entity represented by a capsule has
two values, one positive and one negative. The first factor is the
likelihood that a capsule accurately depicts a real-world entity. The
second set of info concerns the entity’s initial conditions. CapsNet
can adjust to changes in perspectives as it learns the linear manifold
between an object posed as a matrix of weights. The ultimate focus
of CapsNet, an artificial neural network, which is to more closely
mimic the biological neural network [16] for superior segmentation
and recognition. Capsule here stands for a layer of capsule net-
works within a larger capsule network. The parameters of features
of an object are set by capsules.

In this research work, a deep learning architecture is gener-
ated that can differentiate between benign and malignant lung
cancers based on the provided test CT scans. The deep learning
architecture in this paper is meant to be constructed with capsules
rather than neurons. The remaining sections of this paper can be
broken down as follows: The related works for classifying the
lung cancer are outlined in Section II. The proposed method and
materials for this paper are discussed in Section III. While Section
IV gives detailed results and discussions, the paper is concluded
in Section V.

Il. RELATED WORKS

In recent years, CNN has been used for computer-aided diagnostic
(CAD) research in the diagnosis of lung cancer. Rossetto ez al. [18]
introduced a Basic CNN architecture that uses a Gaussian filter to
eliminate noise. To improve the precision of the automated labeling
of the scans, researchers devised an ensemble of CNN employing
multiple preprocessing techniques and a voting approach to obtain
the consensus of the two networks. Lung cancer was categorized by
VGG-16 architecture proposed by Chaunzwa et al. [19]. To better
predict tumor histology in nonsmall cell lung cancer from CT scan
data, the authors proposed a radiomics technique. With an empha-
sis on the two most common histological forms, adenocarcinoma
and squamous cell carcinoma, the system trained and validated
CNNss using data from 311 individuals diagnosed with early-stage
NSCLC. Jin et al. [20] employed a 3D CNN that learned spatial
information from the images. In this research, we build a 3D CNN
network architecture using CT lung volumes that have been
segmented as both training and testing data. The new model keeps
the temporal connections between adjacent CT slices by extracting
and projecting 3D information to the next hidden layers. Whether a
patient has cancer or not is classified by the model’s 11 layers,
which in turn generate 12,544 neurons and 16 million parameters.
Based on morphological and laboratory evidence, Zhang et al. [21]
created a three-dimensional CNN to identify lung nodules and
categorize them as cancerous or benign. In this research, a
CNNmodel was pretrained using a large amount of publicly
available picture data to identify and categorize pulmonary no-
dules. After that, updated information from a wide variety of
Chinese hospitals was used to refine the model’s training and
verification processes. Shanchen Pang et al. [22] came up with the
idea for a deep CNN and called it VGG16-T. Using a boosting
method, numerous VGG16-T networks that functioned as weak
classifiers were trained. To conduct this investigation, CT scans
from 125 patients with early-stage lung cancer were collected.
Rotating, reshuffling, and duplicating the data set helps even out
the variance that naturally exists in the data. After that, a deep CNN
called VGG16-T was suggested, and many instances of VGG16-T

that worked as weak classifiers were trained using a boosting
technique.

Kasinathan et al. [23] have presented a lung tumor detection
and classification system that is based on the cloud for use with
PET/CT scans. The suggested Cloud-LTDSC first built the active
contour model as lung tumor segmentation, and then constructed
and validated using standard benchmark images a multilayer CNN
for classifying different stages of lung cancer. Using the lung CT
DICOM images as well as the reference image LIDC-IDRI dataset
of 50 low doses, the effectiveness of the provided approach is
assessed. The most recent effort to categorize lung cancer utilized
augmented CNN proposed by Bushara et al. [24]. Using modifica-
tions including scaling, rotation, and contrast adjustment, data
augmentation helps locate useful training examples in current
training sets. To evaluate the systems, researchers tap into the
Lung Imaging Database Consortium-Image Database Resource
Initiative database.

For instance, capsule networks have been studied for their
potential in medical CT analysis and lung cancer diagnosis [16].
The newest innovation in deep learning is capsule networks [25].
They have proven to be worthy of this high praise by outperforming
CNNs on the aforementioned tasks. This study offered an in-depth
analysis of the current state-of-the-art architectures, resources, and
approaches for implementing capsule networks. With the help of
histopathology scans, Adu et al. [26] presented a CapsNet for
detecting lung and colon cancer. To ensure that significant infor-
mation is extracted from images with varying backgrounds, the
proposed approach uses a squash function to effectively compress
the vectors. Histopathological images were used to demonstrate
DHS-CapsNet’s efficacy in practice. Mobiny et al. [27] proposed a
modified version of CapsNet for lung nodule categorization. The
malignancy of cancer in lung nodules was predicted by a new
CapsNet developed by Afshar et al. [28]. The implementation of a
capsule network for the survival analysis of different types of lung
cancer was done by Bo Tange et al. [29]. In the proposed study, a
CapsNet equipped with a dynamic routing algorithm was utilized to
categorize lung cancer as benign or malignant from LIDC datasets
by utilizing CT images.

lll. MATERIALS AND METHODS
DATASETS

The objective of the research is to apply deep learning techniques,
specifically the Capsule Network, to the task of classifying lung
tumor images. This section describes the datasets employed, the
capsule network architecture, and the proposed architecture for
lung cancer classifications.

A. DATASETS

The Lung Image Database Consortium image collection (LIDC-
IDRI) dataset [30] is used for the training and testing of the
proposed approach. This model evaluated a total of 4335 CT
scans. This information includes 2160 cases of benign tumors and
2175 cases of malignant tumors. A deep examination of the LIDC
data set was analyzed by four radiologists. The size of lung nodules
on CT scans is represented in this dataset. Nodules are classified as
benign if they are smaller than 3 millimeters in diameter and
malignant if they are more than 3 millimeters in diameter. Figure 1
displays examples of both benign and malignant data from LIDC
databases. Datasets are divided into three types, namely training,
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(a)

Fig. 1. Sample Lung Images from LIDC Datasets (a) Benign
(b) Malignant.

testing, and validation. 20% of the images (867) in the LIDC
dataset are devoted to serving as test cases. 20% of the remaining
(694 images) are utilized for validation, which is used to determine
the top-performing model, and the remaining datasets (2,774) are
utilized to train the model. Sample lung images from LIDC datasets
for benign and malignant are shown in Fig. 1.

B. BASIC CAPSULE NETWORK

The capsules are the most essential component of the CapsNet
system. The concept that led to the development of capsules was
conceived to resolve issues that are common to CNNs [31].
They are the inability to accurately capture the correct orientation
of any given object and the accidental loss of significant data in
the process of moving information from convolutional layers to
the pooling layers. The three primary functions of capsules are the
affine transformation, the weighted sum, and the squashing. An
affine transformation is a helpful tool for determining the real
orientation by making use of the characteristics that were captured
by the convolutional layer. The expression of the prediction vector
is given in Equation (1).

In such cases, r%j‘ ; are the prediction vectors, wij is the weight
matrix, and m; is the output of a capsule.

The weighted sum, s; is comparable to the process of adding up
all of the weights that take place in deep neural networks and is

given by Equation (2).
8 = § ;itj’?lj\t )

where f; is a coefficient computed by Equation (3), based on the
results of the dynamic routing method.

£y =220 3)

= >k exp(xi)

where x; = x;; + a; and a;; = n;.my;

The norm quantity is maintained between O and 1 using the
squashing function to cause the capsule to squeeze the norm of the
vector without affecting the direction in which the vector is
oriented. The expression for the output vector is given in

Equation (4).
N
oL+ sl sl

where, s; is the total input of capsule j, and #; is the output vector of
capsule j.

The term aj; is the correlation between inputs and outputs and
fij 1s the prediction score. The CapsNet is distinguished from a
CNN by the use of routing by agreement, which also contributes to

the ability of the system to identify spatial relationships.

“)

C. PROPOSED CAPSULE NETWORK FOR LUNG
CANCER CLASSIFICATION

The proposed architecture of the CapsNet is shown in Fig. 2. Inputs
are paired images that have been annotated as either benign or
malignant. The whole images is split up into three parts namely the
training data, the testing data, and the validation data. Before
feeding into the feature extractor, the train and validation data
are processed and prepared. Capsule networks are utilized for
classification in the proposed model, and convolution is used as

Dataset
Preparation

Classification
(Benign [

Pre Processing
Scaling
Rotation
Flipping

P
Evaluating
Proposed CapsNet 0 Training Accuracy
Architecture and Loss

Malignant)

Fig. 2. The proposed CapsNet workflow for lung cancer classification.
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Fig. 3. The proposed CN-2-64 CapsNet architecture for lung cancer classification.

a feature extractor to draw out the deep features of images. During
the model-building process, the loss and accuracy in training and
validation are checked. The results of the test data can be used to
calculate the accuracy. The use of a softmax classifier allows the
prediction of a label. Measures of quality for both predicted and
true labels are used to find the accuracy of the classification.

The proposed capsule network has three layers, as shown in
Fig. 3. The convolutional layers identify the basic features in the
image. The primary capsule layer produces combinations based on
the basic features detected by the convolutional layer. The lung
capsule layer is the highest-level capsule layer and contains all of
the instantiation parameters that differentiate lung cancer as either
benign or malignant. CapsNet with a single convolution layer and
32 features (CN-1-32), CapsNet with a single convolution layer
and 64 features (CN-1-64), and CapsNet with a double convolution
layer and 64 features (CN-2-64) are the three capsule networks
developed in this paper for lung cancer classification. CN-2-64
network performed the best out of the three networks used and its
architecture is shown in Fig. 3. The architectures of the other two
networks slightly differ from that of CN-2-64. The main difference
is both CN-1-32 and CN-1-64 use a single convolutional layer. The
other difference is while CN-1-32 consists of 32 features with a
9 X 9 kernel, CN-1-64 contains 64 features with a 9 X 9 kernel.
All the other layers remain the same.

Table I provides layer-by-layer dimensional information, such
as the parameters of the network layers and feature maps of the
Proposed CapsNet. CT images are down-sampled from 512 x 512
to 299 X 299 and used as inputs to the model to cut down the

Table I. Dimensional information and results of the proposed
CN-1-32, CN-1-64, and CN-2-64 CapsNet architectures

Output Size
Layers CN-1-32 CN-1-64 CN-2-64
Input 299 x299x3 299x299x3 299x299x3
Convolution & 291 %291 %32 291 X291 x 64 291 X291 x 64
Relu (9 X 9)
Convolution & NA NA 289 x 289 x 64
Relu (3 x 3)
Reshape 88681, 32 84681, 64 83521, 64
Primary Capsule 32,8 32,8 32,8
Lung Capsule 2,16 2,16 2,16
Output 2 2 2
Total parameters 16,256 32,256 69,184
Average Processing 1321 1372 1556

Time per Epoch (sec.)

number of parameters and shorten the time for training. The next
layer is a convolutional layer that produces 64 feature maps using
9 x 9 filters and a stride of 1. Next convolutional layer generates
64 feature maps using 3 X 3 filters and a stride of 1.

Table I also describes the total parameters and the average
processing time for the three CapsNets. From Table I, it is known
that CN-1-32 has a small number of parameters, which means that
it processes promptly on average. CN-2-64 has the maximum
parameters of the three, which results in an excessively high
average processing time.

IV. EXPERIMENTAL RESULTS AND
DISCUSSION

The experiments were performed with the help of Python frame-
works like Keras and TensorFlow, and the i5-1135G7 CPU and
GPU NVIDIA MX450 were used to accelerate the process. A
greater number of factors and the incorporation of routing into
capsules may lengthen the training process. A routing procedure
facilitates the connection between the lower and upper capsules.
The algorithm used in dynamic routing is described in detail in
Algorithm 1. The size of the available GPUs has a direct impact on
training time.

The confusion matrices of the proposed CN-1-32, CN-1-64,
and CN-2-64 are shown in Fig. 4, which is used to obtain True
Positive (TrPV), False Positive (FaPv), False Negative (FaNv),
and True Negative (TrNv). The accuracy, precision, sensitivity,
specificity [32], error rate, Cohen’s Kappa Coefficient (KP),
and Matthew’s Correlation Coefficient (MCC), scores can be
calculated from the aforementioned four variables using Equa-
tions (5)—(11).

TrPV

Recall/Sensitivity = m x 100 (5)

Algorithm 1. Dynamic Routing for the CapsNet Architectures

1. Routing (77;;,.1)

. Initialize x; = 0, for every capsule in i layer ¢ and j in layer # + 1
. for r iterations do for all capsules

. Calculate f; = softmax(b;)

. Calculate s; = > fimy;

. Find n; = squash(s;)

~N O L AW

. 'xij = .Xl]+ njmj‘,

Return 7;
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Fig. 4. Confusion matrices of the proposed (a) CN-1-32, (b) CN-1-64, and (c) CN-2-64 CapsNet architectures.

TrPV

Precision = TrPv & FaPv x 100 6)
Accuracy = TrPv + ;:]I\:: ::—_ ;:z];: + FaNv x 100 @)
Specificity = % x 100 ®)
Error rate = FaPy + FaNv x 100 (9)

TrPv + TrNv + FaPv + FaNv

KP =

Table II summarizes the outcomes of several approaches,
revealing that the original CapsNet performs unexpectedly low
when used directly for lung cancer classification. Due to its origins
in recognizing handwritten numeric characters, convolutional
layers of CapsNets are rather tiny and shallow. This allows
them to extract more detailed characteristics from the shapes.
However, the main structure cannot be used since the textures
in lung data are more complicated than those in MNIST data. The
proposed model is based on this foundational network by adding
more convolutional layers, expanding the size of convolutional
feature maps, and increasing the number of network layers overall.
The efficiency of this combination and layout has been verified by
experimental observations. Specifically, the model compares the
outcomes for CapsNet with a single convolution Layer and 32
Feature Map (CN-1-32), a single convolution Layer and 64 Feature

2X(TrPvX TrNv — FaPv X FaNv)

(TrPv + FaPv) X (FaPv+ TrNv) + (TrPv + FaNv) X (FaNv + TrNv)

MCC =

(TrPvXTrNv — FaPvX FaNv)

(10)

11

[(TrPv + FaPv) X (FaPv + TrNv) X (TrPv 4+ FaNv) X (FaNv + TrNv)]2
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Table Il. Quantifying parameters of the proposed (a) CN-1-32, (b) CN-1-64, and (c) CN-2-64 CapsNet architectures
Capsule network
architectures Accuracy (%) Recall (%) Precision (%) Specificity (%) Error rate (%) MCC KP
CN-1-32 87.65 82.06 92.48 93.20 12.34 0.758 0.753
CN-1-64 92.61 87.58 97.44 97.68 7.38 0.856 0.852
CN-2-64 97.92 97.47 98.37 98.37 2.03 0.958 0.958
[l CN-1-32 W CN-1-64 Il CN-2-64
o 9 5 0 I 0 3 &
n © N 0 N T N ® N N ©
© N O o n o N O 9 [
N o o N =) o
0 ~ ©
(-]
%
8 R,
~ QS
o~
Bn’
ACCURACY RECALL PRECISION SPECIFICITY ERROR RATE
(%) (%) (%) (%) (%)

Fig. 5. Graphical representation of the quantifying parameters of the proposed CN-1-32, CN-1-64, and CN-2-64 CapsNet architectures.

Map (CN-1-64), and a double convolution Layer and 64 Feature
Map (CN-2-64) for the model. Accuracy, Recall, Precision, and
specificity are calculated using the confusion matrices shown in
Fig. 4. The classification accuracy of CN-1-32 is 87.65%, CN-1-64
is 89.61%, and CN-2-64 is 97.92%. The Recall, precision,
and specificity value of CN-1-2 are 82.06%, 92.48%, and
93.20%. Finally, CN-1-64 achieved 87.12%, 91.76%, and
92.10%, while the CN-2-64 produced 97.47%, 98.37%, and
98.37%, respectively.

The frequency with which the model makes an incorrect
prediction is quantified using the error rate metric. When the error
rate is 0, it signifies that the model is making accurate predictions.
A 2.07% error rate in CN-2-64 is substantially low, while the 12.3
and 7.38% error rates in CN-1-32 and CN-1-64 are signifi-
cantly more acceptable. MCC values for CN-1-32, CN-1-64, and
CN-2-64 are, respectively, 0.758, 0.856, and 0.958. Inter-rater
reliability for categorical items can be calculated with the use of
the Kappa statistic. As KP accounts for the probability of the
agreement occurring by chance, it is typically considered to be a
more robust statistic than simple percent agreement computation.
The KP values for CN-1-32, CN-1-64, and CN-2-64 are (0.753,
0.852, and 0.958, respectively.

The graphical representation of the performance parameters
of the classifier models with different quantifying parameters is
also displayed in Fig. 5. All models produce better outcomes for
lung cancer categorization in terms of quantifying parameters. But
CN-2-64 outperformed the others in terms of all parameters.
Figure 6 also displays the graphical depiction of the performance
characteristics of the classifier models with MCC and KP values.

The loss function ;of the proposed CapsNet is computed by
Equation (12) for each capsule K.

HCN-1-32 mCN-1-64 = (CN-2-64

0.758
0.856
0.958
0.753
0.852
0.958

MCC KP

Fig. 6. Graphical representation of MCC and KP values of the proposed
CN-1-32, CN-1-64, and CN-2-64 CapsNet architectures.

k = Te-square[max(0,m™ — |[n])]

+ A(1 = Tg)-squarelmax(0,

nil| = m™)] (12)
where Tk is equal to one while the class k is present and O whenever
it is not. The hyperparameters of the model are denoted by the
notations m™, m~, and A. The total loss is determined by adding up
all of the individual losses.

The accuracy metrics for the three models during training and
validation are shown in Fig. 7. The loss values of these models
experienced during training and validation are shown in Fig. 8.
When compared to the CN-1-32 model and the CN-1-64 model, the
loss value stabilized faster in the proposed CN-2-64 model.
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Fig. 7. Training and validation accuracy of the proposed (a) CN-1-32, (b) CN-1-64, and (c) CN-2-64 CapsNet architectures.
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Table lll. The proposed CapsNet architecture performance comparison with the state-of-the-art networks for the LIDC-IDRI dataset
State-of-the-Art networks Accuracy (%) Recall (%) Precision (%) Specificity (%)
CNN [24] 95.00 94.50 94.50 -

3D CNN [33] 90.10 84.10 - 91.70
CNN [34] 84.15 83.96 - 84.32
Statistical and shape based [35] 92.00 93.75 85.11 91.18
MC-CNN [36] 87.14 77.00 - 93.00
Proposed CN-2-64 97.92 97.47 98.37 98.37

If there is only a minor difference between the two final loss
values, then the training loss and the validation loss are very close,
and the fit is Good. Compared to the CN-1-32 and CN-1-64
models, the CN-2-64 model has a higher level of Good Fit in
both its train and validation learning curves. The results of the
presented CapsNet were compared to the results of other related
works using the LIDC_IDRI dataset as shown in Table III. From
Table I1I, it is known that the presented method outperformed the
other lung cancer classifications in terms of quantifying parameters
such as accuracy, recall, precision, and specificity.

V. CONCLUSION

In this research, the classification efficiency of three capsule neural
networks is compared after being trained on a total of 2774 images

and then tested on a total of 867 images. The images of lung cancer
were classified into two categories, including benign and malig-
nant, based on the characteristics of cancer. CapsNet outperformed
CNNs in the lung cancer classification challenge because it is more
tolerant of a limited number of training data and because the
elements in these networks are equivariant. Increasing the accuracy
could also be achieved by adjusting the number of feature map-
pings used in the convolutional layers of the capsule network. The
proposed CapsNet with two convolutional layers (CN-2-64)
achieved better accuracy (97.92%), precision (98.37%), and recall
(97.47%). The experimental results showed that the suggested
method performed well over the state-of-the-art classifiers for
lung cancer diagnosis in terms of classification accuracy.

In the future, it is planned to examine the implications of
having more capsule layers on the accuracy of the classification, as
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well as explore the CNN architectures to encode input for CapsNet
to achieve better performance.
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