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Abstract: Cognitive-inspired computational systems play a crucial role in designing intelligent health monitoring systems which
help both patients and hospitals. It also helps in early and consistent decision-making for various health issues including human
psychological health. Water fountains built in parks and public spaces are used as decorative instruments which not only give
appealing visuals but also provide a relaxing environment to the visitors. These natural sounds have a direct effect on the
psychological health of visitors. Very few research works are reported on developing the relationship between water sounds and
their corresponding psychological impact. This assessment needs trained manpower and a lot of experimental time which is
costly and may not be always available. In this paper, to access the from the pleasantness from human health-friendly water
fountain sounds, a perceptually weighted functional link artificial neural network (P-FLANN) model is developed. To reduce the
computational complexity of training and for faster convergence, swam intelligence-based optimization algorithm is used for
updating the weights. It is observed from the comparative simulation results that the proposed P-FLANN model can effectively
perform prediction tasks which is not only cost-effective but also 95% accurate and can play a crucial role in designing human
health-friendly water fountains in smart cities.
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I. INTRODUCTION
Recent developments in machine learning techniques have
enabled the implementation of intelligent healthcare monitoring
systems with a multidisciplinary approach [1]. In this scenario,
there are mainly two aspects of human health including physical
and psychological health. Out of which the importance of
psychological health cannot be neglected [2]. One of the key
parameters in psychological health is the impact of the natural
scenery and sounds [3]. In numerous metropolitan public loca-
tions, water fountains have been built. Fountains can provide
pleasing sounds in addition to their appealing visual attributes,
which enhances the acoustic environment’s or soundscape’s
quality [4].
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Moreover, the water fountain sounds can have a profound
effect on the psychological health of the visitors by adding to their
health and well-being, reducing stress, and promoting personal
restoration [5]. Several health benefits of the natural sounds
including water sounds in the parks are studied and observed
that water sounds play an important role in improving the health
of the visitors [6]. To further investigate the usefulness of psycho-
acoustic parameters in soundscape investigations, a detailed review
of peer-reviewed literature over the previous 10 years is done in [7].
It is observed that the sound pressure level indicator, sharpness,
roughness, fluctuation strength, and tonality impact the overall
effect of sound on human perception. In the current scenario of
smart city design, the use of machine learning and Internet of
Things (IoT) plays a crucial role, and these techniques can be used
to study the usefulness of water sound analysis on human health
[8,9]. In another study on the effect of audio-visual coherence on
outdoor sounds, it is found that audio-visual coherence is crucial to
the perception of water sounds [10]. By comparing the impact of
noise on indoor water sounds, the significance of pleasantness has
been investigated [11]. The results of laboratory tests on subjective
assessment revealed that pleasantness is one of the most sensitive
traits, whereas loudness and noise level are the least sensitive traits.

In order to improve the soundscape quality of urban areas, a
strategy has been successfully applied to reduce the effect of
aircraft noise by adding moving water and vegetation. It is also
observed that the overall quality, visual quality, auditory quality,
and auditory pleasantness are not correlated but independent inCorresponding author: Barnali Brahma (e-mail: brahma.barnali@gmail.com).
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nature [12]. Urban park soundscapes have been examined for their
healing effects on children’s psycho-physiological stress, and
results indicate that they can help children’s psycho-physiological
recovery to some extent [13]. When there is background noise from
traffic, the introduction of waterworks that incorporate sound and
visual components can considerably improve how well people can
relax. This is because of the visually resemble which consists of
water with an acoustic informational masking effect [14]. A
comparative study is carried out between the effect of natural
water sounds from seas, rivers, and lakes with artificial water
sounds of ponds and fountains. Several pieces of evidence are
found on the health-related benefits of artificial water features
which encourages the use of more artificial water sounds in the
future [15].

For the overall improvement of the urban environments, park
soundscape management is an important parameter. The sound
comfort level measurement is designed using back-propagation
neural networkmodel alongwith subjective and objective evaluation
methods. It is found that by improving sound pleasure and reducing
sound annoyance one can improve sound comfort [16]. The subjec-
tive features are used with hot coding for the input to the artificial
neural network, but no specific audio features are used in the model.
Small, central urban parks frequently have noisy acoustic environ-
ments that are dominated by traffic noise. Through masking, water
sounds can be used to lessen the damaging effects of undesired
noises. Two hundred and seventy-four participants have been used in
a study on the field experiment to assess the impact of the water. It is
observed that the visual design, function of the space, and environ-
mental conditions should be carefully considered and call for more
field studies [17]. The IoT has been widely used in the design of
smart cities for healthcare applications [9].

Several machine learning and deep learning-based approaches
have been used for prediction tasks in healthcare systems [18–20].
Here, the use of a neural network is crucial and out of the different
types of neural networks, and the functional link artificial neural
network (FLANN) is a single layer-based neural network model
without any hidden layer with less computational complexity. It
provides efficient prediction performance when the data size is small
with less number of features [21]. FLANN model has been used
successfully for the prediction of speech quality, speech enhance-
ment, and other speech-related information [22]. In [23], three neural
network models such as FLANN, polynomial perceptron network,
and Legendre neural network have been used to predict the machin-
ery noise in opencast mines for a case study in the coal mine of
Orissa, India. It is observed that the FLANNmodel gives better noise
prediction as compared to the other twomodels. The FLANN is used
for the active reduction of nonlinear noise. It is observed that the
model is superior to other reported algorithms both in terms of
steady-state mean square error and computational complexity [24].

To the complex problems in real-life applications such as
transportation, logistics, energy, climate, social networks, health,
and industry 4.0, several bio-inspired optimization algorithms are
developed in recent years. These algorithms are designed by
mimicking the natural behavioral patterns of living beings [25].
The bee colony approach has been used as the privacy-preserving
framework for healthcare systems with comparatively high perfor-
mance in terms of computation resource searching, emergency data
transfer, and participative node privacy-preserving [26]. A bio-
inspired optimization for classification and anomaly detection
system is proposed and successfully used for diabetes, Parkinson,
and vital signs detection in healthcare [27]. Using bio-inspired
techniques and a spiking neural network possible voice problems

are identified from the analysis of the speech signal in [28]. After
thorough evaluations of the merits and drawbacks of the suggested
approach, the results are examined and observed transformations
and heuristic algorithms which can perform better during the voice
analysis process. A bio-inspired dimensionality reduction for
Parkinson’s disease classification is used in [29]. The Genetic
Algorithm and Binary Particle Swarm Optimization are used to
determine the optimal subset of features by delivering the highest
accuracy of 89% by selecting only 403 features.

It is observed from the brief literature review that the sound
scenario created by artificial water bodies in urban cities has a
profound effect on the human body. These water sounds can
enhance the visual attractiveness of the parks as well as it will
increase the overall soundscape. The pleasantness of the water
sound is a subjective quality whose measurement is time taking,
costly, and tedious task as well as it needs skilled manpower.
However, recently some work has been done on studying the
importance of the health benefits of water fountains. But, till now,
no direct method of pleasantness measurement is available which
can take input as water sound and can predict the pleasantness
level. This technique can provide an instant evaluation of the
pleasantness as well as precautionary measures that can be taken
for correction. This problem is taken up in this research article,
where a perceptually weighted functional link artificial neural
network (P-FLANN) model is developed using a combination
of spectral features.

The main research contributions of the paper are listed below:

• Application of human sound perception-based FLANN model
which will accommodate the nonlinear nature of human ear
response to different frequency bands. This will not only
provide accurate modeling and weight adjustment to the neural
network but also reduce the computations at unwanted fre-
quency bands.

• Application bio-inspired computing for the calculation of the
optimal weight from the input perceptual features with the
lowest prediction error.

• Extraction of different spectral features at the frame level
which will be combined at the sample level to extract several
statistical features for effectively capturing the water sound
features.

• Comparison of the proposed pleasantness prediction model
using different combinations of baseline features and neural
networks with multiple datasets for justification of the pro-
posed technique.

The article is split into four sections, with Section I covering
the introduction, literature overview, research motivation, and
research objective. Section II provides the details of materials
and methods used in the current study. The results analysis and
research contributions are listed in Section III. Section IV presents
the research’s findings, limitations, and areas of potential
future study.

II. MATERIALS AND METHODS
A. DATASET

Two datasets have been used in this study for the training and
testing of the proposed model’s overall performance. The first
dataset is collected from the article [4]. This dataset contains the
sound recordings from 32 water fountains, from 28 different
locations of Stockholm, Sweden. Each fountain sound has been
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recorded with a four-channel ambisonic microphone with a digital
audio recorder. These sound recordings have been divided into
30-second samples with one channel for the further listening
experiment. These sounds are passed through a high-pass of
100 Hz to eradicate the effect of ambient low-frequency compo-
nents. This dataset contains a total of 64 audio files in the wave
format with 44.1 kHz sampling frequency, and these recordings
have been evaluated using subjective evaluation measures. In the
next step, the audio files are labeled according to the different
pleasantness levels. The second dataset is prepared by the authors
at the C V Raman Global University, Bhubaneswar, India. This
dataset contains 20 labeled water fountain sounds recorded using a
condenser microphone with a 44.1 kHz sampling frequency. Three
water fountains have been used for the subjective analysis by ten
participants with pre-defined speeds.

B. PLEASANTNESS vs LOUDNESS

It is a common perception that loudness and pleasantness are
correlated with other and pleasantness also depends on the pitch
of the sound. The pleasantness is a perceptual quality not just a
mechanical thing of calculation of loudness [30]. To validate this
relation, an investigation is carried out for the dataset-1 [4]. Here, the
listeners have subjectively evaluated pleasantness and expressed it as
a number called ‘pleasano values’ which is having a range from 1 to
32 for different water fountains, respectively. The most pleasant
sound is assigned a score of 1, and the least pleasant fountain sound
is assigned a score of 32. Similarly, for the dataset-2, the ‘pleasano
values’ varies from 1 to 20. The loudness level is measured using the
spl Meter System object of MATLAB software, and the equivalent-
continuous (Leq) value is taken as the loudness level [31]. The
normalized values of pleasano values and loudness levels are plotted
in Fig. 1 for dataset-1, and it is observed that there is no direct

relationship between these two. No direct empirical method can be
used to build the relationship between pleasantness and loudness.
More audio features are required to predict the pleasantness levels
from the water sound.

C. AUDIO FEATURES

In this section, the details of the audio features used for the water
fountain sounds are mentioned. At the frame and sample levels,
audio features are extracted in the frequency domains. The com-
plete recording of a water fountain sound in one category is denoted
as one sample, while a frame is a subset of one sample. Considering
there is an ‘n’ number of frames present in each sample, the details
of the frame-level features are described below. The features are
named f (serial number of the feature) such as f1 to f1024. Due to
the quasi-stationary nature of the audio signal, the frame size is
fixed at 25 ms to extract statistical features. The frames are passed
through a hamming windowwith a size of 25ms duration with 50%
overlapping between two successive frames [32]. At the frame
level, the one-sided linear spectrum is extracted using a fast Fourier
transform (FFT). The power spectrum is taken with the frequency
range from 0 to fs/2 Hz, where fs is the sampling frequency. In the
current implementation, the value of fs is 44.1 kHz, and the frame
contains 1024 samples. So, the value of frequency resolution (Δf)
would be 43.06 Hz with a frequency range from 0 to 22.05 kHz
[33]. After extracting the frame-level features, the statistical fea-
tures are extracted which are mean and variance. The whole
frequency range (20 to 20 kHz) is divided into three bands
(low, medium, and high) with the frequency ranges
0–300 Hz (low), 300 Hz–5000 Hz (medium), and 5000 Hz–
20000 Hz (high) [34]. Accordingly, the extracted one-sided linear
spectrum features are divided into three categories: low, medium,
and high. The details are listed in Table I.

The frequency response of the human auditory system is not
linear in nature. This nonlinearity is represented in a perception-
based frequency unit called Mel. By using the Mel filter bank,
the audio signal gets converted from the linear frequency to the
perceptual domain. This conversion from the linear scale to theMel
scale is mentioned as:

f m = 2595 × log10

�
1þ f

700

�
(1)

Here, fm and f are the frequency in Mel and linear scale, respec-
tively. The triangular filter shaper is used after this conversion
stage. The shape of the Mel auditory filter bank is plotted for the
frequency range of 0 to 20 kHz in Fig. 2. It can be observed that the
shape and number of filters vary from one region to another. To
identify the importance of each region, a comparative weight is
calculated as:

Fig. 1. Pleasantness vs loudness (normalized values).

Table I. Audio feature extraction details

Frequency range
(KHz)

Frame-level
features

Sample-level
features

No. of male
filters

Avg peak amp of
filters

Overall
weight

0–0.3 (low) n × 7 Mean (f1–f7) 4 (12%) 0.88 (66%) 0.33

variance (f8–f14)

0.3–5 (med) n × 109 Mean (f15–f123) 17 (54%) 0.36 (28%) 0.58

Variance (f124–f232)

5–20 (high) n × 396 Mean (f233–f628) 11 (34%) 0.08 (6%) 0.09

Variance (f629–f1024)
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Overall weight of each region = ðno. of Mel f ilters in that regionÞ
× ðAverage peak amplitude of f iltersÞ (2)

The normalized values are calculated for each region, and the
final weights to be associated are mentioned in Table I. These
weights are further used in the FLANNmodel for proper training of
the pleasantness prediction model.

D. PERCEPTUALLY WEIGHTED FLANN MODEL

Compared to the multilayer perceptron structure, the FLANN is a
single-neuron-based structure with a low computational load and
faster convergence. Recently, there is a lot of deep learning-based
models that are developed with higher performance, but these
models are useful when the dataset size is more and there is
difficulty in extracting features from the dataset. However, in
the present case, the dataset size is small and the features are
known. So the simple and effective method of FLANN is used [35].
In the proposed algorithm, a total of three FLANNmodels are used
in considering one for each region (low, medium, and high), where
each region output is associated with some weighted output. This
modification in the FLANN model is done considering the human
audio perception and named as P-FLANN. The block diagram of
the implementation is shown in Fig. 3.

In each FLANN model, every input is functionally expanded
by a collection of basis functions. To tackle complex classification
and approximation problems, it is necessary to identify the weight
parameters (W) that will result in the best feasible approximation
using the basis functions that have been chosen (ϕ). A set of
linearly independent functions is generated elementwise, which
helps in capturing relevant information from the features. The
functional expansion can be trigonometric (TFLANN), Chebyshev
(CFLANN), polynomial (PoFLANN), etc. Depending on the types
of features and applications, the basis functions are selected [36].
The basic functions for the functional expansion taken into con-
sideration in the proposed technique are trigonometric (TFLANN)
in nature. The relationship between inputs, weights, and outputs of
the TFLANN model are as follows:

X = ½f 1 f 2 f 3 : : : : : : :: f i�
φðkÞ = ½XðkÞ sin ðπXðkÞÞ cos ðπXðkÞÞ : : : : : : �
yðkÞ = WðkÞ × φðkÞ
YðkÞ = f ðyÞ (3)

The inputs (X) are one-dimensional linear spectrum features.
The number of features for the low, medium, and high regions is f1-
f14, f15-f232, and f233–f1024, respectively. The details are listed
in Table I.W(k) is the weight matrix multiplied by each term of the
basis functions (φ). The pleasano values (P) are calculated thrice
for each region, and the output is the weighted sum between all of
them. pl, pm, and ph are the pleasano predicted values from the
proposed P-FLANNmodel for low-, medium-, and high-frequency
regions. Similarly, δ1, δ2, and δ3 are the weights associated with
each region as mentioned in Table I. The predicted pleasano values
are calculated as:

P = ðpl × δlÞ þ ðpm × δmÞ þ ðph × δhÞ (4)

The actual pleasano values are calculated from the labeled
dataset as mentioned below:

P 0
i = pi × δi (5)

The error for each region is calculated as Equation (6). The
values of i are 1, 2, and 3 for regions low, medium, and high,
respectively:

ei = pJi − pi (6)

E. WEIGHT UPDATION USING SWARM
INTELLIGENCE

Typically, the gradient descent method is used for updating the
weights in the FLANN model. However, there is a chance of a
solution being struck at local minima. To solve this problem,
swarm intelligence-based stochastic optimization algorithms are
quite helpful [37]. Particle swarm optimization (PSO) is one of the
effective population-based stochastic optimization techniques
based on bird flocking. PSOs are simple to implement with faster
convergence and few parameters to adjust. It depends on mainly
two parameters: position and velocity. The calculation and update
equations are described in Equation (7) [38]:

vtþ1
i ðdÞ = wvtiðdÞ þ c1γ1½ptiðdÞ − xtiðdÞ� þ c2γ2½GtðdÞ − xtiðdÞ�
xtþ1
i ðdÞ = xtiðdÞ þ vtiðdÞ (7)

Fig. 2. Mel filters with low, medium, and high-frequency regions.

Fig. 3. Convergence characteristics of P-FLANN.
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The current position and velocity of the particle i in the dimen-
sion d at time t are xtiðdÞ and vtiðdÞ. The previous best position of the
particle i in the dimension d at time t and the global best are denoted
as ptiðdÞ and Gt(d) respectively. w, c1, and c2 are the constants
representing the inertia weight, and acceleration coefficients related to
personal best and global best respectively. γ1 and γ2∈ [0, 1] are two
random variables. The objective function is the minimization of the
mean squared error (MSE) between the actual and predicted value of
pleasano numbers. W(k) represents the k-dimensional weight vector
associated with the P-FLANN:

0f = min
−1≤WðkÞ≤1

fMSEg (8)

III. SIMULATION RESULTS AND
DISCUSSIONS

The proposed P-FLANN model is simulated in the MATLAB
platform using the steps mentioned in Fig. 4. For the development
of the pleasantness prediction model, 80 % of the samples of dataset-1
is used, and the training process is stopped when the MSE attains a
minimum value. The remaining 20% of samples of dataset-1 and all
samples of dataset-2 are used for testing the model. The convergence
characteristics of the P-FLANN model are plotted in Fig. 3. The
training is continued for 10000 iterations and stopped once the mean
square error remains constant and stops decreasing further.

A. PERFORMANCE EVALUATION USING
BASELINE CEPSTRAL FEATURES

The performance comparison of the proposed P-FLANN model is
done with several standard baseline speech feature extraction
techniques including Mel frequency cepstral coefficient
(MFCC), Gammatone cepstrum coefficient (GTCC), and equiva-
lent rectangular bandwidth scale (ERB). In these comparisons, the
basic FLANNmodel was used without any weighting scheme. The
results are listed in Table II. It is observed that the proposed
P-FLANN is performing better than the other three models. The
modifications done at the neural network works better than the
feature extraction stage. The three-way training approach at dif-
ferent frequency regions is working better than one-way training.

B. PERFORMANCE EVALUATION USING
DIFFERENT TYPES OF NEURAL NETWORKS

After evaluating the performance of the proposed model at the
feature extraction stage, the model is compared at the neural
network level with the same set of features. The one-sided linear
spectrum features (f1–f1024) are used as common features in
TFLANN, RBFNN, PoFLANN, and ANN-BP models, and the
evaluation results are listed in Table III. It is observed from the
table that the P-FLANN model is outperforming other neural
networks for all three dataset options. The RBFNN model is
performing as the second best model followed by the TFLANN
model. The trigonometric expansion is showing improved results
than the other expansions.

C. TESTING WITH NOISE

To study the effect of background noise on the proposed model,
testing with noisy conditions is studied. The two datasets are

combined with real-life background noises of traffic at different
signal-to-noise ratio (SNR) levels similar to the Noizeus dataset
[46]. After the dataset preparation, the pleasano number prediction
task is performed. The results are plotted in Table IV. It is observed

Fig. 4. Block diagram of the proposed model.

Table II. Comparison of prediction performance of the pro-
posed method with existing baseline models

Methods Dataset-1 Dataset-2
Combined
dataset

MFCC+ FLANN [39] 92.7 93.3 94.2

GTCC+ FLANN [40] 89.2 88.4 90.6

ERB+ FLANN [41] 87.5 88.7 89.5

P-FLANN (proposed) 97.2 98.4 99.1
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that at low SNR values, the prediction performance decreases, and
at higher SNR levels, the prediction performance is comparatively
better. Out of the three noise conditions, the street noise affects the
most and the babble noise affects the minimum. Still, the prediction
performance is more than 93%, which demonstrates the robustness
of the proposed P-FLANN model to noise.

Figure 5 shows the comparison between the expected and
the desired values of the P-FLANN model for the combined
dataset. The normalized values of pleasano numbers are plotted.
It is observed that the estimated values are matching with the
actual pleasano values which justifies the superior performance

of the P-FLANN-based approach. This approach can be success-
fully implemented for the prediction and classification tasks of
P-FLANN. In cepstral features, the features are extracted by
using the human speech perception model as well as a bank of
filter model. But, in the P-FLANN model, the features are not
passed through the mel scale which enables for extraction of all
frequency domain features. Only, the weights are adjusted
according to human speech perception. It enables the proper
training of the model and superior performance as compared to
the simple cepstral features.

IV. CONCLUSION
In smart city design, the improvement of human health through
listening to natural sounds is a key parameter. Here, the sounds of
water fountains built in parks and public spaces are primarily
designed to serve as a visual appeal and also affect the human
health psychologically as they provide a relaxing environment to
the visitors. However, direct assessment of the pleasantness of
water sound is difficult and costly. For the objective evaluation, a
P-FLANN model is developed in this article. The optimal weights
of the proposed P-FLANN model are adjusted using bio-inspired
techniques to reduce the number of computations. This model is
used to predict the pleasantness of the water fountain sound by
using spectral features. The simulation results have shown the
effectiveness of the proposed model with more than 95 % accuracy
in two standard datasets. To test the robustness of the model, it is
also tested at several noisy conditions and observed that it performs
satisfactorily. In the future, real-time pleasantness measurement
and hardware implementation or mobile application-based imple-
mentation can be done.
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