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Abstract: Retinopathy of prematurity (ROP) is a disorder of the retina in neonates. If ROP is not treated at early stage, neonates’
vision is affected, leading to blindness. It is necessary to diagnose and treat ROP at earliest. Several ROP assessment techniques
based on Image analysis have been introduced in recent years. These studies identify only normal, abnormal, and plus disease.
This research article explores the identification of distinct ROP stages along with normal and abnormal detection. Detecting the
stages will help to expedite the treatment and prevent vision loss. The proposed framework consists of feature extraction using
scale-invariant feature transform (SIFT) and pyramid histogram of words (PHOW) techniques. Three efficient supervised
machine learning algorithms, namely random forest (RF), support vector machine (SVM), and extreme boosting gradient
(XGBoost), are used to classify different stages of ROP. A dataset captured by RetCam 3 is used to evaluate the model. Based on
rigorous evaluation, the accuracy of different ROP stages is 93.68%, 83.33%, 85.71%, 55.55%, and 100% for normal, stage 1,
stage 2, stage 3, and stage 4, respectively.
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I. INTRODUCTION
Retinopathy of prematurity (ROP) is a vascular disease that may
cause vision impairment [1]. ROP has a challenging dataset that
consists of stage 1, 2, 3, and 4 with a lot of variability in orientation,
blood veins, and intensity values. ROP can be treated if good
screening is available. Good screening leads to early and accurate
detection, and early detection should allow for more successful
treatment. There are around three hundred retina specialists in India
of which only very few are ROP specialists. The automation of
ROP classification will help the specialists to focus on the treat-
ment. The software tool can be easily used by the technicians,
paramedic staff, and others to classify the stages of ROP.

ROP is underdeveloped vascularization of retina in premature
babies which can lead to vision loss or blindness. Premature babies
with birth weight less than 1800 g or gestational age less than 32
weeks are at risk of developing ROP. Due to the incomplete
development of the premature baby, a vascular delay or a vascular
lesion determines the appearance of ROP. The avascular area of the
retina will be delimited from the vascular area by: the absence of
vessels or by a line (ROP stage I), ridge (stage II), or vascular
proliferation (stage III) or a retinal detachment (stage IV or V). In
advanced grades of ROP, there is a high risk of retinal detachment
and bilateral blindness. For this reason, neonates are screened at
4–6 weeks after birth and then every 1 or 2 weeks until the
vascularization of the retina is complete.

The retina consists of multiple blood vessels. If there is any
irregularity in these vessels, then retinopathy is developed. Devel-
opment of this disorder of retina happens either slowly or suddenly.
This condition is treated by an ophthalmologist by studying the

images taken from different cameras. Early treatment might lead to
improvement in vision and avoid further degradation of vision.

Retinopathy disease development is variable in each individual.
This condition can get normalized on its own or lead to permanent
damage. Earlier ROP was called retrolental fibroplasias [2].

Various studies show that the leading cause of blindness is rise
in premature babies, not only in developed but also in developing
countries. During initial stages of ROP, there is less impact on
sight. In later stages, blood vessels become more tortuous, and
neovascularization occurs which is an indicator of ROP. These new
vessels are delicate and may cause bleeding to impact the vision. In
advanced stages, there are chances of retinal detachment that
endangers the vision, thereby causing blindness [3]. Figure 1 shows
the RetCam images of premature babies.

Early treatment of ROP can prevent blindness. Lot of work has
been exploited based on computer-aided detection of ROP to assist
ophthalmologists.

Most of the research work is carried on retinal grading of blood
vessels, tracing of vessels [4] diameter, curvature [5], length to
chord [6], angle-based measures [7–9], Principal Component
Analysis (PCA) [10], tortuosity measurement for the detection
of pre-plus, plus disease, and normal and limited work on the
automation of classification of stages based on severity [11,12].
The challenges faced for the development of automation of classi-
fication of stages are ROP dataset that is limited and extremely
imbalanced dataset due to lack of awareness and expertise. Once
the classification of ROP stages based on severity is done, timely
treatment can be provided to neonates thereby preventing blind-
ness. There is a scope to work on identifying the presence of ROP
and assessing the severity of ROP and classifying them using
machine learning, which will help not only to provide early
treatment but also help to reach more number of patients through
telemedicine.Corresponding author: S. S. Kadge (e-mail: sushmakadge@somaiya.edu).
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The rest of the paper is organized as follows. Section II
discusses related studies. Section III describes proposed method-
ology adopted in the study, whereas Section IV discusses proposed
classification. Section V explains about the imaging modality,
dataset, experiments, and outcomes/results. Section VI summarizes
the findings of the study, and finally, section VII ends with future
scope of the study.

II. RELATED WORK
International Classification of ROP (ICROP) was published in
1984 and 1987. The ICROP document was about the treatment,
observations, and different phases of the disease [13,14]. The
ICROP document was revisited in 2005 with the addition of
aggressive posterior phase and pre-plus disease. Last stage of
ROP results in retinal detachment and blindness [15]. The four
features are evaluated based on ICROP classification: Location,
Severity, Extent, and Presence or Absence of plus disease. There
are three zones based on the location: Zone I, Zone II, and Zone III.
The identification of Zone I based on the optic disk (OD) and
macula structures were calculated as per the ICROP using deep
learning algorithm [16]. The study demonstrated the Zone II ROP
at low-, moderate-, and high-risk level. The incidence of type 1
Zone II ROP that has significant decrease of severe ROP in China
might be due to awareness and risk of vision loss due to ROP [17].
RetCam imaging can be used for the characterization of retinal
hemorrhage in neonatal babies, foundmostly in Zone II with grades
II and III. During the process, there are minor systemic symptoms
that may be recovered on their own indicating the safety and
efficacy of the imaging tool [18]. The assessment of retinal lesions
found in premature infants and its implication are crucial in the
clinical practice of ophthalmology [19]. The paper addresses the
regression of stage 3 ROP and the growth of blood vessels in Zone
III of the retina, which can provide valuable information for
healthcare practitioners when making decisions in borderline
ROP cases [20].

The artificial neural network is used to overcome the nonuni-
form distribution and low quality of retinal fundus images for the
better visibility by improving the four features contrast, brightness,
gamma factor, and cliplimit of retinal blood vessels to support the
ROP diagnosis [21]. The more advance automated network like
convolutional neural network is used for complicated task of
grading the retinal blood vessels. The transfer learning approach
along with pretrained Inception V3 feature for attention network is
adopted for automatic diagnosis of vessels [22]. The automated
quality evaluations of images were classified as acceptable,

possibly acceptable, and not acceptable using deep convolutional
neural network to detect the presence of ROP confidently [23].

A technique on a curvature-based estimation algorithm for
automatic evaluation of tortuosity in retinal image was addressed
[5]. The author proposes the multiple instances learning method for
the detection of ROP [24]. The author has discussed vessel
segmentation using COSFIRE and evaluated tortuosity using
curvature method [25]. The matched filter plus kernel performance
was better compared to the matched filter and first-order derivative
of Gaussian [26]. A new approach to measure the tortuosity based
on principal component analysis was proposed [10]. Author as-
sessed vessel tortuosity using Gabor filter and morphological
methods [7].

Another set of studies discuss image localization, feature
extraction, and classification using neural network and could
classify only three stages: stage 1, stage 2, and stage 3 [11].
They could establish use of segmentation of vessels to develop
a supervised classification for ROP. The extracted feature set
comprises multiscale vesselness and texture features. Describing
about vessel segmentation and accuracy of 97% is achieved [27].
Manual segmentation of the vessels and extraction of image-based
features, such as tortuosity and integrated curvature, are discussed
where the accuracy was 90% [28]. Author used vessel centerline
extraction for vessel tracing and achieved sensitivity of 0.78 with
0.15 false detection rate [4]. For authors, a major challenge was of
nonagreement of experts while diagnosing the tortuosity of ROP
than with the metrics [29]. A detailed review on applications of
image processing to diagnosing ROP and comparison of different
methods is discussed [30]. Author analyzed not only width but also
arteriolar and venular tortuosity in advancing ROP. They con-
cluded that tortuosity makes the difference and not the width of
vessels for the screening of ROP [31]. An algorithm was developed
for measuring tortuosity of vessels, but they used images with
manual tracing of blood vessels [32]. Author extracted distinctive
invariant features of images with a method development that is
named as scale-invariant feature transform (SIFT) [33].

Artificial intelligence algorithms aid in the clinical practice of
ROP for improving the accuracy and efficiency of the ROP with
proper handling of image acquisition, feasibility, and validation.
Real-world challenges in implementation, development, and strat-
egies of artificial intelligence were discussed to bring the technol-
ogy for the prevention of blindness due to the ROP [34]. In rural
areas, there is a scarcity of ophthalmologists and unavailability of
specialized facilities, so telemedicine will aid in the screening of
ROP. The geometric features like area and diameter were extracted
first using Hessian analysis, and then SVM classifier is used for
detection and classification of ROP images as normal, stage 2, and
stage 3 [12].

The detection of the first three stages and plus disease is done
with the help of back propagation network (BPN) and a combined
model of BPN and radial basis function (RBF) network [35].
Moreover, in the diagnosis of diseases, computerized image pro-
cessing technologies not only help to save time and reproducibility
but also often more accurate than human experts [36]. Transfer
learning framework has been discussed for the screening of ROP.
There are very few ophthalmologists available for the screening of
ROP. In addition, there is a shortage of staff, medical equipment,
and policy for ROP screening [37]. Author has discussed the
calculation of Arteriolar-to-Venular diameter Ratio (AVR) by
segmenting the vessel center line into arteries and veins and
then classifying them [38]. The author has proposed the convolu-
tion neural network for the classification of severity of ROP and

Fig. 1. RetCam images of premature babies: (a) normal image and
(b) ROP image.
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also compared mean aggregate operator. Moreover, the author
concluded that the illumination has an impact on image recognition
and result [39]. A novel approach was introduced by the author
using a matched filter. The author presented a semiautomated CAD
method for plus disease assessment [40]. Vessel segmentation
which is one of the important features is extracted using convolu-
tional neural networks [41]. The optimization framework is
adopted to address the significant challenges and early detection
of ROP using convolutional neural networks with perfect sensitiv-
ity score [42]. Different deep learning models [43,44] are employed
for the identification of ROP, NOROP, mild severe, and plus
disease. Article [45] provides a detailed review of several deep
learning algorithms that have been employed in recent years for the
detection of various eye disorders.

III. PROPOSED METHODOLOGY
The flow chart of the proposed methodology is shown in Fig. 2.
RetCam imaging system is used for ROP screening. Once the
images are acquired, preprocessing is done for further enhancement
and noise removal. The feature extraction and summarization
process is comprised of the following techniques:

1. Pyramid histogram of words (PHOW) features (dense multi-
scale SIFT descriptors) computation on images.

2. K-means for visual word dictionary construction, that is, bag
of words (BoW) on PHOW features. Training and evaluation
are done using various machine-based classifiers. Three dif-
ferent classifiers are used, and finally four stages are classified.

In this proposal, we developed a novel framework which consists
of successive steps.

A. PREPROCESSING

Preprocessing consists of resizing, contrast enhancement, illumi-
nation equalization, and noise removal. The images are resized to
512 × 512 × 3 in the proposed work. Then the RGB images are
converted to grayscale.

B. FEATURE EXTRACTION: SIFT

The SIFT detects and describes local features in images. Reference
images are created with the extraction of the key points. These sets
of reference images are stored in a database. The important stages
of computation for SIFT are scale space, Laplacian of Gaussian
(LoG) approximations, finding key points, getting rid of low-
contrast key points, key point orientations, and generating a
feature. Building the scale space, all the scales must be examined
to identify scale-invariant features. The effective way to get the best
scale is to compute the Laplacian pyramid. Approximations of LoG

are done by difference of Gaussians (DOG). The value of sigma
and k has to be decided.

Each octave has three layers [33]. The initial value of sigma is
1.6, and the numbers of octaves are computed automatically from
the image resolution. Weak features from low-contrast regions
were filtered out by using the contrast threshold. The sigma of the
Gaussian is applied to the input image at the octave.

We looked at each point of 3X3 neighborhoods in the lower and
higher scale as shown in Fig. 3 and compared a pixel X with 26
pixels in current and adjacent scale. We selected the pixel X if it is
larger/smaller than all 26 pixels so that large numbers of extrema are
found. Computationally, it is expensive but detects the most stable
subset with coarse sampling scales. Key point localization is to
localize each interest point. The use of Taylor series expression of
DOG helps to avoid the outliers. Further outliers can be removed by
computing the principal curvature. Now orientation of interest point
is to be assigned at each of the point or direction, and then histogram
of 36 bins is built as 360 degrees will give 36 bins each with 10
degrees. Sensitivity to changes in image scale of Harris detector does
not allow its use for matching images of different sizes.

IV. PROPOSED CLASSIFICATION
We have introduced a fully automatic algorithm in this paper for the
classification of different ROP stages on the basis of severity using
three different classifiers.

Classification of ROP is a multiclass classification problem.
There are different stages of ROP. We have considered four stages
for experimentation. It is a four-class classification problem of
ROP, which will classify as stage 1, 2, 3, and 4. In multiclass
classification, each image is assigned with one label. There are five
stages of ROP tabulated in Table I.Fig. 2. Block diagram of proposed workflow.

Fig. 3. (a) Generation of scale space using Gaussian and difference of
Gaussian. (b) Comparison of pixels to its 26 neighbors [33].
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We could classify the different stages of ROP on the basis of
the severity. We conducted four experiments for classifying the
stages of ROP which is a multiclass problem. The individual stages
were graded using different classifiers. Out of 300 images, 47 were
labeled as class 1 (stage 1), 47 were labeled as class 2 (stage 2), 60
were labeled as class 3 (stage 3), 38 were labeled as class 4 (stage
4), and 108 were labeled as class 5 (normal).

In this section, we briefly describe the different classifiers. The
multiclass classification is addressed using three classifiers: ran-
dom forest (RF), support vector machine (SVM), and extreme
boosting gradient (XGBoost).

SVM is kernel-based classifier separating the hyperplane.
SVM is a binary classification algorithm and is robust to variance
and small sample data. The features are scaled up by using different
kernel functions. Adjustable parameter sigma plays a major role in
the performance of the RBF kernel and should be carefully tuned to
the problem at hand. The multiclass SVM has two categories one-
versus-one (OVO) or one-versus-all (OVA) [46,47]. The multiclass
classification problem is resolved by multiple binary classification
problems. OVA-SVM classifies one of the classes as positive and
others as negative using binary classifiers in classification
problems.

RF classifier can be used both for classification and regression
problems. RF algorithm is a supervised classification algorithm that
creates the forest with a number of trees which does not over fit the
model. The trained RF algorithm is used on test dataset for
classification [48].

XGBoost is a machine learning algorithm that has recently
been dominating for structured or tabular data. XGBoost is an
implementation of gradient-boosted decision trees designed for
speed and performance [49].

V. EXPERIMENTATION AND RESULTS
In this section, we have presented the experimental setup, imaging
modality, analysis strategy, and execution of the proposed method.

A. IMAGE ACQUISITION

RetCam is an alternative digital imaging tool for screening ROP
conditions of neonatal [50]. The latest advancement of ultra-wide-
field imaging technologies and their clinical applications has
accelerated the focus on diabetic retinopathy, retinal vein occlu-
sion, uveitis, and pediatric retina [51].

The ophthalmic images taken from RetCam can be stored,
retrieved, and used for further observation and analysis using a
computer/laptop on board. The laptop monitor is used for viewing
images with the RetCam Shuttle and RetCam Portable. Proprietary
software is installed on the computers to capture, store, view,
retrieve, and export ophthalmic images. The key factors of the
device are photo documentation, serial imaging, portability, and

financial affordability [52]. The clinically challenging features of
neonatal fundus images were enhanced with the aid of inexpensive
and noninvasive RetiView software specifically in the subset of
Aggressive Posterior Retinopathy of Prematurity (APROP)
images [53].

B. DATASET

The images required for study were obtained from PSG Institute of
Medical Sciences & Research, India, after ethics committee
approval. The institute has digital fundus imaging camera RetCam
120 with a field of view (FOV) of 130 degrees. Images obtained are
of premature infants with gestational period between 28 and
33 weeks.

Three retinal ophthalmologists were part of this research work,
two senior and one junior ophthalmologists. Retinal ophthalmol-
ogists labeled images as normal, stage 1, stage 2, stage 3, and stage
4. The chief has the experience of more than 25 years; the senior
ophthalmologist has more than 20 years of experience and another
ophthalmologist has the experience of 10 years.

The Indian dataset had 300 images: 192 diseased and 108
normal. The outcomes are then tabulated. Our dataset consists of
different scale, viewpoint, rotation, illumination, and orientation. It
was a challenge to extract the features and match these images. To
overcome this challenge, there is a need of distinctive, invariant
features extraction that should be reliable for matching.

Table II shows the distribution of data which is unbalanced in
the ROP screening. The ratio of ROP to non-ROP is 1∶2. The
diseased images are approximately half of the non-ROP images.

The progression of ROP has been classified in five different
stages. Figure 4 shows the different images with respect to stages
of ROP.

The RGB images of the size 1600 × 1200 × 3 were resized into
512 × 512 × 3 to save the computational burden. The resized
images were converted into grayscale. All four stages dataset
was given as input. We divided dataset into training, validation,
and testing images. The SIFT features were extracted from training.
We selected ROP stage 1, 2, 3, and 4 images, namely the 300
images. We computed dense SIFT descriptors and quantized them
using a visual dictionary (1000 words). This collection of a
dictionary is used as training data for a parameter-tuned SVM
classifier with a linear kernel, RF, and XGBoost. Finally, these
trained images are given to the classifier which distinguishes the
images based on the severity of ROP, that is, stages 1, 2, 3, and 4.

C. MINIBATCH K-MEANS AND PHOW
DESCRIPTORS

One of the most popular clustering algorithms is k-means, but
computational cost is high as the dataset increases. We have used
mini batch k-means which is an alternative to k-means. It reduces
the computational cost for finding the partition of clusters. All the

Table I. Severity-based ROP stages

Stages Information

1 Fine line

2 Elevated ridge

3 Fibrovascular proliferation

4 Partial retinal detachment

5 Total retinal detachment

Table II. Dataset used for training, testing, and validation

Stages Number of images

1 47

2 47

3 60

4 38

Normal images 108
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features similar to each other will fall into one cluster. There will be
four clusters for four stages and as clusters increase, the computa-
tional cost is more evident but at the cost of quality loss of cluster.

BOW is a feature summarization technique that helps in image
classification. Key points are extracted using SIFT for each of the
images, and then BoW is created. The PHOW is used for image
description which is an extension to the BOW. The PHOW helps to
overcome the limitation of BOW [54,55] where the information of
spatial image features is available by partitioning the image into
pyramids (subregions) and the histogram of each pyramid is
concatenated to the histogram of the original image with a suitable
weight.

Figure 5 shows the SIFT key points and histogram of stage 1.
The BoW is used to quantize the local features and classify the
images. The model generates the feature vectors and maps the
vectors using BoW and then generates the histogram of key points.
PHOW descriptors are computed, and then k-means is used for
clustering the descriptors into centroids. The PHOW is used for
training multiclass classifiers.

We treat the grading of ROP as a multiclass classification. We
have five classes, that is, normal, stage 1, stage 2, stage 3, and stage

4, respectively. The imbalanced dataset has unequal class distribu-
tion. A total of 192 datasets which are ROP cases, 47 belong to
class 1 (stage 1), 47 belong to class 2 (stage 2), 60 belong to class 3
(stage 3), 38 belong to class 4 (stage 4), and 108 belong to class 5
(normal) which is non-ROP.

D. PERFORMANCE METRICS

The study consisted of four experiments, and each experiment was
performed for classification and grading of individual stages using
three different classifiers. The classifiers used were SVM, RF, and
XGBoost.

The training process is carried out on the training dataset,
while the validation set is used to fine-tune the model. The overall
performance of each model is assessed on the test dataset. Various
metrics are considered like precision, recall, F1-score, and accu-
racy. These performance metrics are based on True Positive (Tp),
False Negative (Fn), True Negative (n), and False Positive (Fp).
The recall is beneficial than precision in most of the cases. As the
data distribution is unequal, F1 score or PR will give more insights
about the result and be beneficial:

Precision =
Tp

Tpþ Fp
recall =

Tp

Tpþ Fn

F1 Score =
2 � Precision � recall
Precisionþ recall

Accuracy =
Tpþ Tn

Tpþ Fnþ Fpþ Fn

The validation accuracy of normal, stage 1, stage 2, stage 3, and
stage 4 for SVM is 89%, 82%, 81% 65%, and 80%, whereas for RF is
88%, 78%, 69%, 65%, and 86%, and for XGB is 92%, 78%, 69%,
59%, and 86%, respectively. Similarly, the testing accuracy is 92%,
83%, 86%, 44%, and 100% for SVM, 90%, 71%, 86%, 56%, and
100% for RF, and 94%, 83%, 86%, 56%, and 100% for XGB,
respectively. Fig. 6 shows the comparison of all accuracy using
different classifiers. The accuracy of stage 3 is less due to an
unbalanced data, quality of images, data size, and low contrast.
The extraction of features like demarcation line, ridge, and vessel
was challenging due to quality of image and low contrast. For the
classification of the images based on location or zone wise, the OD
fovea andmacula are needed to calculate the Zone I, Zone II, and Zone
III. The dataset had hardly any information or features like OD and
macula. Classifying the images based on the extent requires minimum
five contiguous or eight noncontiguous clock hours to describe the
disease. OD, Fovea, and the macula information was required to mark
clock hours. It is very challenging to extract distinctive features from
fundus images of ROP as the pixel intensity is low contrast.

The SVM, RF, and XGB classifiers were used to evaluate the
accuracy of normal vs. abnormal, stage 1, stage 2, stage 3, and stage
4. The classification accuracy is 93.33%, 90.17%, and 93.68 for
normal vs. abnormal, for stage 1 is 83.33%, 71.42%, and 83.33%,
for stage 2 is 85.71%, for stage 3 is 44.44%, 55.55%, and 55.55%,
and for stage 4 is 100% respectively. The model had mean
validation accuracy of 77.07%, 74.23%, and 72.76%, respectively,
after training the dataset. The models’ performance was evaluated
on the test set. The test set was randomly selected.

Table III displays mean accuracy for fivefold cross-validation
for SVM, RF, and XGBoost classifier. Our state-of-the-art model
was able to classify the multiclass problem with mean testing
accuracy of 78.37%, 78.17%, and 81.15% using SVM, RF, and
XGBoost classifiers, respectively.

Fig. 4. Different stages of ROP.

Fig. 5. SIFT key points and histogram of stage 1.
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Figures 7–9 show the precision, recall, and f1 score for
different classifiers, respectively.

RF classifier has high precision, recall, and f1 score as
compared to SVM and XGBoost on the testing data. SVM classifier
has high precision, recall, and f1 score on the validation data. But

all the three metrics are very close to each other on the testing
dataset. The model has 77%, 79%, and 78% precision for three
classifiers, respectively. The RF predicts the ROP 79% of the time
it is correct. It has a small number of false positives of 21%. The
precision helps to understand the classifier’s ability not to misguide
negative as positive. The recall graph indicates high recall for RF
classifier, that is, the small number of false negatives. The model
has 74.52%, 74.56%, and 73.55% recall for three classifiers,
respectively. The graph shows high recall and high precision,
but they are actually very close to each other. So there are a small
number of false positives and false negatives, respectively. The F1
score is the balance between the precision and recall. The simple
harmonic mean of precision and recall is known as f1 score. The
model has 73.5%, 74.48%, and 74% f1 score for three classifiers,
respectively.

VI. DISCUSSION
The proposed method results are critically analyzed. Our findings
provide the assessment of normal/abnormal ROP and classification
of different stages, that is, stage 1, stage 2, stage 3, and stage 4 over
the Indian databases using SVM, RF, and XGBoost classifiers. The
computational time, comparison of results, and limitations are also
discussed here.

There are relatively very few findings for the evaluation of
ROP normal/abnormal along with stages identification. Our
method outperforms in the classification of different stages which

Table III. Mean accuracy and standard deviation (SD) for
SVM, RF, and XGBoost classifiers

Classifier
Mean validation
accuracy % (SD)

Mean testing
accuracy % (SD)

SVM 77.07 (0.059) 78.37 (0.040)

RF 74.23 (0.072) 78.17 (0.052)

XGBoost 72.76 (0.056) 81.15 (0.064)

0
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N/AB 1 2 3 4
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80

100

N/AB 1 2 3 4

SVM

Fig. 6. Shows the comparison of accuracies for normal/abnormal, stage 1, stage 2, stage 3, and stage 4 using SVM, RF, and XGBoost classifier.

Fig. 8. The graph of recall vs. classifiers for weighted average for
validation and testing accuracy.

Fig. 7. The graph of precision vs. classifiers for weighted average for
validation and testing accuracy.

Fig. 9. The graph of f1 score vs. classifiers for weighted average for
validation and testing accuracy.
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are based on the severity of the disease. Table IV shows the
computational time for different classifiers. Table V displays the
comparison of findings by different researchers for detection and
classification of ROP.

SVM takes less time as compared to RF. Computational
efficiency of SVM is better than RF, but precision, recall, and
f1 score is better for RF.

Table V depicts the accuracy comparison by different re-
searchers. As per our knowledge, work done by the researchers
is focused on blood vessel detection and tortuosity and limited
work has been reported on the classification of stages based on the
severity of the disease. Prabakar et al. [11] used the histogram
approach using limited dataset for classification, and no perfor-
mance metrics were discussed in the results. Rebecca Rollins et al.
[56] classified the images into three categories No ROP (NR), ROP

not requiring treatment (RNT), and ROP which required treatment
(RT). Priya Rani et al. [24] and Yinsheng Zhang et al. [37]
discussed the disease as normal and ROP. Worrall et al. [57],
Junjie Hu et al. [39], and Y.P Huang [43] reported the disease as
normal, mild, and severe. The geometric features like area and
diameter were extracted using Hessian analysis for the study of
normal, stage 2, and stage 3 by Vijayalakshmi et al. [12]. The
convolutional neural network was adopted to classify positive and
negative samples by Xin Guo et al. [42]. Deep fusion feature [58]
approach has been used to classify different stages. Even though
the cost prohibitive concern has been resolved by MII RetCam,
made in India [52], early diagnosis remains the challenge due to
unavailability of automation and less number of pediatric retina
ophthalmologists. So the research can be carried out for the ease
and automation required for ROP stage diagnosis. The ability to
image entire retina and representation of 3D to 2D would help
overcome the limitations in the ROP research [51]. The evolution
of Zone II features was analyzed and found that there was gradual
decrease in the risk with time and responded well to the treatment
[17]. The identification of Zone I is subjective and inaccurate, so
Deep Neural Networks (DNN) algorithm was developed [16]. The
implications of retinal lesions are also important in the diagnosis
and might overcome the inaccuracies and vison loss [19].

Our paper not only focuses on normal and ROP disease but
also on the classification of stage 1, stage 2, stage 3, and stage 4 on
the basis of severity if ROP is present. Our proposed work has

Table V. Comparison of accuracy for detection and classification of ROP

Author Method Normal/ROP
Mild/
severe

Zone
I Zone II

Stage
1

Stage
2

Stage
3

Stage
4 Others

Prabakar et al.
[11]

Histogram
approach

— — — — — — — — 25 images with
classification of
stage 1, 2, and 3

Rebecca Rollins
et al. [56]

Multiclass
SVM

F1= 73.33
(NR,RNT,RT)

— — — — — — — —

Priya Rani et al.
[24]

MIL 83.3 — — — — — — — —

Worrall et al.
[57]

CNN 94 73 — — — — — — —

Vijayalakshmi C
et al. [12]

Hessian analy-
sis and SVM

91.8 — — — — — — — Normal, stage 2
and stage 3

Junjie Hu et al.
[39]

DNN 97 84 — — — — — — —

Xin Guo et al.
[42]

CNN 98 — — — — — — — —

Yinsheng Zhang
et al. [37]

DNN 98.8 — — — — — — — —

J. Zhao et al. [16] DNN — — 91 — — — — — —

Ni, Ying-Qin
et al. [17]

Student’s t test
and ANOVA

— — — 69 low risk, 18
high risk, 13
moderate risk

— — — — —

Y.P Huang [43] DNN 96 98.8 — — — — — — —

Y. Peng et al.
[58]

DNN 98.27 — — — 53.84 84.25 81.13 88.52 —

Proposed
approach

SIFT with
SVM

92.33 — — — 83.33 85.71 44.44 100 —

SIFT with RF 90.17 — — — 71.42 85.71 55.55 100 —

SIFT with XGB 93.68 — — — 83.33 85.71 55.55 100 —

Table IV. Computational Time for SVM, RF and XGBoost
classifiers

Classifier
Training
time (sec)

Validating
time (μs)

Testing
time (μs)

Finished
(s)

SVM 2.64 0.089 0.051 1628.467s

RF 2.53 0.122 0.115 1863.713s

XGBoost 2.83 0.027 0.022 1787.249s
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fourfold advantage. First, we are able to classify whether ROP is
present or absent. Second if ROP is present, we could classify the
stages of ROP on the basis of severity like stage 1, stage 2, stage 3,
and stage 4 along with normal and ROP. Another advantage
of the proposed approach is that it is robust to intensity variation
due to the SIFT feature. Fourth advantage is computational com-
plexity which is less compared to other methods. Stage 4 outper-
forms as compared to other stages. Stage 3 results can be improved
further.

Here are the few limitations. The ROP being challenging
disease and limited dataset is the hindrance in ROP research system.
As the availability of dataset is less, so do the images to be trained
and validated. Second limitation is the different scale, viewpoint,
rotation, illumination, and orientation of the images. Another limi-
tation is the low-quality images. The proposed method demands
special hardware such as high-speed computer or GPU.

VII. CONCLUSION
This research proposed a simple and efficient framework for unique
ROP staging based on SIFT and three separate machine learning
classifiers. In comparison to previous state-of-the-art classification
approaches, the suggested method employed SIFT features which
focused on lesion-related regions of ROP and effectively increase
ROP staging accuracy and model generalization capacity. The
results revealed that classification may considerably increase
ROP staging performance and classification accuracy. Our tech-
nique tended to misclassify misclassified samples into the adjacent
next severe stage of ROP image classification, which was consis-
tent with clinical staging standards for ambiguous samples. Our
suggested approach obtained an accuracy of 93.68%, which is
comparable to other quantitative metrics. However, when com-
pared to existing classification systems, our proposed method has
higher recognition accuracy for stages 1, 2, and 4. The stage 3
performance was quite low when compared to the other stages’
performances. In our study, 55% of ROP fundus images with stage
3 were correctly recognized, whereas the other 45% were all
incorrectly classified as stage 2 and 4. There are two basic causes
behind this: (1) scarcity of ROP data in the training phase.
Although we have lessen the influence of imbalance categories
by altering the weight of the loss function and employing learning,
we still cannot effectively fix the problem caused by data imbal-
ance. (2) Extraretinal fibrovascular growth or neovascularization
spreads from the ridge into the vitreous is the clinical criterion for
stage 3 ROP. However, ridge identification was difficult to detect in
some ROP fundus images for both clinical labeling and computer-
ized ROP staging. As a result, learning the small distinctions
between them were challenging for the depth network, resulting
in prediction mistakes. Despite the fact that there were few ROP
data from stage 4 in the training process, ROP detection accuracy in
stage 4 was quiet high. In terms of our test data, the suggested
technique successfully predicts all ROP fundus images in stage 4.
One probable reason is that the retina in stage 4 has a retinal
detachment, which is seen in the fundus imaging. As a result, our
depth network can precisely learn its effective characteristics.
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