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Abstract:Breast cancer is one of the deadly cancer among the female population and still a developing area of research in the field
of medical imaging. The fatality rate is more in patients who are not early diagnosed and are given delayed treatment. Hence,
researchers are keeping their lot of efforts in developing breast cancer detection systems that could provide accurate diagnosis in
the initial stages which are relied on medical imaging. Deep learning is offering key solutions to overcome many image
classification tasks. Although deep learning techniques have extended their root to many medical fields even it suffers from the
problem of lack of sufficient data. Convolutional neural networks are more preferred for medical image classification tasks. In this
paper, we propose a transfer learning method that overcomes the issue of insufficient data. We use a familiar pre-trained network
VGG-16 (Visual Geometric Group)+with logistic regression as a binary classifier. Since hyper-parameters of every CNN have a
closer impact on the performance of the entire deep learning model, our method focuses on optimizing hyper-parameters using
particle swarm optimization which is a bio-inspired algorithm. The proposed model performs the classification of breast
histopathology images into benign and malignant images and produce better results. We use BreakHis Dataset to test our method
and achieve an accuracy of around 96.9%. The experimental results show that this study has improved performance metrics when
compared to other transfer learning methods.
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I. INTRODUCTION
Recent studies summarized that breast cancer is one of the most
prevalent forms of cancer, among women worldwide. From the
knowledge of the cancer mortality survey, this disease is the
leading cause of death with 5,24,000 deaths and 2.4 million
new cases per year [1]. Early diagnosis and accurate medical
treatment play an important role to minimize the mortality rate.
Generally, inevitable mutations of breast cells result in the devel-
opment of a mass called tumor or cyst. These tumors are usually
categorized into two classes; carcinoma namely malignant and
non-carcinoma namely benign [2]. Few blossoming methods for
purpose of screening and diagnosis of tumors are magnetic reso-
nance imaging [MRI], mammography, and histopathology [3].
Despite all other approaches, cancer detection from histopathology
is the gold standard. Generally, pathologists examine the cell
shapes, tissue structure, and density to define malignancy degree
and cancerous locality, by analyzing a narrow slice of biopsy
sample with a microscope. This manual analysis needs enormous
domain knowledge; also, it is an error-prone and time-taking
process [4–6]. By using whole-slide digital scanners, histological
slides of the suspected tissues can be computerized and preserved
in form of a digital image. Digitalization figures out other advan-
tages such as better visualization, quick storage, and analysis of
images that in turn lead to automatic image analysis methods [7]. In

recent years, the use of deep learning in conjunction with image
processing techniques has grown quickly. To address challenges
like identifying specific areas of infected organs, defending the
classification of tumors, corresponding treatment, and disease
stage, deep learning-based algorithms are particularly adaptive.
Particularly, deep learning techniques based on convolutional
neural networks (CNNs) have made room for integrating CAD
methodologies with image processing jobs [8]. In the case of
medical data analytics, AI and ML techniques are frequently for
speech-based COVID-19 detection from speech signals [9,10].

The use of deep learning in conjunction with image processing
techniques has grown quickly. To address challenges like identi-
fying specific areas of infected organs, defending the classification
of tumors, corresponding treatment, and disease stage, deep learn-
ing-based algorithms are particularly adaptive. Particularly, deep
learning techniques based on CNNs have made room for integrat-
ing CAD methodologies with image processing jobs [11–14]. The
origin of the aforementioned methods directed the path to research-
ers in developing CAD models assisted by CNN for several
medical applications such as breast cancer, skin cancer, lung
cancer, brain cancer, and liver cancer [15]. In contradiction with
hand-crafted methods, CNNs have the ability to learn features from
the given medical images. Ting et al. [16] developed a CAD system
by cascading pre-trained networks and obtained an accuracy of
around 90.5%. Xu et al. [17] performed feature extraction by using
fine-tuned CNN for image classification regarding colon cancer
and brain tumor. However, there is a lot of space provided for the
development of pre-trained networks in the context of breast cancerCorresponding author: Y. Pandu Rangaiah (e-mail: y.pandurangaiah@gmail.com).
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histopathological images. As the task of breast histological images
is much complicated, recent studies started using pre-trained net-
works such as AlexNet, VGG-16, and VGG-19. For the problem of
classification, these pre-trained networks are accompanied by other
classifiers like logistic regression, KNN (K-Nearest Neighbor),
SVM (Support Vector Machine), and decision trees.

Although the fast interventions of CNN models are increasing
day by day, in point of the accuracy of the proposed CNN model,
the hyper-parameters have a great impact on the performance.
Selecting feasible hyper-parameters can be considered as an impor-
tant step during the training of the CNNmodel. Hence, it is required
to undergo optimization of CNN’s hyper-parameters to achieve
good performance and success rate. For the process of optimizing
the CNN model, bio-inspired algorithms can be used to produce
desired optimal hyper-parameters. Particle Swarm Optimization
(PSO) [18], Artificial Bee Colony, Gray wolf optimization, and Ant
Colony Optimization are some of the familiar algorithms used for
optimizing deep learning models [18–21].

In this study, we introduce a novel method of CNN for breast
image classification. Since training the CNN model from scratch is
a time-taking process, we use the concept of transfer learning.
Transfer learning by using VGG-16 with logistic regression as a
binary classifier is the major part of the proposed classification
method. In this way, this study decreases time complexity for
training the entire network and makes it more reliable. This
developed model is further optimized by using the PSO algorithm.
The desired classification model produces better results and also
avoids the over-fitting problem. The major contributions of this
study are listed below

• Optimizing hyper-parameters of CNN using PSO algorithm

• An optimized CNN architecture to classify breast histopatho-
logical images

• Comparison of the proposed model with existing CNNmodels
used for breast image classification.

The remainder of this paper is organized as follows. Related
works are discussed in section II. Section III denotes the prelimi-
nary concepts, and the proposed methodology is explained in
section IV. Section V illustrates the dataset. Performance metrics
and results are described in section VI. In last, we conclude our
study in section VII.

II. RELATED WORKS
For the last four decades, CAD systems for cancer detection have
been the developing field of research with its intrinsic complexities
of histopathological images, but it is yet a tedious task. Considering
the classification of histopathological images into malignant and
benign subtypes, many techniques have been developed in the
leaflet of medical image classification. The classification of histo-
logical images has been reviewed precisely with their relevant
works of research in this section.

In recent years, deep learning methodologies have been widely
used in the classification of images. Even they are applied in
various fields that include image recognition, drug discovery,
automatic speech recognition, and bioinformatics [22,23]. The
profound AlexNet CNN [24] was developed in the year 2012,
which has shown admirable results in an application with a dataset
named ImageNet. This success invited deep learning-relied ap-
proaches that used CNN to develop a path of attractive perfor-
mance. Thus it extended its root, even to the area of medical
tasks [25].

Spanhol et al. [26] investigated the pre-trained LeNet model
that relies on a deep learning framework for the classification of
breast cancer. The classification accuracy was 72%, in this method.
In addition, they used a modified AlexNet model that includes two
fully connected and three convolutional layers to train the network.
This lead to the improved classification accuracy of 80.8%.

Wei et al. [27] developed an enhanced CNN architecture that
inspects individual image labels as former knowledge as well as
information of subclasses of the images. The authors reported that
resultant CNN can provide improved binary classification in
learning features. Rao et al. [28] have proposed a modified
CNN that includes a fully connected layer, convolutional layer,
and pooling layer. For the task of BreakHis Image classification,
several hyper-parameters were examined to figure out the most
appropriate framework. This study reported that binary image
classification accuracy of 90%.

Simonyan et al. [29] proposed the architecture of VGG which
lead to a new era of CNN methods. In a recent study, several
architectures based on VGG lead to excellent results in the analysis
of histopathological images [30,31]. Various cancer classification
methods such as skin cancer [32], colorectal cancer [33,34], and
breast cancer [29] have made use of VGG-19. In addition, fundus
image classification has taken the opportunity to use the singular
value decomposition along with principal component analysis
complemented VGG-19 [35].

A magnification independent method was developed by
Bayramoglu et al. [36] that has dual CNN architectures namely
multi-task CNN and single-task CNN. Malignancy of the image
and magnification factor was evaluated by multi-task CNN,
whereas malignancy was evaluated by a single-task CNN model.
The range of accuracies that used multi-task CNN methodology
was between 80.6% and 83.3%; further, the range of accuracies
that used single-task CNN methodology was between 82.1%
and 83.0%.

Hamindineko et al. [37] developed a Nottingham grading
system that classifies the image samples into three subclasses.
Zhang et al. [38] investigated a class Kernel principal component
analysis (KPCA) for feature extraction. Further, a KCPAmethod is
trained on the individual feature that is extracted. The same
procedure is repeated for every image in the provided dataset;
thus eventually, the pre-trained KPCA architecture has the ability
to make the decisions. This study reported the accuracy of binary
classification as 92%.

Sudarshan et al. [39] have proposed a novel approach for the
analysis of histopathological images known as multiple instance
learning (MIL). This study uses two different types of scenarios
such as Patient as a bag and Image as a bag. The authors in this
study examined several methods of MIL namely algorithms based
on Diversity density, Seminal axis Parallel rectangular method,
SVM, K-Nearest Neighbor, CNN, and non-parametric algorithm.
Their study claimed the accuracies of binary image classification
ranging from 83.4% to 92.1%.

Like other neural networks, even DL-based models suffer
from the issues such as multiple local optima, lack of hyper-
parameter tuning, and increased time complexity. To overcome
the above problems, optimizing hyper-parameters and the preferred
NN architecture has become a challenging task. The evolutionary
algorithms are widely used in regular optimization problems in the
area of medical diagnosis that cover the selection of cancer
pathway genes [40], estimating ultrasonic echo [41], DNA micro-
array’s classification [42], reducing bioinformatics data dimension-
ality [43], localization of retinal blood vessels [44], and detection of
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diabetes disease [45]. The aforementioned algorithms have been
not frequently utilized in optimizing outputs of feature extraction,
segmentation, and classification of CNN. Henceforth, our work
interrogates to enforce hybridization of the proposed CNN archi-
tecture that classifies breast histopathological images with help of
evolutionary algorithms.

To optimize the hyper-parameters and kernel, Rubio et al.
[46] proposed a novel method that uses an evolutionary
approach. In addition, FABOLAS [47], which was Bayesian
optimization-based method, was designed for hyper-parameter
selection in architectures of SVM and CNN. Stoean et al. [48]
proposed a newly designed method that fine tunes the convolu-
tional layers by taking the advantage of evolutionary algorithms.
To optimize the hyper-parameters of the LSTM model, Riegler
et al. [49] proposed a structure that makes use of RS, GS, and
BAO approaches.

Senthilpandi & Mahadevan [50] used CNN for brain tumor
detection and diagnosis. Renith & Senthilselvi [51] improved the
performance of diabetic retinopathy detection using deep learning
network. Mohammed Thaha et al. [52] proposed extended CNN for
brain tumor detection and segmentation. Deep learning network
plays vital role in all area of research such as food adulteration [53],
noise removal [54], mobile phone recycling process [55], and sign
language understanding [56]. The optimization algorithm provides
an optimized solution in all area of researches such as noise
removal [57,58], micro-grid protection [59], food adulteration
[60], etc.

From the above discussion, it is clear that the average accuracy
of the machine learning-based models is not up to the mark in all
the datasets. Additionally, the hyper-parameters are selected man-
ually, and no optimization techniques are applied. Bio-inspired
techniques have been used in the applications of signal processing
more specifically speech processing for selecting the best parame-
ters. This problem has been taken in this paper to perform hyper-
parameter optimization regarding CNN that may produce excellent
results in the field of medical diagnosis. As the throughput of CNN
is directly related to efficient disease classification, in this study we
carry our work to improvise the performance of CNN by optimiz-
ing it with help of bio-inspired algorithm; thus, our study will be
used to expertise performance of CNN used for breast histopatho-
logical images.

III. PRELIMINARIES
In this section, we explore the background concepts used for
our proposed model. We clearly explain the basic CNN model,
basic idea behind transfer learning, and standard form of PSO
algorithm.

A. CNN

In a recent study, CNNs achieved enormous adoration in the leaflet
of deep learning [61,62]. CNNs are a special variant of ANNs that
are designed to handle a large amount of multi-dimensional data.
The primary elements of CNN are as follows: convolutional layer,
fully connected, and pooling layer [63].

The images are considered as input to the convolutional layer
that further produces a corresponding feature map. The major
parameters of this layer are the number of filters, filter width,
and stride [64]. The * symbol defines the convolutional operation.
The feature map x(t) is obtained with given input I(t) when applied
with the filter K(a). The following eq. 1 represents the resultant

matrix after the convolution operator is applied on the input feature
map. The below Fig. 1 clearly exhibits the convolutional operation
more precisely.

xðtÞ = ðI � KÞðtÞ (1)

The most common activation function that is used for CNNs is
rectified linear unit (RELU) that turns the input values, which are in
negative form to zero. The below equation represents the RELU
activation function in mathematical form, where x is the input to the
neuron. Even other activation functions, like sigmoid, leaky RELU,
tanh, etc.., can be used depending on the designed architecture
of CNN.

f ðxÞ = maxð0,xÞ (2)

The primary motive of the pooling layer is dimensionality reduc-
tion of the given input image. This layer is infused in between
RELU and convolutional layers and has complete authority on
spatial invariance. Based on the requirement of the CNN model,
max-pooling or average pooling operation is performed at this
layer. Figure 2 clearly illustrates the max-pooling. As learnable
parameters are not present in the pooling layer, it is often referred to
as a component of the convolutional layer.

The fully connected layer is located beside the pooling layer
and designed in such a way that all neurons in the previous layer are
connected to all neurons in the FC layer. The final output is
determined by the Loss function associated with the FC layer,
which helps in identifying the actual and the predicted labels.
Softmax is a highly recommended loss function for most CNN
models.

The problem of over-fitting is resolved by regularization
methods. Two prominent regularization methods are Drop-connect
and Drop-out [65]. Figure 3 demonstrates a CNN model that holds
the fundamental components [66]. VGg-16 [29], ResNet [67],
AlexNet [13], and GoogleNet [68] are most considerable variants
of CNN models when compared to other architectures. The basic
hyper-parameters of CNN are learning rate, mini-batch size,

Fig. 1. Convolution operation in CNN.

Fig. 2. Max pooling operation in CNN.
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Fig. 3. CNN block diagram.

Fig. 4. Transfer learning pipeline.
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regularization parameter, maximum epochs, momentum, and shuf-
fle type.

B. TRANSFER LEARNING USING VGG-16

The provided datasets are small to make the network learnable and
produce more efficient results of accuracy. The solution to over-
come this issue is achieved with the help of transfer learning. The
process of dumping the information from the precedent source to
the target is known as transfer learning [69–71].

The steps involved in the process of transfer learning are very
simple and easy to implement them for any application. Initially,
the pre-trained model of ConvNet is loaded. This model is further
classified into the following categories. The first class incorporates
layers for minimum standards of learning such as edge, shape, and
color, whereas the high-level standards of learning are included in
the second class. Considering class 1, some particular layers are
merged with it and applied for general problems like cancer
classification. The resultant model is used to train the available
training dataset. In the next step, the pre-trained network model is
applied to test data. Finally, accuracy is calculated by the task of
transfer learning. The architectural flow diagram of transfer learn-
ing is denoted in below Fig. 4 [72].

VGG-16 is a pre-trained network model proposed by simon-
yan et al. [29]. This model achieved 92.7% classification accuracy
for the ImageNet dataset.VGG-16 can be used for the tasks of
pattern detection and image recognition. The terminology 16
indicates that it holds 16 learnable layers. In our study, the
BreakHis dataset with a 7909 image sample is the target that is
lesser when compared to the Source dataset ImageNet.

C. PSO

In 1995, Kennedy and Beernaert proposed a novel evolutionary
algorithm, namely PSO [73]. The cognitive and social behavior of
the swarms is the motivation of this algorithm. This method is
influenced by the flying of the herd of birds. According to the
terminologies of PSO, a particle is defined as an individual
solution, and a swarm is a collection of total solutions. Generally,
PSO is associated with a particle that includes velocity and position
[74], as explained in Fig. 5. Considering the present position
and velocity of the particle, the next position of the particle is
updated.

In this optimization algorithm, all particles recollect and utilize
their past best position (pbesti) and the global best (gbesti) in the
swarm. Using the below equations, the position and velocity of the
particles are updated.

Velðtþ1Þ
i = w:Velti þ c1r1ðptbesti − xiÞ þ c2r2ðgtbesti − xiÞ (3)

xðtþ1Þ
i = xi þ Velðtþ1Þ

i (4)

In the above equations, xi,d, and Veli,d represent the position and
velocity of the particles, ith particle’s best position is given by pbesti,
whereas gbesti represents the current best position of the particle,
where d denotes the D dimensional space. The terms c1 and c2 are
considered as learning factors that represent the social behavior of
the swarms. The parameters r1 and r2 are the randomly generated
integers that range between 0 and 1. The major advantage of PSO
is that its convergence rate is higher than Genetic Algorithms
[75]. This characteristic of PSO helps in finding optimal CNN
models.

IV. THE PROPOSED METHOD
In this section, we discuss the proposed working procedure of the
developed model and also clearly demonstrate the correlation
between PSO & CNN.

A. WORKFLOW

The recent pieces of literature have determined that the CNNmodel
shows promising results in the problems of medical image classi-
fication. We employ a novel approach for building the CNN model
by the task of transfer learning. Using pre-trained networks for
transfer learning tasks is a simple methodology. Adjusting the
accurate set of hyper-parameters is a challenging task since
dynamic relation holds among the parameters. The process of
selecting hyper-parameters could be solved by considering it as
an optimization problem. For this, robust optimization algorithms
that find the global optimum solutions are necessary for selecting
hyper-parameters, as they consequently affect the entire perfor-
mance of the CNN model.

The important steps of the proposed method are listed in
algorithm 2. The familiar BreakHis dataset of breast histopatho-
logical images is loaded as the primary step of this algorithm.
Further, the data are split into training set and test set. The training
dataset is then divided into trainopt and testopt datasets. In the next
step, the pre-trained network VGG-16 model is loaded for the task
of transfer learning. These new datasets along with the basic model
are considered as input parameters for the PSO algorithm. In the
training process of the proposed CNN model, the optimized hyper-
parameter values obtained from the algorithm are used as parame-
ters of the training. The loss function can be used to evaluate the
fitness of the given algorithm. Equation 3 represents the mathe-
matical expression of the loss function.

Loss =
XN

j=1

yij logðpijÞ (5)

In the above expression, N is the number of classifications catego-
rized, pij is the prediction probability that sample i belongs to

Fig. 5. Parameter updation in PSO.
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category j and yij is the integer 0 or 1 (0 if i and j belongs to the same
class, else 1).

The workflow of the proposed methodology is described in the
following Fig. 6. Once the termination criteria are satisfied, the
algorithm returns the best solution that is optimal values for
hyper-parameters. Then, new training is performed with the resul-
tant optimal hyper-parameter values with the initial training dataset
loaded on the VGG-16 model. Further, the test dataset is used to
calculate the overall performance of the proposed method.

B. MAPPING PSO & CNN

In this study, we apply PSO for parameters of CNN to derive
optimal hyper-parameters, so it is necessary to understand how we
correlate our neural architecture with the evolutionary algorithm.

Every vector X of the given particle P denotes a CNN, and
dimensions residing in vector X denote hyper-parameters of the
proposed CNN model. Variables of vector X, x1, x2 : : : x15,

Fig. 6. The workflow diagram of the proposed model.

Algorithm 1: The proposed optimized CNN algorithm for
breast histopathology image classification

Input : Breasttraining : training set of BreakHis dataset

Breasttest : testing set of BreakHis dataset

Output: Classification of BC images

Step 1: Load Breasttrainig and further split it into TrainBC and
ValidationBC
Step 2: Load the VGG-16 model

Step 3: Send TrainBC and ValidationBC and pre-trained VGG-16model to
the algorithm 2 as functional parameters.

Step 4: Initialize vectors of hyper-parameters.

Step 5: Get optimized hyper-parameter values of VGG-16 obtained by
algorithm 2.

Step 6: Embed the resultant optimized parameters as Hyperopt into the
pre-trained VGG-16 model.

Step 7: Train the network with Breasttraining
Step 8: Evaluate the performance of the network using Breasttest.

Algorithm 2: PSO algorithm for selection of optimal
hyper-parameters of proposed CNN model

Input: tm : maximum number of iterations

TrainBC : training set

ValidationBC: validation set

Ns: swarm size

Output: optimal hyper-parameters

Step 1: Initialize the parameter set of PSO algorithm.

Step 2: Randomly generate an initial population xi using Table I.

Step 3: for i=0 to Ns

calculate fitness(xi) using Equation 2

pbesti = xi // Particle best position

gbesti = pbesti // swarm best position

end for

Step 4: for t= 1 to tm
for i= 1 to Ns

update velocity of the particle Veli using eq. (1)

update position of the particle using eq. (2)

if fitness(xi)< fitness (pbesti) then

update best position of particle : pbesti= xi
endif

if fitness(pbesti)< fitness(gbesti)

update best position of swarm : gbesti = pbesti
end if

end for

end for
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correspond to hyper-parameters of CNN. Table I lists out the
relation between variables and hyper-parameters, with their distinct
purpose.

As we know that vector X is the representation of CNN’s
hyper-parameters, hence every dimension of it has a unique
meaning and also varying range. Initially, a few of them are
denoted by integers, like the number of convolutional layers,
number of FC layers, and number of neurons. Further, Kernel
size, pooling type, and type of activation function are presented
by discrete values. We may encode these discrete values with any
integer, for instance in the context of activation functions, Tanh is
denoted by 1, Sigmoid with 2, and so on. The remaining hyper-
parameter such as learning rate and drop-out is considerably real
numbers. From Table I, we clearly understand the particle en-
coding mechanism for different dimensions. To update the veloc-
ity and position, we use Eq. (3) and Eq. (3). Additionally, we
decode them with hyper-parameters of CNN to get the required
results.

V. DATASETS
A. BreakHis DATASET

The proposed method is employed on the publicly available
dataset, namely BreakHis to evaluate the performance of the
model. This dataset comprises 7909 breast histopathological
images which are collected from 82 patients. In this, 2480 images
are from the class of benign, whereas 5429 images are from the
class of malignant. These acquisition of breast images are with four
types of magnification factors such as 40X, 100X, and 200X. These
samples are collected from breast biopsies and then performed
H&E staining [76]. The original images of this dataset are the
3-channel RGB images of the pixel size 700 × 480. The samples of
breast histopathology images with different magnification factors
are visualized in Fig. 7. Statistical data of the dataset are briefly
listed in Table II, which includes the number of images classified
according to the cancer class and also with different factors of
magnification. Out of these samples, benign data were collected
from 24 patients and malignant samples were taken from 58
patients. The web link for accessing the dataset used in this study

is as follows which is used in various works: https://web.inf.
ufpr.br/vri/databases/breast-cancer-histopathological-database-
breakhis/.

B. DATA AUGMENTATION

The throughput of the CNN models is highly reliable on the size of
the dataset to be trained. Hence, the augmentation of the provided
data could be considered as a major step in improving the cardi-
nality of the dataset [77,78]. Each image of the training dataset is
initially resized to images of size 224 × 224. The Augmentor
python library [79] performs the additional data augmentation
methods that include rotating, flipping, and cropping methods.
The following Fig. 8 demonstrates the resultant images of data
augmentation. In the next step, all the images are transformed into
matrix form and undergo normalization. On the other hand, the test
set is loaded to the model, such that images are normalized with
specific input size without any further change; that is, raw image
will be input for the test dataset.

VI. EXPERIMENTS AND RESULTS
Experiments of the proposed model have been implemented on a
system that has built-in NVIDIA GEFORCE GTX. The VGG-16
model pre-trained with ImageNet is performed by the Keras Deep
Learning framework. The VGG-16 model with the last layers
replaced and logistic regression is used to classify the histopatho-
logical images from the publicly available BreakHis dataset, and
the proposed CNN model is optimized in the selection of hyper-
parameters. Hyper-parameter optimization uses the particle swarm

Table I. Particles in PSO mapped to CNN

Variable Hyper-parameter mapped in CNN

x1 Number of filters in the first layer of convolution

x2 Filter size of convolutional layer-1

x3 Activation function used in convolutional layer-1

x4 Type of pooling layer-1

x5 Number of filters in the second layer of convolution

x6 Filter size of convolutional layer-2

x7 Activation function used in convolutional layer-2

x8 Type of pooling layer-2

x9 Number of neurons in FC layer-1

x10 Activation function used in FC layer-1

x11 Drop-out of FC layer-1

x12 Number of neurons in FC layer-2

x13 Activation function used in FC layer-2

x14 Drop-out of FC layer-2

x15 learning rate

Fig. 7. Breast histopathological images from BreaKHis dataset with
magnification factors 40×, 100×, 200×, and 400×.

Table II. BreakHis dataset image distribution

Class

Magnification factor Benign malignant

40× 625 1370

100× 644 1437

200× 223 1390

400× 588 1232
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optimization algorithm. We split the training and test data in a ratio
of 80∶20. The parameters of PSO algorithm used in this study are
as follows: inertia weight w= 0.7298, population size and number
of iteration are taken as 20 and acceleration coefficients c1 and c2
are considered as 1.496.

A. PERFORMANCE METRICS

For evaluating the performance of the proposed system, there are
certain aspects that help in a good analysis of the proposed model in
comparison with other existing methods. Accuracy is determined by
the number of images that are correctly classified, divided by the
total number of images. Equations 1, 2, 3, and 4 represent the
mathematical expression of Accuracy, Precision, F1-Score, and
Sensitivity.

Accuracy =
TP + TN

TP + FN + TN + FP
(6)

Precision =
TP

TP + FP
(7)

F1 − score =
2 � precision � recall
Precision + recall

(8)

sensitivity =
TP

TP + FN
(9)

In the above equations, true positive presents the number of images
that are correctly classified as malignant, false-positive denotes the
number of images that are miss-classified as malignant, true

Fig. 9. Confusion matrix of the proposed model. (a) 40× images; (b) 100× images; (c) 200× images; (d) 400× images.

Fig. 8. BreakHis images after applying data augmentation techniques.

96 R. K. Chandana Mani et al.

JAIT Vol. 4, No. 2, 2024



negative shows the number of images correctly classified as benign,
and false-negative shows the number of images miss-classified as
benign.

B. RESULTS

In this study, we used a pre-trained CNN model along with
optimized hyper-parameters to achieve the best performance of
the model. We have experimented with the model with optimized
hyper-parameters and classified whether the collected biopsy
sample belongs to benign or malignant. We conducted our study
in a magnification-dependent manner with 40×, 100×, 200×, and
400× as distinct magnification factors.VGG-16 model is used to
classify the images, and the hyper-parameters of this model are
obtained with the help of a bio-inspired algorithm namely PSO,
during the training phase of the model. Further, to the resultant
trained VGG-16 model, test images are provided as input, and also,
the parameters of the model are previously optimized. Further, the
proposed model performs feature extraction and undergoes image
classification tasks, thus classifying them into respective cancer
classes using fully connected layers and LR classifier.

The performance of the proposed optimized CNN model is
illustrated with the confusion matrix as shown in Fig. 9. From
Fig. 9, it is clear that there is several image classification that is

correctly classified and miss-classified with different magnification
factors. The confusion matrix presents 752 correctly classified
images among 785 test images with 40× magnification factor,
whereas images with 100× magnification factor 786 images
are correctly classified out of 835 images. Also, 761 images were
correctly classified among 790 test images with 200× magnification
factor and 666 images were correctly classified from 730 test
images with 400× magnification factor. Also, we retrieve the
ROC curves as mentioned in Fig. 10 for the four types of magnifi-
cation factors.

The accuracy obtained by the proposed model for distinct
magnification factors is mentioned in Table III. For the images with
magnification factors with 40×, 100×, 200×, and 400×, the
proposed model achieved accuracies of 95.7%, 94.1%, 96.9%,
and 91.2%, respectively. From the results, it is shown that
the proposed CNN model obtained maximum accuracy with a
magnification factor of 200×. Table IV represents the sensitivity,
precision, and F1-score achieved by the proposed approach.
The experiments show that our model achieved the highest preci-
sion of 97.2%, maximum F1-score of 95.2%, and recall of 93.6%.

In Table V, we compare our model with the existing methods
that are defined by un-optimized CNN models to predict breast
cancer. From Table V, it is clear that the obtained accuracies are
less when compared to the proposed CNN model. By comparing

Fig. 10. ROC curves of the proposed model. (a) 40× images; (b) 100× images; (c) 200× images; (d) 400× images.
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the results of the proposed model with standard deep learning
models, it can be observed that the accuracy with magnification
factor 40×, the proposed model is at the first rank, and the Deniz
et al. [80] model and K. Das et al. [81] models are at the second and
third position. Similarly, for the magnification factor 100×, the first
three performing models are proposed model, Saxena et al. [82],
and Deniz et al. [80]. For the magnification factor of 200× and
400×, the best performing models are proposed model, Saxena
et al. [82], and Deniz et al. [80], and the proposed model. It can be
noted at lower magnification factor, and the proposed model is
performing the best which justifies the use of bio-inspired techni-
ques. Figure 11 clearly illustrates the summary of existing methods
used for breast cancer classification and the proposed method. Our
model achieved the best accuracy of 96.9% with a magnification
factor of 200X. Also, Table VI depicts the clear-cut comparison of
other VGG models. From the table, it is clear that fully trained
accuracy (63.2%) was improvised to 84.28% for the pre-trained
VGG-16 model. Also, pre-trained VGG-16+SVM provides an
accuracy of 86.36% and VGG-16 +LR retrieves an accuracy of
92.2%. Hence, the proposed model obtains better accuracy when
compared to other VGG models.

Table III. Accuracy of the proposed CNN model

Magnification factor Accuracy in %

40× 95.7

100× 94.1

200× 96.9

400× 91.2

Table IV. Performance metrics of the proposed CNN model
with different magnification factors

Magnification factor

Performance metric 40× 100× 200× 400×

Sensitivity (%) 97.6 96.5 97.3 92.2

Precision (%) 90.07 84.6 93.6 82.3

F1-score (%) 93.6 90.2 95.4 87.0

Table V. Comparison of the proposed model with existing deep learning methods

Year Author Method

Accuracy with magnification factor

40× 100× 200× 400×

2018 K. Das et al. [81] MIL +VGG-16 89.52 89.06 88.84 87.67

2018 S Cascinalle et al. [83] VGG_VD-16 87.0 85.2 85.0 81.3

2020 Saxena et al. [82] ResNet-50+ SVM 89.46 92.6 93.92 89.7

2017 Han et al. [84] AlexNet 85.6 83.5 83.1 80.8

2019 Mahesh et al. [85] RestHit 87.4 87.2 91.2 86.2

2017 Spanhol et al. [86] AlexNet 89.6 85.0 84.2 81.6

2019 Sudharshan et al. [39] AlexNet 87.8 85.6 80.8 82.9

2018 Deniz et al. [80] Fine-tuned AlexNet 90.96 90.58 91.37 91.3

Our Proposed Model 95.7 94.1 96.9 91.2
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VII. CONCLUSION
In this paper, we presented a method for hyper-parameter selection of
the desired CNN architecture that classifies breast histopathological
images. This study uses a pre-trained network of VGG-16 model
accompanied by an LR classifier to perform binary classification of
breast histopathological images. The transfer learning approach
makes the model simpler and easier to implement. LR classifier is
placed at the end of the model which outperforms binary classifica-
tionmore efficiently, and the proposed model is trained separately for
different magnification factors. Also, it has been observed at the
lower magnification factor, the proposed model provides better
results as compared to the state-of-the-art techniques. Since network
architecture involves the selection of hyper-parameters, we use an
evolutionary algorithm namely PSO which optimizes the hyper-
parameters of the given CNN model. It often helps to decrease the
time complexitywhen compared to other un-optimizedCNNmodels.
We use a publicly available dataset and obtain a classification
accuracy of around 96.9 %. In the end, we compare our proposed
optimized CNN model with various existing deep learning methods.
In the future, we further study other bio-inspired algorithms that help
in optimizing the CNNmodel. Also, future work may be designed in
such a way that classifies the subtypes of cancer. Additionally, the
optimized model should provide superior performance on all datasets
irrespective of the selected magnification factor.
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