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Abstract:We take on the challenge of classifying car photos, from the most general car type to the precise make, model, and year
of the vehicle for a given input. Analysing pre-existing datasets, we find that the CompCars-SV is a great place to begin our
classification project. We demonstrate that convolutional neural networks can obtain a classification accuracy of more than 90%
on the most difficult task. Due to a skewed mix between training and testing, this impressive result isn’t really typical of how
people do in the actual world. Using an ML system for car detection, we automatically generate a vehicle-tight bounding box for
each picture, which we disseminate to the full dataset together with the existing (but limited) type-level annotation. We have
designed and implemented car classification algorithms to analyse this car dataset, two of which take advantage of the
hierarchical nature of car annotations. According to our research, a more precise classification of car type at a finer resolution now
achieves an accuracy of 99.25%. It serves as a baseline benchmark for future research. Focusing on “vehicle” tasks, this work
intends to bring attention to the vision community’s lack of attention to these tasks compared to other objects. The important
reason getting higher accuracy is extraction of binary descriptor (BD) feature using edge detection before training the CNN. This
step reduced the size of the car dataset; hence, network took less time to get trained. From the result outcomes shown, it is clear
that the presented network architecture having 31 layers of 2d convolutional layer, batch normalisation, maxpool, ReLU, fully
connected layer, and Softmax classifier layer has given higher accuracy. Numerous relevant car-related issues and solutions have
yet to be carefully examined and researched, according to our findings. Car model categorisation, model verification, and attribute
prognosis are just a few examples of how the dataset might be put to use.
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I. INTRODUCTION
With the invention of the automobile, people were able to travel
more easily and quickly from one location to another. Cars have
become an essential method of transportation in our modern
society. Having a car is often seen as a way to represent one’s
socioeconomic position or as a barometer of one’s own socioeco-
nomic standing. According to many automotive aficionados, the
automobile has evolved into a topic of interest. Overall, the demand
for automobiles is shifting to include more than just functionality
and reliability, but also high levels of comfort and style. There are a
vast number of automobile designs and models, which makes
automobiles a rich object class for computer vision models and
algorithms [1]. Cars have a number of unique qualities that other
items don’t have, which makes categorisation more difficult and
allows for a wide range of new research topics. There are a lot of
models to choose from in automobiles, allowing for a more
demanding fine-grained task than in other categories. Cars’ uncon-
strained postures create considerable appearance disparities, which
necessitate viewpoint-aware analysis and algorithms. The car
category has its own distinct hierarchy, with three tiers from the
top to the bottom: make, model, and year of release. This structure
suggests a hierarchical approach to the fine-grained job, which is
only described in a small amount of literature [2].

Many fascinating computer vision challenges can be found in
automobiles. Firstly, different car manufacturers and different

years use distinct design styles, which allows for fine-grained style
analysis [3] and fine-grained part recognition. A second reason is
because the automobile is a popular subject for attribute forecast-
ing. Furthermore, cars can be identified by their appearance, which
includes attributes such as the number of axles andmaximum speed
and displacement. Car verification, which focuses on determining
if two cars are of the same model, is an interesting yet understudied
subject in comparison to human face verification [4]. Unrestricted
perspectives make car verification more difficult than face verifi-
cation traditionally.

There are numerous applications for automated car model
analysis in an intelligent transportation system, including regula-
tion, classification, and indexing. Automating and speeding up the
payment of tolls from the lanes, for example, can be done cheaply
and easily using fine-grained car categorisation, depending on
different prices for different sorts of cars. The look of an automo-
bile can be verified in video surveillance applications to help trace a
vehicle over a network of several cameras when car plate recogni-
tion fails [5–7]. Car verification algorithms can be used in post-
event investigations to locate similar vehicles in the database. The
examination of automobile models has a considerable impact on
personal vehicle use. People often look at other cars on the road
while they are considering purchasing a vehicle. It is easy to
imagine a smartphone app that can show a user all the information
about an automobile when they take a picture of it. An app like this
will make it much easier for consumers to find out about a vehicle
that they don’t recognise. In other applications, producers and
buyers may benefit from the recommendation of similar-looking
vehicles based on a car’s appearance and its predicted popularity
[8–11].Corresponding author: Kritika Kashyap (e-mail: kritikaphd2022@gmail.com).
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Car model analysis receives little attention from the computer
vision community, despite the fact that it is a hot topic for both
academics and practitioners. It is our opinion that the scarcity of
high-quality datasets in this field is limiting the investigation of
the community [12,13]. Therefore, we’ve compiled and organised
what we term “Comprehensive Cars,” abbreviated simply to
“CompCars,” a massive and comprehensive image repository. The
“CompCars” dataset contains 44,481 photographs of 281 automo-
bile models from surveillance-nature. It is now possible to test the
performance of a wide range of computer vision algorithms on the
new dataset. Real-world applications and unique research subjects
can also benefit from this technology [14,15]. Additionally, the
dataset’s multi-scenario structure allows for cross-modality study.
Section III provides a full explanation of CompCars.

We demonstrate various intriguing applications using the
dataset, such as automobile model classification and testing based
on convolutional neural network (CNN) [16], to prove its utility
and urge the community to investigate new unique research ideas.

The paper is organised into six sections. Section II discusses
the related work on vehicle recognition. Section III discusses about
the characteristics of the CompCars dataset of cars details and brief
about the make and models covered. Section IV discussed about
the applications of dataset in developing machine learning models
of cars or vehicle recognition. Section V covers the research
methodology of this research work to get better accuracy of
recognition, the methodology covering the execution step details.
Section VI shows the results and its discussion in terms of accuracy
and losses and its comparison with previous algorithms, and the last
section is about the conclusion of the manuscript.

II. RELATED WORK
In [17], Y. Ren et al. discussed about “many smart applications
use vehicle-type categorisation (VTC), licence plate recognition
(LPR), and make and model registration (MMR) for vehicle
analysis. MMR supports LPR in these tasks. We present a unique
framework to identify moving vehicles and MMR using CNNs in
this study. First, CNNs were trained and tested on car frontal
pictures. Our vehicle MMR identification accuracy is 98.7% using
our suggested framework.” In [16], F. Tafazzoli et al. demonstrate
that ‘Vehicle Make and Model Recognition (VMMR)’ supports
‘Intelligent Transportation Systems/Autonomous Vehicle Sys-
tems’ (ITS/AVS). Real-time and accurate VMMR leads to resource
savings. VMMR demands multiclass classification with inter- and
intra-make ambiguity. A 9,170-car category picture dataset1 im-
proves manufacturer and model identification, low-light, partial, or
occluded VMMR photographs. Extensive baseline trials enhanced
outcomes. These strategies boost real-world VMMR”. In [3],
author discussed about “Vehicle-based VMMR. This job demands
expertise. Aesthetically, automotive frontal structural components
differ; these structures possess distinct traits. Car logos and intra-
brand models play a crucial role in shaping brand identity, while
class subclasses also share similarities with other courses. Step 2
trains subclass-specific discriminant subregion classifiers. Patches
improved this article’s big car photo collection”. In [18], the study
focuses on highlights of car-related visual tasks, which the vision
community has ignored.We demonstrate that many fascinating car-
related problems and applications remain untouched. This work
describes our ongoing collection of “CompCars,” a vast dataset
of car photos, interior and exterior components, and extensive
features for automotive research. Cross-modal surveillance data-
sets, alongwithweb-nature datasets, categorize, verify, and forecast

automotivemodels.We discuss automobile issues and applications.
In [19], Linjie Yang et al. show computer-identified cars Traffic
control, video monitoring, and identification need eyesight. Com-
puters struggle with vehicle photo classification due to fine-grained
properties. Transfer learning on a pretrained CNN framework
classifies cars based on 196 brands, models, and years utilising
minimal data from the StanfordCars dataset [20]. Fine-tuning yields
85% test accuracy and 96.3 % top-5 test accuracy, surpassing state-
of-the-art results. In [2], Donny Avianto et al. classified cars by
make and model. Vehicle make and model may assist investigators
find traffic violations without licence plate information. Many
methods categorise car types and manufacturers. Similar cars are
hard to spot. Due of their similarity, the classifier may make errors.
A multi-task learning CNN fine-grained classifier is suggested.
VGG-16 architecture analyses vehicle photographs. Two branches
will categorise car model and manufacturer using the data.

III. COMPCARS’ DATASET
CHARACTERISTICS

This dataset has been taken from http://mmlab.ie.cuhk.edu.hk/
datasets/comp_cars/index.html. All the pictures in this dataset are
from public websites and car forums. Surveillance cameras collect
images of the surveillance-like type. Real-world applications fre-
quently make use of the data from these two types of study. They
allow for cross-modality study of automobiles. This includes 281
car models. Surveillance-nature data include more than 44,481
front-facing photos of automobiles. It is labelled with a bounding
box, model, and colour of the car for each surveillance-nature
image. Figure 1 depicts surveillance photographs that have been
significantly distorted by lighting and haze fluctuations. As a
whole, the CompCars dataset has four unique properties compared
to other automobile picture databases: car hierarchy, car attributes,
views, and car components [21,22].

From the top to the bottom, as shown in Fig. 2, the automobile
models can be arranged into a huge tree structure composed of three
layers: manufacturer, model, and year of manufacturing. Even
more complicated is the fact that automobile models might be
built at different times, resulting in minor variations in their
appearance. For example, three “Audi A4L” models were made
between 2009 and 2011.

Aspects of a Car: The maximum speed, displacement, the
number of doors, the number of seats, and the type of car are
all included in the five qualities assigned to each model.
When comparing and contrasting different car models, these

Fig. 1. Examples of photos from the surveillance-nature data. There are
huge differences in the photographs’ look due to the changing conditions
of light, weather, and traffic, for example.
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characteristics are a gold mine of knowledge. As an illustration,
Fig. 3 depicts our classification of automobiles, which includes
MPVs, SUVs, hatchbacks, sedans, minibuses, fastbacks, estates,
pickups, sports cars, crossovers, convertibles, and hardtop con-
vertibles. These qualities can be broken down into two groups:
explicit and implicit. Each of these variables is represented by a
discrete or continuous value. For example, a door number is
represented by a number, whereas a seat number is represented by
a letter.

From a correct vantage position, humans can quickly detect
how many doors and seats a car has, but they have a hard time
identifying the vehicle’s top speed and displacement. In addition,
for each car type, we designate five distinct points of view: the front
(F), the back (R), the side (S), the front (FS), and the rear (FS) (RS).
Several expert annotators have dubbed these perspectives. Table I
displays the distribution of the number of photos of labelled
automobiles. Due to difficulties in collecting photographs for
some less popular car models, the number of viewpoints for
each model is not evenly distributed.

Parts of a Car: These photos include four exterior compo-
nents (headlight, taillight, fog light, and air intake) and four interior
components (console, steering wheel, dashboard, and gear lever)
for each model of automobile. For the sake of analysis, the photos
have been approximately aligned. Table II provides an overview,
while Fig. 4 illustrates some of the points made.

Fig. 2. The tree-like hierarchy of automobile models. There are also a
number of Audi A4Ls from various years on show.

Fig. 3. Classification of different car bodies.

Table I. Processing time performance for testing one image

Model Testing time

ResNet152 217 ms

InceptionResNetV2 179 ms

Xception 98 ms

DenseNet201 89 ms

DenseNet121 79 ms

MobileNetV2 37 ms

Proposed(this) 40 ms

Table II. Summary of previous work related to vehicle make and model recognition

Ref. Methods Image dataset Outcomes

Yong-guo Ren and
Shanzhen Lan [17]

develop a CNN-inspired MMR
framework for automobiles

Using the CompCars dataset and other
sources, we were able to collect 42,624
photos of 233 models.

They achieved an accuracy of 98.7%

Tafazzoli [16] VGG and ResNet-50 VMMRdb-3036 Top-level accuracy was 51.76% and top-five
accuracy was 92.90%.

Lei Lu and Hua
Huang [3]

There are two levels of this
hierarchical classifier: brand
recognition and model
recognition.

12,238 photos of vehicles’ front ends
were used, representing 400 unique
models from 58 different
manufacturers.

The final accuracy 95.01%

Yang et al. [18] Joint Bayesian and CNN CompCars Dataset Using full-car photos, they were able to reach an
accuracy of 82.2%, 83.0%, and 761 on medium,
easy, and hard difficulties, respectively, while the
make accuracy was distributed between 59.7% and
82.9%.

Benavides and Tea
[19]

VGG16 Stanford cars dataset They performed at an 85% level on the test

Liu and Wang [2] VGG, CaffeNet, & GoogleNet
using transfer learning

Stanford cars dataset Accuracy of 80% was ultimately reached using
GoogleNet

Our Work Feature Minimisation CNN CompCars-Surveillance 281 Models
and 44,624 images

The optimal Accuracy is 99.25%
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IV. APPLICATIONS
Three applications of CompCars are examined here, including fine-
grained car classification, attribute prediction, and car verification.
Select 78 and 126 photos from the CompCars dataset to create three
separate subsets without any overlaps. A total of 431 automobiles
are included in Part-I, which includes 955 photographs depicting
the full vehicle and a further 20349 images depicting individual

automobile parts. There are 454 photos in total in the second subset
(Part-II) of 111 models. There are 1145 car models with 22236
photos in the final subset (Part-III). Some raw sample images are
showed in Fig. 5 and processed(cropped) images in Fig. 6. Using
photos from the first selection, classification of cars at a finer level
is possible. Models are trained on the first subset and tested on the
second for attribute prediction. The final subset is used to verify the
car’s authenticity.

For the following applications, we use the CNN, which has
proven successful in various computer vision tasks, such as object
categorisation, detection, face alignment, and face verification. The
Overfeat [23] model is used specifically for automobile classifica-
tion and attribute prediction, and it is trained on ImageNet classifi-
cation tasks [24] before being fine-tuned using the car photos. The
fine-tuned model is used as a feature extractor for automobile
model verification.

V. METHODOLOGY
This is where our assessments begin, by comparing the results of
many deep neural networks with those of specialist state-of-the-art
approaches. After training on the CompCar, we are able to correctly
identify the vehicle’s manufacturer and model using a split of 8144
training photos and 8041 testing images. Themodel’s accuracy was

Fig. 4. Each column displays 8 car parts from a car model. The
corresponding car models are Buick GL8, Peugeot 207 hatchback,
Volkswagen Jetta, and Hyundai Elantra from left to right, respectively.

Fig. 5. Raw dataset before pre-processing.

Fig. 6. Formatted (Cropping and Resizing) dataset before pre-processing.

Fig. 7. Dataset after pre-processing to optimise the size of dataset.
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0.9963 in this scenario, and we trained our network, which has 31
residual layers.

We used labelled photographs with the background clipped to
train the models in order to further improve our results. In this case,
the primary goal is to decrease dataset size for that we have first
prepared and create very light feature dataset using binary edge
form using canny operation as shown in Fig. 7.

The prepossessed featured dataset has made uniform image
size of 256 × 256 dimension. Our proposed CNN was trained and
tested on the same lightweight feature dataset to establish a new
baseline for future research in this area.

It is possible to integrate the predictions of many models
through lower variance and generalisation error, which can
lead to superior predictions, i.e., higher performance than
any of the contributing models. Repeatedly sampling a training
dataset and then training a new model is one way to accom-
plish this.

A. AUGMENTATION OF DATA

We have also used data augmentation techniques to enlarge the
pictures in the training data. Before feeding the network its input,
this process verifies the quality of the sample picture.

B. EXPERIMENTAL SETUP

Training and testing on the suggested system was done using
personal computers having Windows 10 operating system, 32 GB
of RAM, Intel Core i7 processor, and NVIDIA 1050Ti 4GB
Graphics Card with MATLABR2020a with deep learning toolbox.
Figure 8 shows the proposed car model prediction using CNN for
CompCar Surveillance Dataset. The system has main modules
which are as follows

1) RAWCOMPCARDATASET. The dataset we got has images of
different dimensions, but network has not capability to process
unequal images. So, this raw dataset needs to be prepared perfectly
to get is trained.

2) CLEANING OF IMAGES OF DATASETS. All the images are
cropped properly to remove unnecessary part of the image except
the vehicle and make size of all the images same. Here the image
size has been considered is 256 × 256.

3) FEATURE EXTRACTION TO REDUCE SIZE OF DATASET.
Network takes lots of time to process colour images, and the
images present in the dataset has not such colour specific model
or make which affects the training process much instead of
considering physical profile of the car. So, reducing the size of
input dataset will significantly improve the training time. To
reduce the size of the dataset, the colors of the images are
processed using a binary edge descriptor operation. This opera-
tion provides the physical profile of the car, or in other words,
the features of the car.

4) TRAINING OF NETWORK AND VALIDATION. The proposed
CNN architecture with 31 layers takes feature sample images as
input to get trained. During training process, the network validated
itself for validation accuracy (refer to Fig. 10), and final accuracy of
the network is shown in the graph as well.

5) TESTING. After completion network training, any test car
image can be chosen to get the class (Make/Model) of it.

The inside layer architecture of the presented CNN is shown in
Fig. 9. The layer diagram is colour-coded to understand much
better. As you see, the first two layers of the network are 2D
convolutional layers with kernel sizes of 3 × 3 × 16 and 1 × 1 × 16.
This forms module1 (named ‘conv1’), followed by the maxpool
layer. This is followed by two layers of 2D convolutional layers
with kernel sizes of 3 × 3 × 32 and 1 × 1 × 32. This forms module2
(named ‘conv2’), followed by the maxpool layer. In the third
module, there is one 2D convolutional layer with a 3 × 3 × 64
kernel and a maxpool layer. This is followed by two convolutional
layers with sizes of 3 × 3 × 64 and 1 × 1 × 64, then a maxpool
layer, and one convolutional layer with a size of 5 × 5 × 64. The
sixth module of the network has a 3 × 3 × 64 configuration fol-
lowed by a fully connected layer and Softmax, which is mentioned
along with the possible classes (make/models).

Fig. 8. Proposed car model prediction framework using CNN for CompCar surveillance dataset.
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VI. RESULTS AND DISCUSSION
Figure 10 shows the validation accuracy of the presented CNN
network which shows the path of training accuracy to reach to its
final stage. This graph also shows that the presented network has no
over fitting and underfitting problem during training and validation
phase. Similarly, Fig. 11 shows the validation loss against itera-
tions and training loss curve.

Table II shows the performance comparison of the previous
works with presented work. The accuracy of the previous works is
83% for [17], 92.9% for [16], 85% for [3], 98.7% for [18,19] and

has 95.01% accuracy. Here, all the research works were carried out
with the help of pretrained models like Joint Bayesian, ResNet-50,
VGG, VGG16, GoogleNet, and CaffeNet etc. But merit of pre-
sented work over other networks is having 31 layers optimised
CNN. The optimisation has been performed by performing fre-
quent tests.

VII. CONCLUSION AND FUTURE SCOPE
This research work showed evaluation of the presented CNN
against the state-of-the-art network architectures on the same input

Fig. 9. Proposed CNN network architecture.

Fig. 10. Validation accuracy of proposed CNN network architecture. Fig. 11. Validation loss of proposed CNN network architecture.
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car dataset and found better accuracy. The key logic to get higher
accuracy was extraction of binary descriptor feature using edge
detection before training the CNN. This step reduced the size of the
car dataset; hence, network took less time to get trained. Model
outcomes showed that the architecture having 31 layers including
2d convolutional layer, batch normalisation, maxpool, ReLU, fully
connected layer and Softmax classifier layer has given 99.25%
accuracy. The achieved accuracy is quite near the 100%, which
may be ideally not reflected in each and every scenario. But better
accuracy showed a step further optimisation in the designing
process of the network. The feature extraction step prior to input
could be replaced with some more efficient segmentation methods
to get the key objects extraction out of the input samples.
This approach will add some robustness to the prediction reliability
to the network and reduce the state-of-the-art pretrained
networks complexity and speedup the training and validation
process which take sometimes months to train a large network
like TensorFlow.

CONFLICT OF INTEREST STATEMENT
The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

REFERENCES

[1] J. MacCarthy, “Vehicle surveillance and control system,”
US7548803B2, Jun. 16, 2009 Accessed: Nov. 04, 2022. [Online].
Available: https://patents.google.com/patent/US7548803/en

[2] D. Liu and Y. Wang, “Monza: image classification of vehicle make
and model using convolutional neural networks and transfer learn-
ing,” Stanford University: Stanford, CA, USA, 2017. [online]. Avail-
able: http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/
lediurfinal.pdf

[3] L. Lu and H. Huang, “A hierarchical scheme for vehicle make and
model recognition from frontal images of vehicles,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 5, pp. 1774–1786, May 2019. DOI:
10.1109/TITS.2018.2835471.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: a large-scale hierarchical image database,” in 2009
IEEE Conf. Comput. Vis. Pattern Recogn., Jun. 2009, pp. 248–
255. DOI: 10.1109/CVPR.2009.5206848.

[5] H. Huang and S. Lin, “WiDet:Wi-Fi based device-free passive person
detection with deep convolutional neural networks,” Comput. Com-
mun., vol. 150, pp. 357–366, Jan. 2020. DOI: 10.1016/j.comcom.
2019.09.016.

[6] S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2016.
DOI: 10.48550/ARXIV.1605.07146.

[7] T. Begin, A. Busson, I. Guérin Lassous, and A. Boukerche, “Video on
demand in IEEE 802.11p-based vehicular networks: analysis and
dimensioning,” in Proc. 21st ACM Int. Conf. Model. Anal. Simul.
Wireless Mobile Syst., NewYork, NY, USA, Oct. 2018, pp. 303–310.
DOI: 10.1145/3242102.3242109.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. DOI: 10.48550/ARXIV.
1409.1556.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conf. Comput. Vis. Pattern
Recogn. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.
DOI: 10.1109/CVPR.2016.90.

[10] J. Krause, H. Jin, J. Yang, and L. Fei-Fei, “Fine-grained recognition
without part annotations,” in 2015 IEEE Conf. Comput. Vis. Pattern
Recogn. (CVPR), Boston, MA, USA, Jun. 2015, pp. 5546–5555.
DOI: 10.1109/CVPR.2015.7299194.

[11] B. Zhao, X. Wu, J. Feng, Q. Peng, and S. Yan, “Diversified visual
attention networks for fine-grained object classification,” IEEE Trans.
Multimed., vol. 19, no. 6, pp. 1245–1256, Jun. 2017. DOI: 10.1109/
TMM.2017.2648498.

[12] A. Hassan, M. Ali, N. M. Durrani, and M. A. Tahir, “An empirical
analysis of deep learning architectures for vehicle make and model
recognition,” IEEE Access, vol. 9, pp. 91487–91499, 2021. DOI: 10.
1109/ACCESS.2021.3090766.

[13] D. Long, R. Zhang, and Y. Mao, “Prototypical recurrent unit,”
Neurocomputing, vol. 311, pp. 146–154, Oct. 2018. DOI: 10.
1016/j.neucom.2018.05.048.

[14] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” 2014. DOI: 10.48550/
ARXIV.1406.1078.

[15] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representa-
tions for fine-grained categorization,” in 2013 IEEE Int. Conf.
Comput. Vis. Workshops, Dec. 2013, pp. 554–561. DOI: 10.1109/
ICCVW.2013.77.

[16] F. Tafazzoli, H. Frigui, and K. Nishiyama, “A large and diverse
dataset for improved vehicle make and model recognition,” in 2017
IEEE Conf. Comput. Vis. Pattern Recogn. Workshops (CVPRW), Jul.
2017, pp. 874–881. DOI: 10.1109/CVPRW.2017.121.

[17] Y. Ren and S. Lan, “Vehicle make and model recognition based on
convolutional neural networks,” in 2016 7th IEEE Int. Conf. Softw.
Eng. Serv. Sci. (ICSESS), Aug. 2016, pp. 692–695. DOI: 10.1109/
ICSESS.2016.7883162.

[18] L. Yang, P. Luo, C. C. Loy, and X. Tang, “A large-scale car dataset
for fine-grained categorization and verification,” 2015. DOI: 10.
48550/ARXIV.1506.08959.

[19] C. T. N. Benavides, “Fine grained image classification for vehicle make
and model using convolutional neural network,” Stanford Univ., Stan-
ford, CA, USA, vol. Tech. Rep. 18681590, 2019, [Online]. Available:
http://cs230.stanford.edu/projects_spring_2019/reports/18681590.pdf

[20] TensorFlow Cars196. Available: https://www.tensorflow.org/
datasets/catalog/cars196.

[21] X. Liu, T. Xia, J. Wang, Y. Yang, F. Zhou, and Y. Lin, “Fully
convolutional attention networks for fine-grained recognition,” 2016.
DOI: 10.48550/ARXIV.1603.06765.

[22] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representations
for fine-grained categorization,” 4th IEEE Workshop 3D Represent.
Recogn, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013.
Available: https://ai.stanford.edu/∼jkrause/cars/car_dataset.html

[23] A. Paszke et al., “Automatic differentiation in PyTorch,” Oct. 2017.
[Online]. Available: https://openreview.net/forum?id=BJJsrmfCZ.
Accessed on Nov. 04, 2022.

[24] Q. Hu, H. Wang, T. Li, and C. Shen, “Deep CNNs with spatially
weighted pooling for fine-grained car recognition,” IEEE Trans.
Intell. Transp. Syst., vol. 18, no. 11, pp. 3147–3156, Nov. 2017.
DOI: 10.1109/TITS.2017.2679114.

278 Kritika Kashyap and Rohit Miri

JAIT Vol. 4, No. 3, 2024

https://patents.google.com/patent/US7548803/en
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/lediurfinal.pdf
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/lediurfinal.pdf
https://doi.org/10.1109/TITS.2018.2835471
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.comcom.2019.09.016
https://doi.org/10.1016/j.comcom.2019.09.016
https://doi.org/10.48550/ARXIV.1605.07146
https://doi.org/10.1145/3242102.3242109
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2015.7299194
https://doi.org/10.1109/TMM.2017.2648498
https://doi.org/10.1109/TMM.2017.2648498
https://doi.org/10.1109/ACCESS.2021.3090766
https://doi.org/10.1109/ACCESS.2021.3090766
https://doi.org/10.1016/j.neucom.2018.05.048
https://doi.org/10.1016/j.neucom.2018.05.048
https://doi.org/10.48550/ARXIV.1406.1078
https://doi.org/10.48550/ARXIV.1406.1078
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/CVPRW.2017.121
https://doi.org/10.1109/ICSESS.2016.7883162
https://doi.org/10.1109/ICSESS.2016.7883162
https://doi.org/10.48550/ARXIV.1506.08959
https://doi.org/10.48550/ARXIV.1506.08959
http://cs230.stanford.edu/projects_spring_2019/reports/18681590.pdf
https://www.tensorflow.org/datasets/catalog/cars196
https://www.tensorflow.org/datasets/catalog/cars196
https://doi.org/10.48550/ARXIV.1603.06765
https://ai.stanford.edu/jkrause/cars/car_dataset.html
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1109/TITS.2017.2679114

