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Abstract:Onemust interact with a specific webpage or website in order to use the Internet for communication, teamwork, and other
productive activities. However, because phishing websites look benign and not all website visitors have the same knowledge and
skills to inspect the trustworthiness of visited websites, they are tricked into disclosing sensitive information and making them
vulnerable tomalicious software attacks like ransomware. It is impossible to stop attackers from creating phishingwebsites, which is
one of the core challenges in combating them. However, this threat can be alleviated by detecting a specific website as phishing and
alerting online users to take the necessary precautions before handing over sensitive information. In this study, fivemachine learning
(ML) and DL algorithms—cat-boost (CATB), gradient boost (GB), random forest (RF), multilayer perceptron (MLP), and deep
neural network (DNN)—were tested with three different reputable datasets and two useful feature selection techniques, to assess the
scalability and consistency of each classifier’s performance on varied dataset sizes. The experimental findings reveal that the CATB
classifier achieved the best accuracy across all datasets (DS-1, DS-2, and DS-3) with respective values of 97.9%, 95.73%, and
98.83%. The GB classifier achieved the second-best accuracy across all datasets (DS-1, DS-2, and DS-3) with respective values of
97.16%, 95.18%, and 98.58%. MLP achieved the best computational time across all datasets (DS-1, DS-2, and DS-3) with
respective values of 2, 7, and 3 seconds despite scoring the lowest accuracy across all datasets.

Keywords: ANOVA-F-test; deep learning; feature selection technique; machine learning; mutual information; phishing website
datasets; phishing website detection

I. INTRODUCTION
Accessing the Internet for communication, teamwork, email,
e-banking, e-commerce, e-learning, e-governance, and other pro-
ductivities is almost impossible unless users interact with a specific
website. However, because phishing websites resemble benign and
not all online users have adequate insights and skills on how to
discriminate between benign and phishing websites, they are duped
into disclosing valuable information such as login credentials,
ATM passcode, and details of credit card, bank account, and
Social Security Number (SNN) to the carefully crafted phishing
sites. Phishing attack risks user privacy, and users who visit
phishing websites are becoming vulnerable to harmful software
attacks like ransomware [1], which locks the entire computer
system or its contents until the requested ransom is paid. The
phishing website attack success may result in losses in finances,
productivity, reputability, credibility, continuity, and damage to
national security [2]. Therefore, the development of cyberattack
detection systems is essential for the security of sensitive and
personal data, data exchanges, and online transactions [3].

The major source of phishing attacks is emails online users
receive and website users visit on daily basis [4], and online user
inadequacy is one of the main success factors for such attacks. The
success of the user education approach largely depends on how
effectively it can teach online users about the different tactics
followed by the cybercriminals. Having a clear understanding of

phishing attack tactics helps them to correctly differentiate between
legitimate websites/emails and phishing websites/emails [5]. More
efficient and automatic phishing detection systems are needed
because we cannot only rely on people to recognize it [6].

A recent study [3] stated that most cyberattack detection and
prevention techniques employed in current systems are incapable of
dealing the complexity and dynamic nature of cyberattacks. To
address these concerns, it is vital to employ adaptive AI-based
techniques like machine learning (ML) and deep learning (DL)
by considering enhanced detection, low false alarms, and reasonable
costs of computation [3]. As per [7], DL is a subset ofML techniques
based on multilayered neural networks. DL is not necessarily out-
performing the ML because when few features are included in the
training data, ML can yield results that are comparable to those of
DL. Despite DL has benefits overML in terms of handling both large
and complicated data, it still needs more processing resources and
has more difficult-to-interpret results [7].

A. THE FOLLOWINGS ARE AMONG THE
RATIONALES FOR UNDERTAKING THIS STUDY

Despite significant efforts made by the scientific community to
address them, the alarming rate increase of unique phishing website
attacks continues unabated. This issue highlights the dynamic nature
of phishing attacks and the defects of the existing anti-phishing
solutions. Recent statistics on phishing activity from the Anti-Phish-
ing Working Group (APWG) exhibit that there are more and more
targeted unique phishing website attacks. As depicted in Fig. 1, asCorresponding author: Kibreab Adane (e-mail: kibreab.adane@amu.edu.et).
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depicted in Figs. 1 and 2, APWGwas able to record 1,025,968 unique
phishing websites in the quarter one of 2022 [7], 1,097,811 in the
quarter two of 2022 [8], 1,270,883 in the quarter three of 2022 [9],
and 1,350,037 in the quarter four of 2022 [10].

Despite a lot of studies employing ML and DL for phishing
website detection [11,12], in phishing website detection there is no
common consensus reached on which classifier (ML or DL) is
more desirable when the objective is to enhance detection accuracy
while cutting down the computational time.

For example, recent studies [13–19] have all used ML and DL
algorithms to detect phishing websites. As per the authors’ com-
parative analysis results, the highest accuracy was attained by
random forest (RF) in [13,14], the support vector machine
(SVM) in [16], naïve bayes (NB) in [19], convolutional neural
network (CNN) in [17], eXtreme gradient boosting (XG)-Boost in
[15], and the logistic regression (LR) in [18].

There are hundreds of research works focused on ML applica-
tions in cybersecurity in general, phishing website detection in

particular; however, one of the big confusions on what actually
works best and impairs the real deployments of ML is that most
researchers either intentionally or unintentionally fail to demon-
strate the entire information needed to reproduce their experimental
findings [20]. Some studies exhibit that DL approaches outperform
“traditional” ML approaches, despite the opposite results claimed
by another study that used exactly the same experimental set-
ting [20].

There is still a lack of common agreement among academics
on the suitability of website features for phishing attack detection
[12]. For example, for phishing website detection there are studies
that excluded domain-based, and page ranks features [21–25], and
concentrated mostly on URL-based features [1,26] because URL-
based features are more suitable for run-time analysis, and some
studies do not include web content features because content-based
features are not available for extraction as a result of phishing
websites short lifespan [12]. However, the study [27] challenged
the aforementioned studies claim, stating that obtaining domain
name system (DNS) and page-rank features was computationally
faster than obtaining web-content-based features and that more
web-content-based features could be obtained with the aid of a
“Python-based HTML DOM tree Parser” despite the presence of
dead links, and as per study [28], the network delay at the time of
detecting phishing websites could be remedied by having access to
fast Internet connectivity and other methods.

The contributions of our work are presented as follows.

• Rigorously reviewed recent research works, identified core
gaps, and attempted to address those gaps using experimental-
based pieces of evidence.

• Used the top-performed ML and DL algorithms identified
from a recent literature survey [11,12] such as RF, gradient
boost (GB), LR, multilayer perceptron (MLP), and deep neural
network (DNN). Introduced cat-boost (CATB) classifier in this
work due to it being the latest version of the ML algorithm but
not considered by the reviewed studies.
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Fig. 1. The quarterly distinct phishing website attack reports of 2022 by
APWG [7–10].

Fig. 2. The top 80 phishing website predictive features selected from DS-2 after the MI technique was applied to the CATB classifier.
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• Each classifier experimented with three trustworthy datasets to
look for performance consistency and scalability across all
datasets. This approach was overlooked by most of the re-
viewed studies

• Examined the role of relevant feature selection techniques on
each classifier’s performance and evaluated each classifier
using accuracy, F1-score, area under receiver operating char-
acteristic curve (AUC-ROC), false negative rate (FNR), false
positive rate (FPR), and train-test computational time as core
model evaluation metrics.

• Our study results were compared with other study results that
used the same dataset.

In short, the study attempted to address the following research
questions (RQ).

RQ#1: What are the optimal model parameters to use with the
CATB, GB, RF, MLP, and DNN classifiers?

RQ#2: Does employing the feature selection techniques
enhance accuracy while cutting down on each classifier’s
train-test computational time?

RQ#3: Which classifier among the CATB, GB, RF, MLP,
and DNN exhibits superior and consistent accuracy with
acceptable train-test computational time across three distinct
datasets?

II. RELATED WORKS
The reviewed related research works are presented as follows.

The RF, LR, decision tree (DT), SVM, and Naïve–Bayes
classifiers were employed by [27] for phishing website detection
and the RF attained the highest accuracy of 96.83%. The RF, NB,
CNN, and LTSM were employed by [19], and the NB classifier
attained the highest accuracy of 96.01%. The study [25] employed
GB, RF, and ANN for phishing website detection and GB attained
the highest accuracy of 96.4%, despite GB not being tested on
varied nature datasets to ensure performance consistency, not
tested on the domain-based and page rank-based features, and
not subjected to the run-time analysis despite being supposed to be
assessed to ensure its suitability for real-time execution.

The RF, NB, C.45, JRiP, and PART classifiers experimented
with the hybrid ensemble feature selection (HEFS) technique by
[22] and the RF demonstrated the highest accuracy of 94.6%. The
study did not include DL algorithms and did not include features
from domain and page rank. Despite not being tested on domain
and web content features, the RF classifier employed in [23] for
phishing website detection and attained the greatest accuracy of
99.57%. Similarly, despite not having been tested on features based
on web content, the RF classifier used by [1,26] achieved the
greatest accuracy of 98.03% and 99.3%, respectively. RF achieved
the highest accuracy in the investigation, with scores of 94.6%,
99.8%, and 99.09%, despite not being tested on the domain and
page-based features [21,22,29], respectively.

The recent [30] employed DNN for phishing website detection
and attained the highest accuracy of 96.25% despite not being
tested on varied nature datasets to ensure performance consistency
and not being subjected to the run-time analysis despite it being
supposed to be assessed to ensure its suitability for real-time
execution. MLP was employed by [31,32] for phishing website
detection, and MLP demonstrated the highest accuracy of 98.5%
and 93%, respectively, despite not being tested on varied nature
datasets to ensure performance consistency and not being subjected

to the run-time analysis despite being supposed to be assessed to
ensure its suitability for real-time execution.

The study [33] employed CNN for phishing website detection
and attained the highest accuracy of 94.8%. The MLP, CNN, KNN,
and SVM classifiers were employed by [17] for phishing website
detection and CNN attained the highest accuracy of 97.94% despite
not being tested on varied nature datasets to ensure performance
consistency and not subjected to the run-time analysis despite being
supposed to be assessed to ensure its suitability for real-time execution.

Each of the reviewed studies used a single dataset to train and
test the ML and DL models and did not use the CATB classifier.
Most of the reviewed studies did not incorporate domain and page
rank-based features for phishing website detection, did not conduct
model computational time, and did not reveal each parameter used
for ML and DL algorithms. Our study is an attempt to fill the
aforementioned gaps.

III. METHODOLOGY
This section presents brief details of dataset sources, data preproces-
sing, informative feature selection techniques, cross-validation
methods, implemented ML and DL algorithms, implementation
tools, and model evaluation metrics used in experiments.

A. DATASET SOURCES AND DATA
PREPROCESSING

As shown in Table I, the study used three recent and distinct
trustworthy public datasets to train and test each classifier. DS-1
represents Dataset 1, DS-2 represents Dataset 2, and DS-3 repre-
sents Dataset 3. We did not find any missing values in each dataset.

In order to create DS-1, the study [27] gathered benign website
datasets from Yandex and Alexa, as well as phishing website
datasets from open-phish and phish-tank repositories.

To create DS-2, the study [34] gathered benign website
datasets from Alexa and phishing website datasets from phish-
tank repositories. Each dataset feature was extracted using Python
scripts that contain a predefined parsing rule.

To create DS-3, the study [22] gathered benign website
datasets from Alexa and the Common Crawl and phishing website
datasets from open-phish and phish-tank repositories.

Each DS-1, DS-2, and DS-3 feature has been scaled and
centered by removing the mean and dividing it by the standard
deviation to have data with a mean of 0 and a standard deviation of
1. The standard scalar formula can be written as follows.

Standard scalar = N-m (N)/ S (N),

where N represents the training sample, m (N) represents the mean
of the training samples, and S (N) represents the standard deviation
of the training samples.

Because the model will favor the classes that are in the
majority, using an unbalanced dataset may result in biased model
findings. To address these concerns, the study used a prominent
dataset balancing strategy, Synthetic Minority Over-sampling
Technique (SMOTE), to modify the uneven dataset ratio of
DS-2 from 52%:48% to 50%:50%.

B. INFORMATIVE FEATURE SELECTION
TECHNIQUES

When utilizing a feature selection strategy, the fundamental assump-
tion is that the dataset contains a large number of features that are either
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redundant or irrelevant and can be deleted with little to no information
loss. Irrelevant features lack any information that is valuable in relation
to the target variable, whereas redundant features have information that
is duplicated in other features. Inmost cases, feature selection serves as
a filter, eliminating features that would be redundant with already
existing features. Preventing overfitting of predictive models, acceler-
ating computation, and enhancing the results’ interpretability are all
benefits of optimal feature selection [35]. Taking into the aforemen-
tioned benefits, we employed two popularfilter-based feature selection
techniques, namely ANOVA-F-test-based univariate feature selection
(UFS) and mutual information (MI).

ANOVA-F-test-based UFS treats each feature independently
and chooses features while taking into account the randomness and
normal distribution of datasets. It chooses feature subsets that have
a strong relationship with the target variable. By using statistical
tests, the ANOVA-F-test determines whether the means of different
variables are significantly varied, that is, categorically dependent or
independent. The F-test value is used as a statistical measure to
assess the significance of the results. If the variance of the features
is equal or the statistical significance (P-value<0.05) is not met, the
features will not be included in the dataset [36].

Mutual information (MI) is used to measure the stochastic
dependency or shared information between discrete random vari-
ables. MI adopts heuristic greedy algorithms to distinguish between
the highly relevant and least redundant features at each step [35]. The
MI value is set to zero when X and Y are statistically independent,
indicating that no information has to be exchanged between them
[37]. According to Sulaiman and Labadin [37], unlike correlation-
based feature selection, MI is a common option for effective feature
selection since it considers both linear and nonlinear relationships
between two random variables and is highly robust when the
variables are noisy or nonlinearly associated with the target variable
[35]. MI is originated from information theory and highly related to
the entropy concept, employed to lessen uncertainty. If Y is depen-
dent on X, X’s knowledge reduces Y’s uncertainty [35,37].

C. CROSS-VALIDATION METHODS

The model is said to be effective when it can adjust to new or
unforeseen data and yield accurate predictions. One of the methods
frequently employed to evaluate the performance of an ML model
on unobserved data is holdout cross-validation. In this work, each
classifier was trained and tested using 80%–20% dataset splits. The
80%–20% dataset split was a commonly used

D. IMPLEMENTED ML and DL ALGORITHMS

In this study, five ML and DL algorithms namely RF, GB, CATB,
MLP, and DNN were employed for phishing website detection.
Brief details of each algorithm are presented as follows.

RF classifier: RF is the most frequently used ML algorithm
for phishing website detection. When compared to other classifiers,
RF attained superior accuracy in 17 out of 30 rigorously reviewed
studies in terms of detecting phishing websites [12]. RF is a
bagging ensemble method; it follows a divide and conquers
strategy [38], and each predictor tree uses randomly assigned
values and a vote from each decision tree will be taken for the
final classification result, and it is robust, highly accurate, and do
not suffer from overfitting issues [38]. The study used Max_depth,
N_estimators, and Random_state to look for the optimal parameter
setting of the RF classifier, and the theoretical definitions of these
parameters can accessed from [39].

GB classifier: GB is a boosting ensemble model of decision
trees and follows a sequential approach for training [40]. GB is
supported by strong theoretical results that describe how strong
predictors can be constructed by the iterative combination of base
predictors (weaker models) via a greedy procedure that belongs to
gradient descent in a function space [41]. GB is an efficient ML
algorithm that has been employed in diverse fields, such as environ-
mental variable prediction, weather forecasting, web searching,
diabetes prediction, driving style recognition [42], and phishing
website detection [12] with promising results. The study used
Max_depth, N_estimators, Learning_rate, and Random_state to
look for the optimal parameter setting of the GB classifier, and
the theoretical definitions of these parameters can accessed from [39].

CATB classifier: CATB is a recent and advanced version of
the gradient boost decision tree (GBDT) method and devised by
Dorogush, et al. in 2018 [41]. CATB is an open source, a member
of the family of GB ML ensemble techniques. CATB introduced
two major innovations namely ordered target statistics (OTS) for
automatic encoding of categorical variables when one hot encoding
is not used by CATB [29] and ordered boosting tree (OBT) to avoid
target leakage or prediction shift caused by the expected value of
encoded variable by applying random permutations of the training
dataset to reduce variance and increase the robustness of the
learning algorithm [29,41,43]. OBT is less prone to overfitting,
is balanced, and allows significant speedup of execution at testing
time [29,43]. However, one must be careful in setting the CATB
maximum tree depth to balance the trade-off between memory and
speed because for every unit of increase in the maximum tree depth,
the amount of memory CATB will use may increase by a factor of
two times the number of trees in an ensemble [29]. The study used
Max_depth, Iterations, Learning_rate, and Random_state to look
for the optimal parameter setting of the CATB classifier, and the
theoretical definitions of these parameters can accessed from [39].

MLP classifier: MLP is the most successful and commonly
used feed and forward neural network and is a category of
supervised DL algorithm [17,32]. It was applied in diverse fields,
including image compression, autonomous vehicle control, speech
recognition, medical diagnosis, financial data prediction, and

Table I. Dataset information

Dataset
name

# of
records

# of attributes/
features

Website features
coverage Label Dataset sources

DS-1 11,430 87 URL, domain, web
content, and page rank

1 → phish and
0 → benign

Created by [27] and can be accessed from: https://data.
mendeley.com/datasets/c2gw7fy2j4

DS-2 58,645 111 URL, domain, and
page rank

1 → phish and
0 → benign

Created by [34] and can be accessed from: https://data.
mendeley.com/datasets/72ptz43s9v/1

DS-3 10,000 48 URL and web content 1 → phish and
0 → benign

Created by [22] and can be accessed from: https://www.
sciencedirect.com/science/article/abs/pii/S0020025519300
763?via%3Dihub
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newly discovered applications, as per [17]. Optimizing the MLP
classifier performance requires the adjustment of the layers net-
work, as per [17]. MLP contains multiple layers with a nonlinear
activation function and uses backpropagation for learning [32]. The
following hyperparameters were used to optimize the MLP classi-
fier performance. The study used appropriate activation function,
hidden layer sizes, optimizer or solver, batch size, Max_iter, and
Random_state to look for the optimal parameter setting of the MLP
classifier

DNN classifier:DNN is an algorithm inspired by the works of
the human brain. It incorporates more than one hidden layer, as per
[30]. Increasing the number of input features and the size of the
parameter can affect the computing speed of the DNN classifier.
The DNN model can be learned using the back-propagation
learning process, as per [11]. DNN algorithm is very analogous
to the traditional MLP algorithm; however, the amount of hidden
layers for DNN is higher than that of a typical MLP-based model.
The model’s performance is affected by the suitable selection of
these hyperparameters as per [11]. Due to the aforementioned
reasons, the following hyperparameters were used for DNN to
optimize its performance as shown in Table II.

E. IMPLEMENTATION TOOLS

Each experiment was conducted using a Google co-lab cloud
environment and Python code. We used Pandas, NumPy, and
Matplotlib libraries for data handling, analysis, and visualizations.
We used the skit-learn library to implement classifiers like CATB,
GB, RF, and MLP. We used the Keras library run on tensor flow to
implement the DNN algorithm.

F. MODEL EVALUATION METRICS

The study used accuracy, F1-score, AUC-ROC, FNR, FPR, and
train-test computational time as core model evaluation metrics.
True positive rate (TPR) is the number of phishing websites that
have been correctly classified as phishing. True negative rate
(TNR) is the number of benign websites that have been

appropriately identified as benign. The FPR indicates the number
of benign websites that have been wrongly branded as phishing
websites, and the FPR prevents Internet users from accessing
authentic websites. FNR shows the amount of phishing websites
that have been incorrectly categorized as benign websites, and in
this case, the FNR permits Internet users to visit phishing websites,
which is risky. Hence, minimizing or avoiding both FPR and FNR
is key to combating phishing website attacks.

IV. RESULT AND DISCUSSIONS
The experimental results were grouped under the RQ as follows to
make the presentations simpler to understand.

RQ#1:What are the optimal model parameters to use with the
CATB, GB, RF, MLP, and DNN classifiers?

As stated in the recent study [20], most researchers either
intentionally or unintentionally fail to demonstrate the entire
information needed to reproduce their experimental findings and
impairs the real deployments of ML. Some studies exhibit that DL
approaches outperform “traditional” ML approaches, despite the
opposite results claimed by another study that used exactly the
same experimental setting [20].

To address these concerns, our study showed how each model
parameter was employed in detail to facilitate the replication of
research results as shown in Table III. When employing DS-1 and
DS-2, each classifier was tested with the UFS and MI feature
selection techniques, while DS-3 was tested without the use of the
aforementioned feature selection techniques. Table III demon-
strates the optimal model hyperparameters after the UFS and MI
were applied to DS-1 and DS-2. Table IV demonstrates the optimal
model hyperparameters without the application of the UFS and MI
techniques to DS-3.

RQ#2: Does employing the feature selection techniques
enhance accuracy while cutting down on each classifier’s
train-test computational time?

The ML- and DL-based phishing website detection model is
deemed successful when it achieves improved detection accuracy,

Table II. Description of DNN model parameters

DNN parameters Conceptual details

Activation function We used the ReLU activation function for the hidden layers and the sigmoid function for the output layer.

Batch
normalization

We used the batch normalization function to standardize input data for each layer, reduce the data by adjusting and scaling the
activation functions, minimize the loss function, and reduce undesirable shifts to yield more reliable model training. It is used to
enhance the accuracy, stability, and speed of the DNN algorithm [30].

Dense layer We used the dense layer to specify the number of hidden layer sizes and the number of nodes/units/neurons in each layer. To look
for the optimal parameter values, we checked different numbers of neurons like 512, 256, 128, 64, 32, and others.

Dropout We used dropout as a regularization technique for ignoring unwanted hidden layer nodes to avoid overfitting [17,30,47]. To look
for the optimal parameter values, we used dropout values ranging between 0.001 and 0.9 to look for the optimal parameter values.

Output layer
neuron

We used a single neuron for the output layer to yield either phishing or benign website.

Loss function The network is compiled by a loss function which is responsible for specifying what model evaluation metric to use and used
“binary_crossentropy” to calculate the train-validation loss of the DNN [17,30,47].

Batch_size We used this parameter to determine data samples to be considered prior to weight adjustment [17]. To look for the optimal
parameter values, we checked different batch sizes like 256, 128, 64, 32, 16, and other numbers.

Epoch We used this parameter to determine the number of iterations/passes throughout the process of training data samples and used to
control model overfitting.

Optimizer We used the Adam optimizer to search the optimal weights for the DNN andMLP algorithms [31,47]. Adam optimizer combines
the functions of two different optimization techniques namely SGD and RMSprop and outperforms the SGD and RMSprop
optimization techniques in terms of accuracy as per [31].
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Table III. Each classifier’s optimal parameter values after the UFS and MI techniques applied to DS-1 and DS-2

Classifiers Optimal model parameter values for DS-1 Optimal model parameter values for DS-2

CATB
+UFS

No. of features: 69 No. of features: 93

max_depth=5, max_depth=8,
iterations=350, iterations=215,
learning_rate=0.1, learning_rate=0.1,
random_state=0 random_state=12

GB +UFS No. of features: 69 No. of features: 97

max_depth=5, max_depth=7,
n_estimators=69, n_estimators=85,
random_state=3 random_state=3

RF +UFS No. of features: 69 No. of features: 96

max_depth=10, max_depth=13,
n_estimators=32, n_estimators=96,
random_state=12 random_state=1

MLP+UFS No. of features: 47 No. of features: 95

hidden layer sizes: 115 hidden layer sizes: 256,128

activation: relu activation: relu

Max-iter:4 Max-iter:4

solver: Adam solver: Adam

batch size:20 batch size:64

random state: 3

DNN+ UFS input_dim:55 input_dim:100

BatchNormalization(), BatchNormalization(),

dense layers: 128,64 dense layers: 256,128,64

dropout: 0.03 dropout: 0.02

optimizer: Adam optimizer: Adam

epochs: 6 epochs: 7

activations: ‘relu’ for the hidden layers and ‘sigmoid’ for the output
layer.

activations: ‘relu’ for the hidden layers and ‘sigmoid’ for the output
layer.

batch size: 80 batch size: 190

loss: 'binary_crossentropy' loss: 'binary_crossentropy'

CATB+MI No. of features: 64 No. of features: 80

max_depth=5, max_depth=7,
iterations=348, iterations=214,
learning_rate=0.1, learning_rate=0.2,
random_state=3 random_state=12

GB+MI No. of features: 76 No. of features: 90

max_depth=5, max_depth=7,
n_estimators=69, n_estimators=32,
learning_rate=0.1, learning_rate=0.2,

min_samples_split=6,
min_samples_leaf=5

random_state=3 random_state=3
RF+MI No. of features: 76 No. of features: 90

max_depth=10, max_depth=13,
n_estimators=76, n_estimators=95,

min_samples_split=6,
min_samples_leaf=5

random_state=0 random_state=2

(continued)
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minimal false alarm rates, and affordable computation costs [3]. In
this study, results in bold italics were improved performance
indicators, those in bold were similar performance indicators,
and those in italics were poor performance indicators. Each
classifier’s performances are presented as follows.

A. CATB CLASSIFIER PERFORMANCE
COMPARISONS ON DS-1, DS-2, and DS-3

As per the UFS technique, 69 of the 87 features in DS-1 and 93 of the
111 features in DS-2were determined to be statistically significant in
the CATB classifier’s ability to detect phishing websites. As per the
MI technique, 64 of the 87 features in DS-1 and 80 of the 111
features in DS-2 were determined to be statistically significant in the
CATB classifier’s ability to detect phishing websites. All (48) of the
DS-3 were subjected to the CATB experiment.

Based on dataset comparisons, DS-3 came out on top with the
best CATB accuracy of 98.83%, followed by DS-1 with 97.9% and
DS-2 with 95.73% as can be seen in Table V. These experimental
results demonstrate that the CATB classifier was the top-perform-
ing classifier when applied to all datasets (DS-1, DS-2, and DS-3 in
terms of accuracy when compared to the results of GB, RF, DNN,
and MLP classifiers.

Based on dataset comparisons, DS-1 came out on top with the
best CATB computational time of 7 seconds, followed by DS-3 at 8
seconds and DS-2 at 56 seconds as can be seen in Table V. When
compared to DNN classifier, these experimental results demon-
strate that the CATB classifier was the fastest classifier when
applied to DS-1 and DS-3, while it was slowest when applied
to DS-2. When compared to GB classifier, the CATB classifier
was the fastest classifier when applied to DS-1 and DS-2 in terms of
computational time, while it was slowest when applied to DS-3.

The experimental findings exhibited in Table V highlight that
despite saving storage space as a result of decreasing the number of
features, the application of the UFS and MI techniques to the
CATB classifier increases computational time. This may be due to
the involvement of adjusting optimal model parameters to obtain
better accuracy. When we analyze the experimental findings for
DS-1 before and after using the UFS andMI techniques, the CATB
and UFS combination produced the greatest accuracy (97.9%) and
F1-score (97.88%), while the fastest computational time was
exhibited when the CATB classifier was applied to DS-1 (refer
to Table V). When we analyze the experimental findings for DS-2
before and after using the UFS and MI techniques, the CATB and
MI combination produced the greatest accuracy (95.73%) and

Table III. (continued)

Classifiers Optimal model parameter values for DS-1 Optimal model parameter values for DS-2

MLP+MI No. of features: 73 No. of features: 90

hidden layer sizes: 115 hidden layer sizes: 128,128

activation: relu activation: relu

Max-iter:6 Max-iter:3

solver: Adam solver: Adam

batch size:20 batch size:86

DNN+MI input_dim:64 input_dim:90

BatchNormalization(), BatchNormalization(),

dense layers: 128,64 dense layers: 256,128,64

dropout: 0.002 dropout: 0.04

optimizer: Adam optimizer: Adam

epochs: 7 epochs: 7

activations: ‘relu’ for the hidden layers and ‘sigmoid’ for the output
layer.

activations: ‘relu’ for the hidden layers and ‘sigmoid’ for the output
layer.

batch size: 86 batch size: 248

loss: 'binary_crossentropy' loss: 'binary_crossentropy'

Table IV. Each classifier’s optimal model hyperparameters
without application of the UFS and MI techniques to DS-3

Classifiers Optimal model parameter values for DS-3

CATB max_depth=7,
iterations=35,

learning_rate=0.3,
random_state=0

GB max_depth=6,
n_estimators=45,
random_state=3

RF max_depth=11,
n_estimators=50,
random_state=12

MLP hidden layer sizes: 256,128

activation: relu

Max-iter:4

solver: Adam

batch size:64

DNN BatchNormalization(),

dense layers: 128,128

dropout: 0.01

optimizer: Adam

epochs: 9

activations: ‘relu’ for the hidden layers
and ‘sigmoid’ for the output layer.

batch size: 64

loss: 'binary_crossentropy'
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F1-score (95.94%), while the fastest computational time was
exhibited when the CATB classifier was applied to DS-2 (refer
to Table V).

B. GB CLASSIFIER PERFORMANCE
COMPARISONS ON DS-1, DS-2, and DS-3

As per the UFS technique, 69 of the 87 features in DS-1 and 97 of
the 111 features in DS-2 were determined to be statistically
significant in the GB classifier’s ability to detect phishing websites.
As per the MI technique, 76 of the 87 features in DS-1 and 90 of the
111 features in DS-2 were determined to be statistically significant
in the GB classifier’s ability to detect phishing websites. All (48) of
the DS-3 were subjected to the GB experiment.

Based on dataset comparisons, DS-3 came out on top with the
best GB accuracy of 98.58%, followed by DS-1 with 97.16% and
DS-2 with 95.18% as can be seen in Table VI. These experimental
results demonstrate that the GB classifier was the second best-
performing classifier when applied to all datasets (DS-1, DS-2, and

DS-3) in terms of accuracy, while the CATB classifier was the first
best performer.

Based on dataset comparisons, DS-3 came out on top with the
best GB computational time of 7 seconds, followed by DS-1 at 17
seconds and DS-2 at 97 seconds as can be seen in Table VI. When
compared to CATB classifier, the GB classifier was the slowest
classifier when applied to DS-1 and DS-2, while it was the fastest
classifier when applied to DS-3 due to decreasing computational
time by 1 second.

The experimental findings exhibited in Table VI highlight that
despite saving storage space as a result of decreasing the number of
features, the application of the UFS technique to the GB classifier
on DS-2 increases computational time, while the application of the
UFS and MI techniques to the GB classifier on DS-2 exhibit the
same computational time. When we analyze the experimental
findings for DS-1 before and after using the UFS and MI techni-
ques, the GB and UFS combination produced the greatest accuracy
(97.16%) and F1-score (97.13%). When we analyze the experi-
mental findings for DS-2 before and after using the UFS and MI

Table V. CATB classifier performance comparisons on DS-1, DS-2, and DS-3

Classifier Dataset type Accuracy (%) F1-score (%) FPR (%) FNR (%) Time (sec.) AUC-ROC Conf. matrix

CATB DS-1 97.73 97.71 2.51 2.03 7 0.9955 [[1126 29]

[23 1108]]

DS-2 95.48 95.71 4.87 4.2 56 0.991 [[5292 271]

[259 5907]]

DS-3 98.78 98.71 1.3 1.14 8 0.9986 [[1063 14]

[11 954]]

CATB+UFS DS-1 97.9 97.88 2.34 1.86 8 0.9959 [[1128 27]

[21 1110]]

DS-2 95.55 95.77 4.89 4.05 82 0.9914 [[5291 272]

[250 5916]]

CATB+MI DS-1 97.73 97.71 2.51 2.03 11 0.9959 [[1126 29]

[23 1108]]

DS-2 95.73 95.94 4.62 3.96 75 0.9917 [[5306 257]

[244 5922]]

Table VI. GB classifier performance comparisons on DS-1, DS-2, and DS-3

Classifier Dataset type Accuracy (%) F1-score (%) FPR (%) FNR (%) Time (sec.) AUC-ROC Conf. matrix

GB DS-1 97.03 96.99 2.94 3.01 19 0.995 [[1121 34]

[34 1097]]

DS-2 95.12 95.39 5.77 4.07 129 0.9877 [[5242 321]

[251 5915]]

DS-3 98.58 98.5 1.39 1.45 7 0.9985 [[1062 15]

[14 951]]

GB+UFS DS-1 97.16 97.13 2.86 2.83 17 0.9953 [[1122 33]

[32 1099]]

DS-2 95.18 95.42 5.21 4.46 185 0.9892 [[5273 290]

[275 5891]]

GB+MI DS-1 97.07 97.04 2.94 2.92 17 0.9951 [[1121 34]

[33 1098]]

DS-2 95.13 95.38 5.32 4.46 97 0.9894 [[5267 296]

[275 5891]]
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techniques, the GB and UFS combination produced the greatest
accuracy (95.18%) and F1-score (95.42%), while the fastest
computational time was exhibited when the MI technique applied
to GB classifier on DS-2 (refer to Table VI).

C. RF CLASSIFIER PERFORMANCE
COMPARISONS ON DS-1, DS-2, and DS-3

As per the UFS technique, 69 of the 87 features in DS-1 and 96 of
the 111 features in DS-2 were determined to be statistically
significant in the RF classifier’s ability to detect phishing
websites. As per the MI technique, 76 of the 87 features in
DS-1 and 90 of the 111 features in DS-2 were determined to be
statistically significant in the RF classifier’s ability to detect
phishing websites. All (48) of the DS-3 were subjected to the RF
experiment.

Based on dataset comparisons, DS-3 came out on top with the
best RF accuracy of 98.24%, followed by DS-1 with 96.63% and
DS-2 with 94.21% as can be seen in Table VII. When compared to
DNN classifier, these experimental results demonstrate that the RF
classifier was the best-performing classifier when applied to DS-3
in terms of accuracy. When compared to MLP classifier, these
experimental results demonstrate that the RF classifier was the best-
performing classifier when applied to all datasets (DS-1, DS-2, and
DS-3) in terms of accuracy.

Based on dataset comparisons, DS-1 came out on top with the
best RF computational time of 3 seconds, followed by DS-3 at 4
seconds and DS-2 at 65 seconds as can be seen in Table VII. In
comparison with the other classifiers, such as CATB and GB, these
experimental results demonstrate that the RF classifier was the
fastest classifier when applied to all datasets (DS-1, DS-2, and DS-
3) in terms of computational time. When compared to DNN
classifier, the RF classifier was the fastest classifier when applied
to DS-1 and DS-3 in terms of computational time, while it was
slower when applied to DS-2.

The experimental findings exhibited in Table VII highlight
that despite saving storage space as a result of decreasing the
number of features, the application of the M technique to the RF
classifier on DS-1 and DS-2 increases computational time, while
the application of the UFS technique to the RF classifier on DS-1
exhibits the fastest computational time. When we analyze the

experimental findings for DS-1 before and after using the UFS
and MI techniques, the RF and MI combination produced the
greatest accuracy (96.63%) and F1-score (96.57%). When we
analyze the experimental findings for DS-2 before and after using
the UFS and MI techniques, the RF and MI combination produced
the greatest accuracy (95.21%) and F1-score (95.51%), while the
fastest computational time was exhibited when the UFS technique
applied to GB classifier on DS-2 (refer to Table VII).

D. DNN CLASSIFIER PERFORMANCE
COMPARISONS ON DS-1, DS-2, and DS-3

As per the UFS technique, 55 of the 87 features in DS-1 and 100 of
the 111 features in DS-2 were determined to be statistically
significant in the DNN classifier’s ability to detect phishing
websites. As per the MI technique, 64 of the 87 features in DS-
1 and 90 of the 111 features in DS-2 were determined to be
statistically significant in the DNN classifier’s ability to detect
phishing websites. All (48) of the DS-3 were subjected to the DNN
experiment.

Based on dataset comparisons, DS-3 came out on top with the
best DNN accuracy of 98.19%, followed by DS-1 with 97.03% and
DS-2 with 94.26% as can be seen in Table VIII. When compared to
RF classifier, the DNN classifier was the best-performing classifier
when applied to DS-1 and DS-2 in terms of accuracy. When
compared to MLP classifier, the DNN classifier was the best-
performing classifier when applied to all datasets (DS-1, DS-2, and
DS-3) in terms of accuracy.

Based on dataset comparisons, DS-1 came out on top with the
best DNN computational time of 9 seconds, followed by DS-3 at 13
seconds and DS-2 at 27 seconds as can be seen in Table VIII. When
compared to GB classifier, the DNN classifier was the fastest
classifier when applied to DS-1 and DS-2 in terms of computational
time, while it was slower when applied to DS-3. When compared to
CATB classifier, the DNN classifier was the fastest classifier when
applied to DS-2 in terms of computational time, while it was slower
when applied to DS-1 and DS-3.

The experimental findings exhibited in Table VIII highlight
that despite saving storage space as a result of decreasing the
number of features, the application of the MI technique to the DNN
classifier on DS-1 and DS-2 increases computational time. Despite

Table VII. RF classifier performance comparisons on DS-1, DS-2, and DS-3

Classifier Dataset type Accuracy (%) F1-score (%) FPR (%) FNR (%) Compute time (Sec.) AUC-ROC Conf. matrix

RF DS-1 96.5 96.49 3.2 3.8 4 0.994 [[1118 37]

[43 1088]]

DS-2 94.08 94.41 7.03 4.91 66 0.9861 [[5172 391]

[303 5863]]

DS-3 98.24 98.13 1.39 2.18 4 0.9984 [[1062 15]

[21 944]]

RF+UFS DS-1 96.54 96.49 2.94 3.98 3 0.9941 [[1121 34]

[45 1086]]

DS-2 94.19 94.51 7.01 4.74 65 0.9862 [[5173 390]

[292 5874]]

RF+MI DS-1 96.63 96.57 2.68 4.07 10 0.9941 [[1124 31]

[46 1085]]

DS-2 94.21 94.51 6.53 5.12 106 0.9869 [[5200 363]

[316 5850]]
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the application of the UFS technique to the DNN classifier on DS-1
exhibits the fastest computational time, it results in slightly
decrease in the DNN accuracy and F1-score by 0.04% and
0.03%, respectively. When we analyzed the experimental findings
for DS-1 before and after using the UFS and MI techniques, the
DNN and MI combination produced the greatest accuracy
(97.03%). When we analyze the experimental findings for DS-2
before and after using the UFS andMI techniques, the DNN andMI
combination produced the greatest accuracy (94.26%) and F1-
score (94.52%), while the fastest computational time was exhibited
when the UFS technique applied to DNN classifier on DS-2 (refer
to Table VIII).

E. MLP CLASSIFIER PERFORMANCE
COMPARISONS ON DS-1, DS-2, and DS-3

As per the UFS technique, 47 of the 87 features in DS-1 and 95 of
the 111 features in DS-2 were determined to be statistically
significant in the MLP classifier’s ability to detect phishing

websites. As per the MI technique, 73 of the 87 features in
DS-1 and 90 of the 111 features in DS-2 were determined to be
statistically significant in the MLP classifier’s ability to detect
phishing websites. All (48) of the DS-3 were subjected to the MLP
experiment.

Based on dataset comparisons, DS-3 came out on top with the
best MLP accuracy of 95.69%, followed by DS-1 with 87.88% and
DS-2 with 87.5% as can be seen in Table IX. In comparison with
the other classifiers, such as CATB, GB, RF, and DNN, these
experimental results demonstrate that the MLP classifier was a
lowest-performing classifier when applied to all datasets (DS-1,
DS-2, and DS-3) in terms of accuracy.

Based on dataset comparisons, DS-1 came out on top with the
best MLP computational time of 2 seconds, followed by DS-3 at 3
seconds and DS-2 at 7 seconds. In comparison with the other
classifiers, such as CATB, GB, RF, and DNN, these experimental
results demonstrate that the MLP classifier was the fastest classifier
when applied to all datasets (DS-1, DS-2, and DS-3) in terms of
computational time.

Table VIII. DNN classifier performance comparisons on DS-1, DS-2, and DS-3

Classifier Dataset type Accuracy (%) F1-score (%) FPR (%) FNR (%) Compute time (Sec.) AUC-ROC Conf. matrix

DNN DS-1 96.98 96.94 2.77 3.27 10 0.9916 [[1123 32]

[37 1094]]

DS-2 94.03 94.3 5.73 6.18 27 0.9848 [[5244 319]

[381 5785]]

DS-3 98.19 98.08 1.67 1.97 13 0.9976 [[1059 18]

[19 946]]

DNN+UFS DS-1 96.94 96.91 3.03 3.09 9 0.9928 [[1120 35]

[35 1096]]

DS-2 94.19 94.51 7.01 4.74 65 0.9857 [[5173 390]

[292 5874]]

DNN+MI DS-1 97.03 96.91 3.03 3.09 13 0.9923 [[1120 35]

[35 1096]]

DS-2 94.26 94.52 5.66 5.81 28 0.9852 [[5248 315]

[358 5808]]

Table IX. MLP classifier performance comparisons on DS-1, DS-2, DS-3

Classifier Dataset type Accuracy (%) F1-score (%) FPR (%) FNR (%) Compute time (Sec.) AUC-ROC Conf. matrix

MLP DS-1 87.88 87.38 9.09 15.21 3 0.8785 [[1050 105]

[172 959]]

DS-2 86.52 87.13 13.77 13.22 8 0.865 [[4797 766]

[815 5351]]

DS-3 95.69 95.42 3.62 5.08 3 0.9565 [[1038 39]

[49 916]]

MLP+UFS DS-1 92.91 92.78 6.23 7.96 2 0.929 [[1083 72]

[90 1041]]

DS-2 86.83 88.11 19.85 7.15 27 0.865 [[44591104]

[441 5725]]

MLP+MI DS-1 86.31 85.6 9.7 17.77 7 0.8626 [[1043 112]

[201 930]]

DS-2 87.5 88.41 16.07 9.28 42 0.8732 [[4669 894]

[572 5594]]
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The experimental findings exhibited in Table IX highlight that
despite saving storage space as a result of decreasing the number of
features, the application of the MI technique to the MLP classifier
on DS-1 results in decreasing the accuracy and F1-score by 1.57%
and 1.78%, respectively, while increasing computational time with
4 seconds. On another hand, the application of the UFS technique
to theMLP classifier on DS-1 results in increasing the accuracy and
F1-score by 5.03% and 5.4%, respectively.

RQ#3: Which classifier among the CATB, GB, RF, MLP, and
DNN exhibits superior and consistent accuracy with accept-
able train-test computational time across three distinct
datasets?

As indicated in the methodology section, the study used three
recent and distinct trustworthy public datasets to train and test each
classifier for scalability and performance consistency. DS-1 had
11,430 balanced records and 87 features, DS-2 had 58,645 records
and 111 features, and DS-3 had 10,000 balanced records and 48
features.

The CATB classifier achieved the best accuracy across all
datasets (DS-1, DS-2, and DS-3) with respective values of 97.9%,
95.73%, and 98.83%. The GB classifier achieved the second best
accuracy across all datasets (DS-1, DS-2, and DS-3) with respec-
tive values of 97.16%, 95.18%, and 98.58%.

MLP achieved the best computational time across all datasets
(DS-1, DS-2, and DS-3) with respective values of 2, 7, and 3
seconds despite MLP attaining the lowest accuracy across all
datasets (DS-1, DS-2, and DS-3).

AUC-ROC is a well-known statistic for demonstrating how
well the probability of the negative class is separated from the
probabilities of the positive class. When the sensitivity score is
close to 1, the AUC-ROC findings are deemed to be better [44]. In
this case, the CATB classifier achieved the best AUC-ROC score
across all datasets (DS-1, DS-2, and DS-3) with respective values
of 0.9959, 0.9914, and 0.9986.

Despite the use of DS-1, the CATB accuracy on DS-1 was 1.07
percent better than the best accuracy (96.83 percent) achieved by
the study [27] and 0.85 percent better than the best accuracy (97.05
percent) achieved by the study [45]. Despite using DS-2, the CATB
accuracy in DS-3 (98.83%) was 4.23% higher than the best
accuracy (94.6%) achieved by RF in the study [22], 0.83% higher
than the best accuracy (98%) achieved by RF in the study [46], and
1% higher than the best accuracy (97.83%) achieved by [45].

The top phishing website prediction features are chosen using
UFS and MI techniques at the data preprocessing stage or inde-
pendently of ML and DL classifiers. This shows that any researcher
who applies both UFS and MI techniques in addition to providing
the number of features indicated in our experiment section will be
able to get the best predictive features. For the sake of space, we did
not discuss them here. For example, Fig. 2 exhibits the top 80
phishing website predictive features selected from DS-2 after the
MI technique was applied to the CATB classifier.

V. CONCLUSION AND FUTURE WORK
Phishing website is one of the most prevalent unlawful practices
that online users and corporations that rely on the Internet regularly
encounter. The alarming rate of growth in the variety of distinct
phishing websites is one of the main reasons for undertaking this
study. In order to address these issues, the study used five ML and
DL algorithms, namely CATB, GB, RF, MLP, and DNN. Each
algorithm was tested using three different reliable datasets and two

informative feature selection techniques, namely UFS and MI. To
enable the replication of study results, each classifier’s hyperpara-
meter setting was demonstrated in the study.

The results of this study showed that the CATB classifier
achieved the highest accuracy when applied to all datasets (DS-1,
DS-2, and DS-3), whereas the MLP classifier, despite having the
lowest accuracy, was the fastest classifier. Furthermore, the experi-
mental results of this paper demonstrated that the values of the model
hyperparameters, in addition to the use of theUFS andMI techniques,
were crucial in determining how accurately and quickly a model
could be computed. We observed that there was a situation where
applying the UFS and MI techniques increased both model accuracy
and computational time, even though the purpose of applying these
techniques was to boost accuracy while decreasing computational
time. We observed that the AUC-ROC score of CATB, GB, RF, and
DNN classifiers increased following the application of the UFS and
MI techniques on DS-1 and DS-2. When compared to DS-1 and DS-
2, each classifier used in the study attained the highest accuracy when
applied to DS-3. In future work, the study advocated including
appropriate DL algorithms, large datasets, mobile-based phishing,
and other feature selection techniques.
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