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Abstract: Human activity recognition (HAR) has been the most active and interesting area of research in recent years due to its
wide range of applications in the field, such as healthcare, security and surveillance, robotics, gaming, and entertainment.
However, recognizing vision-based human activity is still a challenging as input sequences may have cluttered background,
illumination conditions, occlusions, degradation of video quality, blurring, etc. In the literature, several state-of-the-art methods
have been trained and tested on different datasets but have yet to perform adequately to a certain extent. Moreover, extracting
potential features and combining appropriate methods is one of the most challenging tasks in realistic video. This paper proposes
an efficient frequency-based blur invariance local phase quantization feature extractor and multiclass SVM classifier that
overcomes these challenges. The feature is invariant toward camera motion, misfocused optics, movements in the scene, and
environmental conditions. The proposed feature vector is then fed to the classifier to recognize human activities. The experiment
has conducted on two publicly available datasets, UCF101 and HMDB51, and has achieved 99.79% and 98.67% accuracies,
respectively. The approach has also outperformed the existing state-of-the-art approaches in terms of computational cost without
compromising the accuracy of HAR.
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I. INTRODUCTION
Tremendous growth and development in the field of sensor-based
devices and multi-view cameras constantly enhance the popularity
of human activity recognition (HAR). It is widely used in several
applications such as security and surveillance [1,2], video retrieval
[3], human–robot interaction [4], human–computer interaction [5],
abnormal activity detection [6], entertainment [7], etc. In the
literature [8,9], HAR is broadly classified into sensor-based and
vision-based activity recognition. Dang et al. [8] classified HAR
into sensor-based and vision-based based on data collection, pre-
processing methods, feature engineering, and the training process.
Hussain et al. [10] divided sensor-based HAR into three types
based on sensor deployment. They are wearable, object-tagged,
and dense sensing. In sensor-based HAR, activity is recognized by
sensors or machines like accelerometer, gyroscope, smart watches,
etc. Sensor-based HAR has gained popularity due to its small size,
low cost, and better accuracy. However, wearing a tag throughout
the day is inconvenient, requires more power dependency, depends
on environmental conditions, etc [10]. On the other hand, vision-
based HAR is based on video or sequences of frame captured by
multi-view cameras. Hence, there is no need to wear the tag to gain
popularity. Despite its merits, the performance has faced chal-
lenges, such as illuminance change, moving camera, blurring,
occlusion, jilter, inter-class similarity, intra-class variability, mov-
ing background, and noise. To overcome these limitations, con-
ventional or handcrafted, deep learning (DL) and hybrid methods
have been introduced in the literature [11–13]. These approaches
give prominent results on various publicly available datasets.

However, handcrafted methods require domain experts to perform
feature extraction. Further, these features are fed into a suitable
classifier for recognizing a human activity. On the other hand, DL
methods extract features automatically from raw input data. It gives
the concept of end-to-end learning and able to replace handcrafted
approach [12]. However, handcrafted features are still prominently
used due to some limitations in DL approach. Some of the
best-performing DL-based methods still dependent on handcrafted
features, and these methods have a higher computational cost [12].

This paper proposes a novel handcrafted feature extraction
approach to recognize human activity. The proposed method uses a
frequency-based feature extractor named local phase quantization
(LPQ) to find an efficient feature vector to recognize human
activity in an unconstrained and realistic environment. The feature
vector is then fed to a one-to-one multiclass support vector machine
(SVM) classifier to recognize human activity. In literature, several
combinations of handcrafted feature descriptors have been used to
achieve comparable accuracy, but no one can achieve similar
accuracy using a single feature. This paper uses a single feature
descriptor, which gives approximately the same or greater accuracy
on complex datasets. It is simple and efficient and outperforms a
combination of features (handcrafted, DL, and hybrid). The main
contributions of the proposed approach are listed below:

1. The prominent role of our current research is to observe and
find appropriate features that can increase the efficiency of
HAR and overcome the degradation of image quality due to
the presence of camera motion, misfocused optics, movements
in the scene, and environmental condition, inter-class similar-
ity, and intra-class variability. Such efficacy is more important
when dealing with complex video in an unconstrained
environment.Corresponding author: Richa Mishra (email: richa_mishra@allduniv.ac.in).
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2. A frequency-based LPQ feature descriptor has generated an
efficient feature vector. The generated vector is fed as an input
to the SVM classifier to recognize the human activity.

3. The approach has been trained and tested on publicly available
datasets: University of Central Florida 101 (UCF101) [14] and
Human Motion Database 51 (HMDB51) [15].

4. The approach has also outperformed the existing state-of-the-
art approaches regarding computational efficiency.

The rest of the paper is divided into the following sections:
Section II provides an overview of related work. Section III
presents an overview of the proposed approach. Section IV dis-
cusses the experimental results and compared with the state-of-the-
art techniques. The last section gives the conclusion and
future scope.

II. LITERATURE REVIEW
The process of HAR in a realistic environment is still a challenging
task. It suffers from different blurring, illuminance change, partial
occlusion, complex background and foreground, complex struc-
tural arrangement of pixels, etc. Therefore, machine learning (ML)
and DL-based approaches have been extensively used [11]. HAR
mainly depends on how efficiently features are extracted from
videos. Pareek and Thakkar [16] categorize features used in ML-
based methods. They are trajectory-based, motion-based, texture-
based, shape-based, gait-based, etc. Abdul-Azim and Hemayed
[17] proposed trajectory-based HAR using the discriminative
temporal relationship based on scale-invariant feature transform
(SIFT) descriptor and SVM classifier. They obtained 95.36%,
97.77%, and 89.99% accuracies on Kungliga Tekniska högskolan
(KTH), Weizmann, and UCF sports datasets, respectively. In
motion-based techniques, optical flow and spatiotemporal filtering
are used for capturing the motion of the target frame [16]. Bobick
and Davis [18] proposed a motion-based HAR, invariant to linear
changes in speed and run in real time. The shape-based feature
provides human body dynamics and structure [16]. Vishwakarma
et al. [19] present a shape-based feature with SVM classifier
and found 100%, 85.80%, 95.5%, 93.25%, and 92.92% accuracies
on Weizmann, INRIA Xmas Motion Acquisition Sequences
(IXMAS), KTH, Ballet Movement, and Multi-view i3dPost data-
sets, respectively. Gupta et al. [20] proposed a gait-based feature
for HAR on KTH and Weizmann datasets with 95.01% and
91.36% accuracies, respectively. Texture-based features provide
a structural arrangement of intensities in an image. There are
several texture-based features, and their combinations are available
in literature, such as local binary pattern (LBP), local ternary
pattern (LTP), LBP on three orthogonal planes (LBP-TOP), etc.
[21–25]. Rahman et al. [26] proposed a HAR based on the
combination of motion history image (MHI), LBP, and histogram
of oriented gradients (HOG) feature with an SVM classifier. They
obtained 86.67% and 94.3% accuracies on the KTH Action and the
Pedestrian Action datasets, respectively.Wang et al. [27] have used
the combination of HOG and LBP feature with a linear SVM
classifier to recognize partial occluded human on National Institute
for Research in Digital Science and Technology (INRIA) dataset
with 97.9% accuracy. Carmona and Climent [28] used the tem-
plate-based method to recognize human actions with Improved
Dense Trajectories. The results were tested, and 89.3% and 65.3%
accuracies were obtained on the UCF101 and HMDB51 datasets,
respectively. Wang et al. [29] proposed a dense trajectories and
motion boundary histogram (MBH)-based descriptors for HAR on

nine publicly available datasets, KTH, YouTube, Hollywood2,
UCF sports, IXMAS, University of Illinois Urbana Champaign
(UIUC), Olympic Sports, UCF50, and HMDB51 with 94.2%,
84.1%, 58.2%, 88.0%, 93.5%, 98.4%, 74.1%, 84.5%, and
46.6% accuracies, respectively. Neggaz and AbdElminaam [30]
used the combination of moment invariant (MI) mean block
discrete cosine transform (MmDCT) and uniform LBP feature
and neural network classifier for HAR. They have achieved
92.54%, 99.97%, and 99.9% accuracies on KTH, UCF11, and
HMDB51 (for six activities) datasets, respectively. However, the
approach fails to recognize the complex activities of UCF101 and
HMDB51 datasets. Kushwaha et al. [31] proposed a linear feature
fusion of optical flow and HOG feature for HAR with SVM
classifier. The approach has achieved 99.3%, 97.96%, and
97.18% accuracies on UT Interaction, Institute of Automation,
Chinese Academy of Sciences (CASIA), and HMDB51 datasets,
respectively.

In a DL-based approach, Yu et al. [32] have proposed stratified
pooling-based convolutional neural network (CNN) for HAR. The
model has tested on UCF101 and HMDB51 datasets with 91.6%
and 74.7% accuracies, respectively. Varol et al. [33] present a long-
term temporal convolution (LTC)-based CNN model for activity
recognition on the UCF101 and HMDB51 datasets and achieved
92.7% and 67.2% accuracies, respectively. Geng and Song [34]
have proposed CNN-based HAR in which CNN is used for feature
extraction, and SVM is used for pattern recognition. The result was
tested on the KTH dataset and achieved 92.49% accuracy. Basak
et al. [35] have recognized HAR using DL and swarm intelligence-
based metaheuristic model. They have got 98.13%, 90.67%, and
89.98% accuracies on University of Texas at Dallas-Multimodal
Human Action Dataset (UTD-MHAD), HMDB05, and Nanyang
Technological University’s Red Blue Green and Depth information
(NTU RGB+D) 60 datasets, respectively. Tran et al. [36] showed
accuracy improvement of 3D CNNs over 2D CNNs using the
residual learning framework on Sports-1M, Kinetics, UCF101, and
HMDB51 datasets. Xia et al. [37] have proposed the combination
of long short-term memory (LSTM) and CNN-based model for
activity recognition in which data is fed into the LSTM network
followed by CNN. The result has tested on three datasets: Univer-
sity of California Irvine (UCI), Wireless Sensor Data Mining
(WISDM), and OPPORTUNITY, with 95.78%, 95.85%, and
92.63% accuracies, respectively. Yin et al. [38] have proposed
1-D CNN-based bidirectional LSTM parallel model with an atten-
tion mechanism for activity recognition. The performance was
tested on UCI and WISDM HAR datasets and found 96.71% and
95.86% accuracies, respectively. Huang et al. [39] have proposed
Three-Stream Network model in which spatial, temporal, and
sequential features are fused. Further, features are fed into a
multilayer perception classifier to recognize human activity. The
results are tested on UCF11, UCF50, and HMDB51 datasets with
99.17%, 97.40%, and 96.88% accuracies, respectively. Luo et al.
[40] have used Dense Semantics-Assisted Networks for HAR.
They have used a dense semantic segmentation mask to encode
the semantics for network training and improve the accuracy of the
proposed network. The network has been tested on UCF101,
HMDB51, and Kinetics datasets and achieved 96.69%, 72.88%,
and 76.52% accuracies, respectively. Majd and Safabakhsh [41]
have proposed a correlational convolution LSTM network for
capturing the motion and dependency between spatial and time
of the input videos for activity recognition. They have achieved
93.6% and 66.2% accuracies on UCF101 and HMDB51 datasets,
respectively. Wang et al. [42] have proposed CNN-based Semantic
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Action-Aware Spatial-Temporal Features for action recognition
with 71.2%, 45.6%, 95.9%, and 74.8% accuracies on Kinetics-400,
Something-Something-V1, UCF101 and HMDB51 datasets,
respectively. Xia and Wen [43] proposed a multi-stream based
on key frame sampling for HAR. This framework consists three
parts. First, it can use a self-attention mechanism to find the
relationship between different regions; second, a key frame sam-
pling mechanism is used to select a different video frame. Lastly, a
deep spatiotemporal feature extraction mechanism is used to
generate a fine grain feature, which is used for classification
task. They have obtained 79.5%, 97.6%, 84.2%, and 71.6%
accuracies on HMDB51, UCF101, Kinetics 400, and Some-
thing-Something Dataset, respectively. Saoudi et al. [44] used
3D CNN for feature extraction, followed by LSTM network
with an attention mechanism for HAR. The network is tested on
UCF101 and HMDB51 datasets and achieved 97.98% and 96.83%
accuracies, respectively. Chen et al. [45] proposed improved
residual CNNs with spatial attention modules. They have found
95.68% and 72.6% accuracies on UCF101 and HMDB51 datasets,
respectively.

HAR based on the frequency domain are well known due to its
robustness against blurring, geometric changes, and intensity
changes [46]. In addition, it is computationally efficient for imple-
mentation [47,48]. Tran et al. [49] have used the frequency domain
features to minimize the variability of effect and achieved 82.7%
accuracy on the KTH dataset. Kumara et al. [50] have used
foreground/background segmentation as preprocessing, discrete
Fourier transform for feature extraction, and K-nearest neighbor
(KNN) as a classifier for HAR. Lei et al. [51] have proposed a
frequency-based descriptor for face recognition in low resolution.
Ojansivu et al. [52] use local low-frequency Fourier phase infor-
mation for rotation and blur-insensitive texture analysis. Ahonen
et al. [53] use an LPQ-based feature to recognize blurred faces.
Briassouli [54] describes motion statistics without requiring the
estimation of optical flow, and it is useful where appearance
features could be more informative. Foroosh et al. [55] have
suggested estimating subpixel shifts using the phase correlation
method. Feng et al. [56] have proposed 3D human skeleton-based
HAR. They have partitioned the scene into several primitive
actions based on the motion attention mechanism. They extract
features from primitive motion and feed them into CNN architec-
ture to recognize human action.

In this paper, we use the LPQ feature to overcome two main
limitations of the HAR system: illumination variation and image
blurring. Further, the result of the LPQ feature is fed into SVM
classifier to recognize human activity. Moreover, the following
section compares the results with those of the existing state-of-the-
art approaches.

III. THE PROPOSED METHODOLOGY
This paper proposes a blur-invariant frequency-based feature
descriptor for HAR. The descriptor can overcome illuminance
changes and image degradation caused by camera motion, mis-
focused optics, movements in scene, and environmental condi-
tion.Work has been done to overcome the aforesaid limitations by
considering a single or combination of different feature descrip-
tors and feeding toML classifiers [16]. However, there is a need of
improvement in the performance of HAR in a blurring environ-
ment using single feature. It motivates the development of a
robust blur-invariant LPQ feature for HAR on complex datasets.
LPQ extracts texture information in a frequency domain. The

extracted features are further fed into classifier to recognize
human activity. Figure 1 shows an overview of the proposed
approach. Frames are extracted in a video sequence, converted
into grayscale image and resized to 128×128. Once data is
preprocessed, texture-based LPQ features are extracted, and
then the concatenation of the histogram of the features is fed
to the SVM classifier to recognize activities.

A. FEATURE EXTRACTION

In this step, the proposed feature vector is the concatenation of the
histogram of all frames in a video. LPQ feature is first proposed by
Ojansivu and Heikkila [57]. It is a blur-invariant feature descriptor.
Blurring is one of the issues frequently occurring in vision-based
HAR by camera motion, misfocused optics, and movements in the
scene. In literature, the LPQ feature is used in various applications
like facial expression recognition, person authentication system,
and so on [51–53,58].

It shows the blur invariance property of an image by separating
the magnitude and phase part of the discrete Fourier transform of
the blurred image G(u). The blurred point spread function gives
only two valued functions of the phase. In image processing,
Fourier transform converts the signal from the spatial domain to
the frequency domain. According to the Fourier transform prop-
erty, a signal change in the spatial domain can reflect the change in
the frequency domain. Let f(x) be an image. The corresponding
frequency domain representation of image f(x) is obtained mathe-
matically by the short-term Fourier transform (STFT) and is shown
in equation (1) [57]:

Fðu,xÞ =
X
y∈Nx

f ðx − yÞe−j2πuTy = wT
u f x (1)

where Fðu,xÞ represents the transformed image at frequency u and
pixel x, wu represents basis vector of an image f(x), fx is a vector
containing all samples from neighborhood 3×3 pixel (Nx), and wT

u
is the transpose of wu.

In LPQ, the transformation matrix is computed by separating
the real and imaginary parts of the four lowest frequencies using
STFT and is shown in equation (2). Further, the covariance matrix
of the transformed frequency Fx is obtained by assuming that the
original image function f(x) is a result of a first-order Markov
process and obtained from the equation (3). The whitening trans-
form Gx is calculated by using equation (4). Lastly, scalar quanti-
zation ofGx is done by using equation (5). The range of qj is from 0
to 255 is shown by equation (6) [51]:

Fx = Wf x (2)

D = WCWT (3)

Gx = VTFx (4)

qj =
�
1, if gj ≥ 0
0, otherwise

(5)

b =
X8
j=1

qj2
j−1 (6)
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B. LPQ ENCODING

LPQ coding and formation of histogram is similar to LBP.
However, LBP feature extraction is done in spatial domain and

LPQ work in frequency domain. LPQ is a local texture feature

which outperforms LBP and LTP. The process of LPQ encoding is

shown in Fig. 2.

Fig. 1. An overview of the proposed approach.
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C. CLASSIFICATION

SVM [59–61] is one of the most commonly used supervised ML
approaches for classification. The goal of SVM is to find optimal
separating plane/hyperplane that can divide n-dimensional space
into different classes. Here, we can ensure that the distance of
hyperplane from its nearest data point on every class is maximum
which is called the optimal hyperplane. The maximum distance of
the data point to the hyperplane is called the margin. In this
experiment, a one-to-one SVM classifier has been used to detect
human activity using the LPQ feature in the n-dimensional plane.

IV. EXPERIMENTAL RESULTS &
DISCUSSION

A. DATASET DESCRIPTION

The performance of the proposed approach has been extensively
trained and tested on UCF101 [14] and HMDB51 [15] datasets.
The datasets contain videos of different resolutions. The video files
in the HMDB51 [15] dataset have different resolutions like 352 ×
240, 320 × 240, 416 × 240, 424 × 240, etc., whereas the UCF101
[14] dataset has the exact resolution 320 × 240 for all the videos.
For the simplicity of the experiment, we resized the video frame
into 128 × 128. The entire dataset has been divided into training
and testing dataset and are in the ratio of 7:3.

1. UCF101 DATASET. UCF101 [14] dataset has 101 human
activity classes, which are divided into five categories: Human–
object interaction, body–motion, human–human interaction, play-
ing musical instruments, and sports. It has a fixed frame rate of 25
FPS and fixed resolution of 320 × 240. UCF101 dataset video
includes camera motion, different lighting conditions, partial
occlusion, cluttered background, and low-quality frame. Sample
of the video frames of the dataset is shown in Fig. 3.

2. HMDB51 DATASET. HMDB51 [15] has 51 human action
categories collected from different sources like You Tube and
Google videos. They are grouped into five classes: general facial

actions: smile, laugh, crew, talk, etc.; facial action with object
manipulation: smoke, eat, drink; general body movements: cart-
wheel, clap hands, climb stairs, etc.; body movement with object
interaction: brush hair, catch, draw sword, golf, kick ball, ride
horse, etc.; and body movement for human interaction: fencing,
hug, kick some one, punch, shake hands. This dataset is most
realistic videos including complex high-level activities having a
complex background, camera motion, and varying
luminance. Sample of the video frames of the dataset is shown
in Fig. 4.

B. PERFORMANCE METRICS

To prove the authenticity and efficiency of the proposed approach,
five performance metrics have been calculated named as accuracy,
precision, sensitivity, specificity, and F-measure [62].

1. ACCURACY. Accuracy is the ratio between the correctly
classified object to the total number of objects to be tested.
Mathematically, accuracy can be written as:

Accuracy = ðcorrectly classified object= total no. of object testedÞ
× 100

2. PRECISION. Precision is calculated as the number of true
positivity (TP) divided by the sum of true positivity and false
positivity (FP). Mathematically, accuracy can be written as:

Precision = TP=ðTP + FPÞ

3. SENSITIVITY. Sensitivity is calculated as the number of true
positivity (TP) divided by sum of true positivity (TP) and false
negativity (FN). Mathematically, accuracy can be written as:

Sensitivity = TP=ðTP + FNÞ

4. SPECIFICITY. Specificity is calculated as the number of true
negativity (TNÞ divided by sum of the false positivity (FPÞ and true
negativity (TNÞ.

Specificity = TN=ðTN + FPÞ

5. F1. It is the harmonic mean of precision and recall:

F1 = ð2 × Precision × RecallÞ=ðPrecision þ RecallÞ

V. RESULTS AND DISCUSSION
In this section, the proposed approach has been analyzed on the
mentioned datasets. Table I shows the performance of LPQ feature

Fig. 2. Process of the LPQ encoding.

Fig. 3. Sample frame of UCF101 dataset.

Fig. 4. Sample frame of HMDB51 dataset.
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and SVM classifier-based HAR on five different metrics. The
approach has achieved the considerable level of accuracy on the
challenging dataset. It is found that the approach has obtained less
accuracy on HMDB51 [15] dataset due to some inter-class vari-
ability. It is one of the common problems in which occurrences of
intermediate actions of two activities from different class are same
that results misidentification of accurate actions.

Table II compares the proposed approach’s accuracy on both
datasets with other state-of-the-art approaches. The table shows
that the proposed approach has outperformed other handcrafted and
DL approaches and is shown in the table as a boldface.

First, we compare the proposed approach with handcrafted-
based method [28–31]. Neggaz and AbdElminaam [30] have
achieved the approximately same accuracy as the proposed
approach. They have performed the HAR using three features:
MmDCT, Uniform Local Binary Patterns (ULBPs), and MIs.
However, it has moremathematical computation tomake an efficient
feature vector. The dimension of the feature increases after the fusion
of these three features. They have conducted the experiment on
UCF101 [14] and HMDB51 [15] datasets by considering only six
activities from both the datasets, respectively. However, the perfor-
mance is limited to recognize complex activity of the stated dataset.

Carmona and Climent [28] have used the template-based method for
HAR which is combined with Improved Dense Trajectories. In this
work, the Improved Dense Trajectories is obtained by the feature
fusion of HOG, histogram of optical flow (HOF), and MBH feature.
The resultant feature descriptor is more complex in terms of
computation and size of feature vector than use of a single feature.
Wang et al. [29] proposed a dense trajectories and MBH-based
descriptors for HAR. It requires more time to combine dense
trajectories and MBH features. Kushwaha et al. [31] used a linear
feature fusion of optical flow and HOG feature for HAR with SVM
classifier. The approach extracts large feature by HOG and optical
flow combination. It results more computational time compared to
single feature for extracting feature as well as classifying activity. On
the other hand, the proposed approach is outperforming various DL
methods [39–45] shown in Table II. The major challenge with DL
methods is that it requires large sampled data to classify actions
efficiently. It requires high computational cost, more memory, and
large amount of input data. In addition, the proposed approach has
also compared with Mohan et al. [63]. They have used the combi-
nation of HOG+LPQ with Fuz-SVM classifier for Object Face
Liveness Detection on their own dataset. In this paper, the combi-
nation of HOG+LPQ feature with multiclass SVM has been tested
on HMDB51 dataset and found the result shown in Table III. The
single feature, that is, LPQ, has given comparable results in terms of
accuracy. However, the number of features extracted in the combi-
nation is approximately 32 times higher than the number of features
extracted by single feature. Moreover, the computational time
required for feature extraction per video and classification also takes
more time in the combination as compared to single feature.

Therefore, the proposed approach has outperformed the state-
of-the-art approaches over HMDB51 [15] and UCF101 [14]
datasets. HMDB51 [15] contains more blurred images compared
to UCF101 [14]. Hence, the proposed approach is efficient and
invariant toward blurring.

Table I. The performance metrics of HAR on UCF101 and
HMDB51 dataset

Performance metrics UCF101 dataset HMDB51 dataset

Accuracy (%) 99.78 98.67

Precision .9978 .9867

Sensitivity .9978 .9867

Specificity .1000 .9997

F-measure .9978 .9867

Table II. Comparison of proposed approach and the current state-of-art approaches on UCF101 and HMDB51 dataset

Author(s)
Handcrafted/deep

learning-based feature Feature(s)
Accuracy (%) for

UCF101
Accuracy (%) for

HMDB51

Carmona and Climent [28] Handcrafted Trajectory 89.30 65.30

Wang et al. [29] Handcrafted Trajectory and motion 89.10 48.30

Kushwaha et al. [31] Handcrafted Motion and shape 97.18 –

Neggaz and AbdElminaam [30] Handcrafted Texture and shape 99.97 99.92

Luo et al. [40] Deep learning Spatial and temporal 98.12 77.35

Majd and Safabakhsh [41] Deep learning Spatial and temporal 93.60 66.20

Wang et al. [42] Deep learning Spatial and temporal 95.90 74.80

Huang et al. [39] Deep learning Spatial, temporal, and sequential 97.40 96.88

Xia and Wen [43] Deep learning Temporal and sequential 97.6 79.5

Saoudi et al. [44] Deep learning Spatial and temporal 97.98 96.83

Chen et al. [45] Deep learning Spatial and temporal 95.68 72.60

Proposed method Handcrafted Texture 99.78 98.67

Table III. Comparison between HOG+LPQ and LPQ feature with SVM classifier on HMDB51 dataset

Feature
combination

# Feature
extracted

Execution time for feature extraction
(per video) in sec.

Execution time for
classification in sec.

Accuracy
(%)

HOG+LPQ 8356 44.57 3654.47 99.48

LPQ 256 37.17 158.75 98.67
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VI. CONCLUSION AND FUTURE
DIRECTIONS

In this paper, the frequency-based technique has been used to
recognize human activity. Here, LPQ feature descriptor has been
considered to extract useful feature from input video and then fed
into one-to-one SVM classifier to recognize human activity. The
feature is more robust against the illuminance change and blurring
caused by the camera motion, misfocused optics, movements in the
scene, and environmental conditions. The proposed approach
has achieved 99.78% and 98.67% accuracies on UCF101 and
HMDB51 datasets, which is more complex and challenging data-
sets in HAR. The approach has also outperformed the existing
state-of-the-art approaches in terms of computational cost without
compromising the accuracy of HAR.
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