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Abstract: On a global scale, lung cancer is responsible for around 27% of all cancer fatalities. Even though there have been great
strides in diagnosis and therapy in recent years, the five-year cure rate is just 19%. Classification is crucial for diagnosing lung
nodules. This is especially true today that automated categorization may provide a professional opinion that can be used by
doctors. New computer vision and machine learning techniques have made possible accurate and quick categorization of CT
images. This field of research has exploded in popularity in recent years because of its high efficiency and ability to decrease
labour requirements. Here, they want to look carefully at the current state of automated categorization of lung nodules. General-
purpose structures are briefly discussed, and typical algorithms are described. Our results show deep learning-based lung nodule
categorization quickly becomes the industry standard. Therefore, it is critical to pay greater attention to the coherence of the data
inside the study and the consistency of the research topic. Furthermore, there should be greater collaboration between designers,
medical experts, and others in the field.
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I. INTRODUCTION
Cancer is the leading cause of death worldwide, surpassing even
cardiovascular disease. This year, the United States is projected to
have 1,688,784 new cases. That is the same as announcing a cancer
diagnosis to around 4,600 individuals daily. Figure 1 is a time
series graph depicting the rise and fall of cancer mortality rates in
the United States. The annual incidence of new lung cancer cases
has been falling over the last decade, and this trend has recently
increased. Male lung cancer incidence rates dropped by almost
twice as much as female rates. One of the three most common
cancers in men and women is lung cancer. Cancer is the most
significant cause of death worldwide, with lung cancer being the
leading cancer killer for both men and women. The overall cancer
survival rate has improved, while the death rate due to lung cancer
has stayed constant. The survival rate after five years is far lower, at
just 18%. The earlier lung cancer is detected, the higher the chance
of survival; this ratio is expected to rise significantly as more is
learned about the topic [1].

The primary purpose of the research project “Combining
Handcrafted Features and Deep Learning for Automatic Classifi-
cation of Lung Cancer on CT Scans” is to design and test an

all-encompassing strategy for the reliable and automated classifica-
tion of lung cancer using CT scans. This is possible only by
combining deep learning with more conventional, artisanal image
characteristics. The study expects that by combining these two
approaches, early detection and diagnosis of lung cancer utilizing
medical imaging technologies may be improved via increased clas-
sification accuracy, sensitivity, and specificity. The abstract should
quickly highlight the benefits to clinical practice and how combining
these strategies will increase accuracy in identifying lung cancer.

More and more people are turning to low-dose computed
tomography (CT) to check for lung cancer. The capability of
computed tomography (CT) to identify even the most minor and
lowest-contrast nodules is only one of its many advantages over
more traditional imaging methods. Detection of lung nodules on
CT scans at an early stage is crucial for proper diagnosis and
treatment [1]. A person’s chances of living for at least five years
following a cancer diagnosis are often called their “five-year
survival rate.” The term “five-year survival rate” paints a clearer
picture of the situation than any other. This word draws attention to
cancer therapy’s multifaceted and continuing nature, highlighting
that superior care may result in longer lives. The disturbing fact that
cancer treatment success is measured primarily by how long
patients live after diagnosis rather than by the concept of a
permanent “cure” is reflected in the prevalence of reporting the
five-year survival rate. This is made worse by the fact that theCorresponding author: Pallavi Deshpande (e-mail: pallavisd@rediffmail.com).
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success of cancer treatment is often measured by how long a patient
lives following diagnosis. This reality reflects the five-year survival
rate, a brutal fact mirrored in this reality.

It is standard practice for physicians to look at lesions,
investigate, and make inferences based on the nodule’s morphol-
ogy and the patient’s clinical history. However, there are three
significant drawbacks to this strategy. It is remarkable how many
instances have been recorded. Given the range of lesions radiol-
ogists see, it may take work to provide accurate diagnoses. Ineffi-
cient systems might cause patients to lose the best window of
opportunity to get treatment [1]. Specific diagnoses are probably
given arbitrarily due to differences in the knowledge and experi-
ence of individual doctors. The diagnoses made by several medical
professionals may not always agree. Because of their physical
limitations, doctors cannot fully use the data provided by CT scans.
Several things may interfere with a person’s vision, including the
human visual system, tiredness, and lack of focus.

As a result, there is a need for an automatic mode that could
help clinicians analyze CT images. Less effort would be required
to locate and use the nodule, which even seasoned chest radiol-
ogists occasionally overlook. This would increase diagnostic accu-
racy [1]. Nuclear medicine methods such as positron emission

tomography (PET) and single photon emission computed tomog-
raphy (SPECT) are examples of current molecular imaging modal-
ities utilized in clinical practice. Other options include contrast-
enhanced computed tomography (CT), magnetic resonance (MR)
imaging, and MR spectroscopy. Radiologists routinely examine
these pictures visually before reaching any diagnostic findings.
Due to the low target-to-background ratio in molecular pictures,
subtle differences may be challenging to see by eye. Due to the
wide variety of interpreters’ ability levels, clinical visual interpre-
tation is time-consuming and infamously wrong.

CAD technology may help physicians provide more accurate
diagnoses based on patient histories. The first step in treating
coronary artery disease is diagnosing the problem. Image anoma-
lies may be highlighted for closer inspection using CADe. Doctors
have a better chance of detecting and keeping tabs on the issue
because of CADx technology. The CADx system does not use
information not directly related to making a diagnosis [2]. A CAD
for lung cancer screenings consists of three main parts: data
collection, nodule candidate segmentation, and nodule type cate-
gorization. The nodule type categorization is crucial since it gives
clinicians the most relevant data for making a call. Scientists in the
field of radionics, a subfield of computer-aided diagnostics, use
massive amounts of patient data to derive various quantitative
image attributes, which they then use to study different physiolog-
ical processes. Figure 2 reveals that CAD is used in 23% of lung
cancer diagnoses. Therefore, it may be concluded that the diagnos-
tic approach is commonly used by doctors [2]. The line graph
shows that CAD has become more helpful in detecting lung cancer.
This shows how crucial CAD has become throughout the years. A
significant factor in this change might be the growing interest in
and use of CAD tools to improve lung cancer diagnosis in clinical
imaging.

For instance, the percentage of those diagnosed with lung
cancer using CAD may be shown along the y-axis. A steady and
substantial line or bar graph might show the expansion of CAD-
based projects. The increasing visibility of CAD implies that it will
be used more often in the battle against lung cancer. Due to CAD’s
rising profile, it is feasible for more medical facilities and practi-
tioners to use it. Due to its capacity to aid in detecting subtle

0

20000

40000

60000

80000

100000

120000

140000

2019 2020 2021 2022

Male and Female

Male Female

Fig. 1. Rates of occurrence of various malignancies in the United States,
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Fig. 2. Demonstration of the CAD market trend and its market share of lung cancer.
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abnormalities, help radiologists provide more accurate interpreta-
tions, and reveal situations that a human inspection alone might
have missed. As the graph’s upward trend indicates, CAD is
becoming more vital in detecting lung cancer. Clinicians put a
premium on CAD because of the potential for early detection to
improve patient outcomes (Fig. 3).

This paper investigates CT-based automated classification
algorithms for their potential in classifying lung nodules, a crucial
sign for identifying lung cancer. Feature extraction and the refine-
ment of classification methods are the main areas of concentration.
To begin, they search academic resource aggregators like DBLP
and Web of Science for works analogous to those already used in
the field. Due to the wide variety of nodules, a categorisation
system has been developed [2]. The primary goal of this research is
to categorise patients into those with low malignancy who can be
treated non-surgically and those with higher malignancy who need
surgical treatment. Typical database types are also broken out in
great depth. Then, they break down each work of art and explain
how it was made. All texts are analyzed and classified using several
criteria. They also analyse the methodology’s advantages and
disadvantages and discuss how it may be enhanced in the future
[2]. As a result of our investigation, we must ensure that the study’s
data makes sense and that the research topic is maintained consis-
tently. This is necessary because of the impact on the study’s
robustness and repeatability. Paying close attention to these details
can increase the trustworthiness of study findings and pave the way
for future advancements in automated lung nodule categorization.

II. Literature Review
According to Xie et al. [3], Epidermal growth factor receptor
(EGFR) mutations are particularly useful in treating lung adeno-
carcinomas, one of the most frequent histological subtypes of lung
cancer. Patients with EGFRmutations in lung cancer candidates for
EGFR tyrosine kinase inhibitor treatment should be identified as
soon as feasible. The current gold standard for identifying EGFR

mutations is the mutational sequencing of samples. Sun et al. [4]
considered that significant advancements have been made.
Although EGFR status may be determined by biopsy testing, it
may be more challenging due to the vast diversity of lung tumours
and the necessity to characterize particular tissue sites. This is due
to the broad variety of lung cancers.

Furthermore, there is the possibility of cancer spreading during
the biopsy procedure itself. Several factors, such as the rarity of
tumour samples, difficulty obtaining tissue samples, low DNA
quality, and high cost, may restrict the use of mutational sequenc-
ing. In these cases, it is crucial to have access to a simple, non-
invasive way of testing for EGFR mutations [3]. The potential for
automatic classification to help doctors identify lung nodules has
never been more significant. Interest in the research on CT image
classification has been sparked by the possibility that it may reduce
the need for human labour thanks to the use of computer vision and
machine learning methods. In this study, we review the present
state of automated lung nodule classification and provide some
context on generic frameworks and algorithms. Our results show
that deep learning-based approaches are currently preferred for
identifying and categorizing lung nodules. Data collection and
analysis are pushed to be as consistent as possible. In a time when
automated categorization can provide clinicians with expert assess-
ments, collaboration between designers, medical specialists, and
other stakeholders is vital.

Wang et al. [5] argue that, for instance, computed tomography
(CT) is a non-invasive technique that is increasingly employed in
cancer diagnosis and might be used to evaluate lung cancer.
Researchers have shown that gene expression patterns in lung cancer
may be predicted using CT scans, specifically EGFR profiles.
Sun [6] explained that Biopsies have their role, but image analysis
is meant to supplement existing knowledge. If they consider the
heterogeneity within the tumour itself, for instance, using CT
imaging, they may be able to forecast EGFR mutation status.
Additionally, they may use CT imaging to ascertain which of the
patient’s tumours is more likely to contain an EGFR mutation and,
therefore, warrants a biopsy. This procedure is carried out when a
significant number of tumours are present. CT imaging requires no
special equipment and is widely accessible [6]. In a system that
combines expert-defined image characteristics with automated pat-
tern detection using deep learning, lung cancer may be identified
from CT scans. To accomplish the intended categorization, this is
done. While the interpretability and flexibility of handcrafted fea-
tures shine brightest in the face of little data, the usefulness of deep
learning resides in its power to sift throughmassive datasets in search
of subtle patterns. This synergy makes it more likely that a correct
lung cancer diagnosis will be made since it draws on expert
knowledge and data-driven insights. Precise segmentation of the
tumor is one of the most significant aspects to consider when it
comes to planning treatment and assessing how well radiation is
acting to treat the illness. This is one of the most critical components.
Studies have focused on tumour segmentation based on deep
learning and molecular imaging to create powerful tools for clin-
icians to detect malignancies automatically and consistently enhance
diagnosis and therapy [7]. This has been the primary focus of the
research. These studies were carried out to develop practical tools for
clinical practitioners. These investigations are being carried out to
enhance the tools available to clinical practitioners. Post-contrast
T1W-MRI is molecular imaging that is of great aid in differentiating
necrotic regions from enhancing lesions. This distinction may be
made thanks to the use of this imaging technique. This is because it
assists in distinguishing between the two distinct kinds of lesions.
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Fig. 3. The growing importance of CAD in the lung cancer industry is
show.

104 Pallavi Deshpande et al.

JAIT Vol. 4, No. 2, 2024



The company’s name comes from Philips Healthcare, which also
developed this imaging strategy. Deep learning models have been
trained to utilize multimodality MRI data, including contrast-
enhanced T1W, to increase their performance in segmenting brain
tumours. This was done to improve the accuracy with which the
models could identify brain cancers. This was done to improve the
models’ ability to detect brain tumours more precisely.

According to Suresh andMohan [8], It has been suggested that
“radiomics,” a word that incorporates both semantic features and
quantitative measurements, might be used to predict whether or not
a CT scan would be able to identify an EGFR mutation. Although
this strategy is sound, it needs more focus on the EGFRmutation in
favour of a more holistic approach. Feature engineering-based
radiomics methods depend on human labelling efforts for precise
tumour boundary annotation. Because of this, the method’s use-
fulness is severely limited. Remember that while determining
radiomic features, neither the tumour’s microenvironment nor
any adjacent tissues are considered.

On the other hand, complex AI models can sidestep these
problems by using self-learning strategies like deep learning.
Li et al. [7] Deep learning models have shown performance levels
on par with human practitioners’ skin cancer recognition, diagnos-
ing eye abnormalities, and forecasting non-invasive liver fibrosis.
The reason is that these models readily adjust to new conditions and
data. Another area where deep learning algorithms show great
promise is identifying lung cancer.

In contrast to feature engineering-based radiomics, deep
learning-based radiomics can autonomously train features from
image data, removing the requirement for exact tumour border
annotation. When compared, radiomics uses a technique based on
feature engineering. Deep learning-based radiomics may extract
features that are flexible to particular clinical outcomes; in contrast,
feature engineering-based radiomics may only represent general
traits without the specificity essential for result prediction [9].

The state of automated lung nodule categorization and its recent
developments, existing techniques, and current problems are dis-
cussed. This research aims to shed light on how well-automated
systems can identify lung nodules from medical images, as well as
their strengths, weaknesses, and future prospects. This research aims
to understand better how automated categorization systems may aid
medical diagnosis and decision-making. Saba et al. [10] argue that
Lung cancer has a high death rate. How a disease is treated may be
radically altered if subgroups of patients are identified. Predicting the
results of clinical trials and individual patients may be possible using
the histologic phenotype. The non-small-cell subtype of lung cancer
accounts for over 80% of all cases (NSCLC). The twomost prevalent
histological subtypes of non-small cell lung cancer are adenocarci-
noma (ADC) and squamous cell carcinoma (SCC), which may arise
from small or large airway epithelia. In histopathology, tissue is
commonly classified based on visual evaluation under a regular light
microscope. This tactic has often proven successful. However, a
biopsy may only be able to capture part of the morphological and
phenotypic picture of the disease due to the possibility of diversity
across and within tumours.

A pathologist may only gain a partial image of the tumour’s
surroundings by looking at one or two slides from the tissue block
submitted for diagnosis. Afshar et al. [11] Described that the
pathologist’s job is now more difficult due to this development.
Although diagnostic molecular pathology has the potential to aid in
the identification of distinct oncogenic driver mutation patterns for
precision oncology in lung malignancies, it has not yet been fully
integrated into the standard pathology workflow due to a lack of

experienced practitioners and high costs [11]. The study used many
metrics, including accuracy, precision, recall, specificity, F1-score,
and area under the receiver operating characteristic curve (AUC-
ROC), to see whether the combined technique was superior to the
individual strategies. Some of the obstacles that deep learning has
had to overcome include the complexity of feature engineering, the
need for fine-tuning hyperparameters, and the difficulty of obtain-
ing a varied dataset. The high data and resource requirements of
deep learning mean that it still needs to be widely used despite its
capacity to discern complex patterns. Traditional methods are used
because of their interpretability; however, they may need help to
detect more complex patterns. There may be historical precedents
for addressing these concerns. By analyzing these issues, we can
determine whether the combined strategy produces a balanced
solution that overcomes the limitations of both methods.

According to Nasrullah et al. [12], given the difficulties in
making a correct diagnosis of lung cancer and the limitations of
current methods, innovative clinical data evaluation tools are
needed to supplement biopsies and help better detect disease
features. Computer-aided diagnosis, used in analyzing pathology
slides, is one area with the potential to reduce reader variability.
Existing methods only partially use the vast quantities of new data
available in contemporary clinical practice despite the widespread
use of CADx-friendly systems and advancements in digitalising
2-D pathology slides and 3-D microscope photographs. Histologic
classification, if updated with routinely obtained radiologic pic-
tures, can modify diagnostic and treatment choices drastically [12].
This introductory section will serve as a foundation for future
literature study, which will comprehensively analyse all relevant
materials. This research aimed to summarize what has been learned
about automated lung nodule categorization recently. In this article,
we examine the significance of image processing and CAD in lung
cancer diagnosis and the most relevant studies and findings in this
area. By systematically reviewing the relevant literature, the field’s
current status may be determined, and new areas of study, knowl-
edge gaps, and opportunities for innovation can be uncovered. The
context provided here is crucial for understanding the study’s aims
and the need for further research.

It has been shown that deep neural networks (DNN), which
can integrate input from a wide variety of data modalities, are
effective for task-specific high-level feature learning. Several
experiments have shown this to be true. For example, consider
the training needed to distinguish MRI brain disease findings. This
kind of education is crucial. To foresee the evolution of cancer in
four patients with brain tumours, we used incremental manifold
learning and DNN models. All of these individuals were in the late
stages of their illness. First, statistical sampling is used to choose
landmarks. Next, the landmarks are used to figure out the manifold
skeleton [13].

Finally, the Locally Linear Embedding (LLE) algorithm fits
out-of-bag samples into the skeleton. This is the feature extraction
process in an incremental manifold learning system. The classifier
was trained using a GMM, and features were prioritized based on
their Fisher scores. Feature extraction, feature selection, and
classification may occur in real time if the data used to retrain
the DNN model are unsupervised [14]. Because of this, both
processes can happen at the same time. The subsequent supervised
modification of the model’s parameters using label information
makes this possible. Because of this, the planned outcomes may be
realized. When a good training set that has been manually labelled
is unavailable, CNN-based models are severely limited in their use.
This is because no training set was made available. The most
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common kind of learning is supervised learning, but there are two
alternatives: unsupervised and weakly supervised. A method based
on poorly supervised stacked denoising autoencoders was created
to separate brain lesions and reduce false positives. The realization
that auto-encoder-based models work well for training models with
unlabeled data made this feasible. Given the limited size of the
LGG data set, transfer learning is essential. Initially, a large
quantity of HGG data was used to train a network, and then the
network was fine-tuned using data from just 20 instances of LGG.
This was done to find the best way to divide LGG into component
elements [15].

Regarding tumour segmentation, deep learning models out-
perform those trained using shallow structures. Deep learning
models may derive a more generalized or granular representation
of characteristics from visual input. A model’s performance im-
proves compared to those that utilize deep structures or only use
shallow structures. This is because the complexity of deep struc-
tures exceeds that of shallow ones. Cutting down on the time
needed for training deep learning models and preventing their
models from being overfit are of the utmost importance.

Singh and Gupta [16], argue that radiomics has advanced in
recent years as a method of obtaining quantitative radiographic
signals to determine the phenotype of solid tumours. The research
supporting such variables’ predictive value and practicality for
stratifying patients continues to grow. However, lately, researchers
have shifted their focus from manually extracting features to deep
learning, particularly to convolutional neural networks (CNNs),
which automatically learn representative features from data. After
several years of research, scientists have decided to shift their focus
away from character trait extraction by hand. Naik and Edla [17]
presented that modern multi-parametric algorithms have been devel-
oped with the intention of being employed in therapeutic settings
where cognitive decision-making is crucial. Integrating such
advanced computer vision algorithms into standard medical imaging
can significantly enhance the quality of care by assisting with
diagnostics and treatment planning for oncologists and pathologists.
This aim might be attained by using such strategies. Deep learning
frameworks could accurately categorize lung nodules with over 70%
sensitivity and specificity. New studies show that CT can identify
and diagnose lung nodules with a sensitivity and specificity above
98%. Pathological response of chemo radiation-treated NSCLC was
predicted using time-series radiography and deep learning models,
with an area under the curve (AUC) of up to 0.7429. Further,
radiomics based on deep learning has shown promise in analyzing
many anatomical areas linked to disease. With an area under the
curve (AUC) of 0.91, our method for predicting the mutational status
of low-grade gliomas beats the existing gold standard [17]. Since the
combination of deep learning and user-generated characteristics is
expected to bemore resilient than eithermethod alone, we predict the
final accuracy will be greater. This is the best estimate we have at this
time. Handcrafted features have the advantages of domain-specific
expertise and interpretability, but they may fail to pick up on specific
subtle patterns because of this. This holds despite the use of artisanal
touches. Despite its complexity and seeming opaqueness, deep
learning can accurately identify even the most subtle patterns. If
the two are combined, the model may reap advantages from both
features, those developed by humans and those learned by the
model via deep learning. By integrating these two models, the
accuracy of the resultant model will increase. This is based on
studies done in the past. This is because the model might pick up
insights from the traits and representations already created by
professionals in the industry.

III. Methodology
Two main avenues of inquiry may be used when deciding how to
categorize nodules seen on CT scans of the lung. The size, form,
and position of nodules may be used to classify them into at least
six distinct categories, with two additional classes being feasible
(based on the rating of malignant). See Fig. 4 for a discussion of
their challenges when classifying lung nodules. Possible resolu-
tions to these two problems are explored further below [18]. In this
study, researchers used CT images to classify lung cancer using
convolutional neural networks (CNNs). Since CNNs can automat-
ically learn hierarchical features from raw data, they excel in image
analysis applications. The research most likely used variants of
well-established CNN architectures for the picture categorization
tasks. These systems utilize numerous layers of convolutional and
pooling procedures to capture more abstract characteristics. In
order to make use of insights gained from other domains, it is
possible that transfer learning was used. This is a method where
pre-trained models on massive datasets are fine-tuned for particular
tasks. To correctly categorise lung cancer, this selection of deep
learning models is meant to efficiently capture complicated patterns
within the CT scan pictures.

A. FOUR-TYPE NODULE CLASSIFICATION

Spherical nodules, sometimes known as tiny lumps, may occasion-
ally be seen on a scan of the lungs. Nodules can distort the natural
forms of essential organs and the pleura due to their proximity to
these structures. Because of this, the most typical way to recognize
this abnormality is based on the visual characteristics of the lung
nodule and the areas around it. Pleural-tail nodules (P) are located
adjacent to the pleural but are only connected by a thin tail, in
contrast to juxta-pleural nodules (J), which are attached to the
surface of the pleura. This particular form of organization is used by
the great majority of individuals (Fig. 5) [18].

As a direct result, one can infer that a sizable number of
professionals working in the medical field support the use of
computer-aided diagnosis (CAD) in the process of making diag-
noses. This finding is likely the direct result of the greater emphasis
that medical professionals place on CAD technology to assist them
in providing accurate diagnoses. This conclusion may be deduced
as a direct consequence of the increasing reliance that medical
professionals are placing on CAD technology. CAD plays a vital
role in the interpretation of medical pictures and in offering insights
that enhance the knowledge and skills of medical professionals
since CAD is now an essential component of the diagnostic
process. This is abundantly clear because CAD is now an integral
component of the diagnostic process. This discovery demonstrates

Fig. 4. These are the problem statements about the categorization of lung
nodules in this investigation.
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the rising realization that computer-aided diagnosis (CAD) has the
potential to boost diagnostic accuracy as well as patient care across
a vast spectrum of medical subspecialties.

This problem has been the subject of several documented
efforts to find a solution. The input patches are images of lung
nodules; the output is the kind of nodule detected. Formally, as
shown by the following equation (1) [18].

y = f ðxÞ ðx ∈ Rl�w�c, y ∈ fW ,V ,J,PgÞ (1)

B. TYPE NODULE CLASSIFICATION

Nodule classification (benign/malignant grade) has been studied
extensively because of its perceived complexity. They also have a
method for determining whether or not a nodule in the lungs is
cancerous. Equivalent with y representing the nodule’s cancerous.
Figure 6 depicts many distinct malignant nodule forms [18].

Figure 6 depicts the apparent connection between suspicious
person detection rates and cancer incidence rates in populations
where such rates were identified. The link is graphically shown in
this article. Patients with blatant signs of illness or abnormalities on
diagnostic imaging are called “suspects. Some people with cancer
diagnoses are instantly assumed to be guilty. When a patient’s
cancer is suspected, more testing is performed. The figure likely
depicts a distribution of individuals with their respective malig-
nancy rates, showing the diversity in these rates among those
suspected of having the condition. This graphic may be helpful for
pattern recognition since it shows how specific characteristics and

experiences are associated with higher or lower cancer rates. Since
we do not have ready access to Fig. 6, we cannot comprehensively
analyse the correlation between complex patients and cancerous
growths. (The availability of the ground truth dataset is essential for
training and evaluating proposed algorithms for lung nodule image
categorization. Due to regulations and patients’ rights to privacy,
the healthcare sector has a more challenging difficulty than other
businesses getting datasets. In light of this, some studies aggregate
data from public and private resources like databases and hospi-
tals.) [19]. The primary goal of this work is to categorize the many
kinds of lung nodules that might appear on a CT scan. We closely
examine the Type Nodule Classification and the Four-Type Nodule
Classification to see which works best for categorizing nodules.
According to the Type Nodule Classification, nodules may be
benign or cancerous. According to the Four-Type Nodule Classi-
fication, nodules are divided into benign, intermediate, and malig-
nant types. Based on their size, form, and location, nodules may fall
into one of six categories in the Four-Type Nodule Classification
system (with two more categories possible depending on the
nodule’s malignant potential). There are many risks associated
with this treatment, and one of them is that the nodule might distort
and change the shape of the nearby organs. It takes more experience
to tell the pleural-tail nodules apart from the juxta-pleural nodules.
Using the Type Nodule Classification system, it may be challeng-
ing to tell whether a nodule is benign or malignant. It is difficult for
the study team to acquire access to the information they need
because of the rigorous privacy laws that apply to the healthcare
industry.

Fig. 5. CT images of four distinct lung nodules are shown.

Fig. 6. Suspect patients with a high malignancy rate.
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C. LIDC-IDRI AND LIDC

This data repository was built by the National Cancer Institute
(NCI). Data from seven academic institutions and eight medical
imaging businesses were used in this study of lung cancer in its
earliest stages.

In LIDC 1.0, there were 399 distinct scans. LIDC and IDRI
pooled their resources to scan 1,010 persons. A panel of four
experienced radiologists reviewed each CT scan twice, once using
an XML file to document their findings and once referring back to
the original picture and making notations like LIDC. It used to be
the case that during the blind read, each radiologist was responsible
for doing their reading and assigning their scores [19]. Once the
first blinding phase was complete, the data was collected and sent
back to the original radiologists. The radiology team concluded
after comparing their results with those of the other three specia-
lists. After reviewing the data and making detailed notes, the
radiologists concluded. Lung nodules may be named in two stages
without requiring consensus. Nodules more prominent than 3
millimetres in diameter were classified separately from smaller
nodules and those that were not nodules at all (greater than or equal
to 3 mm in size) [19].

Four radiologists’ reports were pooled into a single XML file
detailing the CT series. Outlines and quality ratings were supplied
for all nodules more prominent than 3 mm, whereas smaller
nodules received just 3-D centre-of-mass and location estimates.
“The figure in Fig. 7 is easily understood since it employs common
symbols. Table I displays the most prevalent forms of nodules [19].

Separate columns in the data table provide different informa-
tion about a nodule. Principal identifiers of the patient are recorded
in the first column. The numbers for the various nodules are listed
in the second column. The third and fourth digits of the node ID

indicate the x and y coordinates, respectively. The Z-coordinate of
a nodule indicates the particular slice utilized to outline the nodule.
Locations of the nodule’s edges in coordinates are listed in
column 6. According to the statistics in the third to last column,
radiologists are unlikely to diagnose this nodule as malignant. The
top two rows represent nodules more significant than 3 millimetres
in diameter, while the bottom two rows describe nodules less than
that size [20].

D. ELCAP PUBLIC LUNG IMAGE DATABASE

Information from the Early Lung Cancer Action Program database
became available to the public. The ELCAP and VIA research
teams collaborated to build a consolidated database that can be used
to evaluate the relative merits of different CAD applications. In all,
380 images of lung nodules and 51 whole-lung CT scans with
verified low radiation exposures went into the creation of this
database. The CT scans were performed with a slice thickness of
1.26 millimetres, and patients were instructed to keep their mouths
closed and not breathe during the procedure. Additionally, the
patient had access to the radiologist’s pinpointed nodule loca-
tions [20].

In ELCAP, nodule sizes were smaller than in LIDC-IDRI, and
non-nodules were omitted from the study. Instead, IDRI sizes were
more significant in LIDC-nodule LIDCs. A CSV file was included
with each instance, providing the median positions of each nodule
in Table II. Each column depicts a single lung nodule. The scan ID
is shown in the first column. Using columns 3 and 4, locate the
centre of the nodule. In the last column, you will get the precise
location of the nodule on this slice. The ELCAP scanner was used
to acquire the CT image of the lungs, as seen in Fig. 8 [20].

Fig. 7. Lung CT image.

Table I. Description from LIDC-IDRI

Case Nodule ID X Loc. Y Loc. Z Loc. Detailed nodule outline Cancers

008 Nodule 002 195 291 38 (189,279), (188,279), : : : , (190,282), (189,282) 4

008 IL057_159748 292 267 31 (289,281), (290,280), : : : , (288,280), (289,282) 4

0091 Nodule 005 178 281 11 – –

0091 Nodule 006 362 331 107 – –
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The ELCAP can provide lung scans, like the one shown in
Fig. 8, and the findings of these scans can potentially lead to
detecting abnormalities or other occurrences that were not previ-
ously detected. Using some form of visual aid makes it easier to
determine the exact anomalies that have occurred. The pleural
effusion could appear on a CT scan as a ground-glass opacity, a
pleural nodule, a pleural mass, or pleural consolidation. There is
potential for every one of these expressions. This picture might
point to the outward manifestations of various diseases, which
would help medical professionals arrive at a more precise diagno-
sis. Even though the imaging data are required for a more in-depth
explanation, Fig. 8 offers a visual picture of the abnormalities.
There were 155 nodules and 94 non-nodule records located in the
database. The patients’ ages, sexes, degrees of subtlety, nodule
sizes, and geographic locations were also recorded. It was standard
practice for CT scans to be evaluated annually by a smaller,
regional facility and a more extensive, centralized facility. Auto-
matic nodule detection and segmentation, semi-automatic nodule
volume assessment, categorization of nodules as benign or malig-
nant, and measurement of nodule size difference are all possible
functions. The database used by Automatic Nodule Detection
consisted of fifty test scans and five instances. The method
compares several nodule detection strategies. Data collected by
any institution may be made publicly available online for evalua-
tion. Research published in the literature often draws on data
collected from both public and private hospitals. Users seldom
use these databases, and as a result, they only provide a little in the
way of depth [20].

IV. EXPERIMENTAL RESULTS
Existing research often begins with feature extraction before
feeding the data into a classifier since this is the conventional

procedure for studies that use traditional machine learning algo-
rithms. The chosen works draw on deep-learning techniques,
including the standard data feeding into a neural network to identify
patterns. In a separate area, convolutional neural networks (CNNs)
and softmax classifiers carry out the whole classification process
from beginning to finish. Experimenting with feature extraction
from 3D photographs may be done using either the standard ML
features or the deep features offered by 3D convolutional neural
networks. The methods used and findings from the studies chosen
are summarized in Table III. Each table has to include a title,
authors, publication date, data type, and results [21].

V. RESULTS AND DISCUSSION
Since many papers are already showing interest in the classification
of lung nodule photos, it is clear that this is a vital field of research
with a bright future. Over the last several years, there has been a
clear and consistent rise in the efficiency of various reported
algorithms. Some systems now have an accuracy above 91%,
thanks to recent improvements. While much progress has been
made, there are still specific concerns to remember, such as when
comparing the findings of different datasets. Most performance
measurements are based on petite sample sizes, making it difficult
to assess the efficacy of various approaches. The significance level
test concludes that more is needed. In some instances, anonymized
data analysis is required. Re-implementing it would be challenging,
creating more work for scientists in the long run [21]. The studies
that analyzed CT images of lung cancer patients and classified them
into different types relied on manually generated characteristics.
Essential aspects of the images were captured using these char-
acteristics. Some examples of these features include the statistical
measures of the pixel intensity distribution, the size and shape of

Table II. Positional schema for lung nodules

Scan Type X Y Portion

W0002 Nodule 2 99 217 55

W0002 Nodule 2 55 225 171

W0004 Nodule 4 159 357 81

W0006 Nodule 6 121 248 67

W0007 Nodule 7 110 259 130

W0008 Nodule 8 71 225 112

Fig. 8. Explanation and display of ELCAP CT scans of the lungs.

Table III. Primary methods and a contrastive study of the two-
fold categorization

Year Record Landscapes Classifier Routine

2022 LIDC-IDRI 1 U, D 1 ANNs 1 0.8130

2022 LIDC-IDRI 2 U 2 Spectrum
grouping 2

17.4%

2022 LIDC-IDRI 3 G 3 CBIR 3 91.9%

2022 LIDC-IDRI 4 D, 3D 4 CNNs 4 0.9549

2022 LIDC-IDRI 4 U, D, 3D 5 CNNs 5 91.7%
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nodules, and the anatomical and physiological environment of the
lungs and blood vessels. These elements were handcrafted and
provided essential information on the peculiarities of cancer-related
lung nodules. The classification procedure will benefit from adding
these characteristics to better distinguish between cancerous and
healthy tissue (Fig. 9).

Tagging photos of lung nodules is a straightforward machine-
learning classification task. Extraction and expression of features
are more crucial than developing a classifier for this classification
problem. As a result, feature engineering is receiving much atten-
tion in the scientific community. Figure 10 depicts the essential
patterns in the development of technology. Prior to 2019, user-
defined feature-based techniques were often used. Recent research
has seen an almost complete shift toward feature-based methods.
Advances in computer vision and machine learning have been the
primary factors behind the evolution of lung nodule picture
classification [21]. According to the supplementary text, low-
dose CT scans are gaining ground as a diagnostic tool because
they may be able to identify even tiny, low-contrast lesions
characteristic of lung cancer. Lung nodules are more likely to
be correctly recognized and treated if they are discovered at a
younger stage. There are limits to what can be learned about a
patient’s health from a medical history and physical examination.
CAD software might enhance patient care to speed up diagnosis
and decrease waiting times. The three main pillars of lung cancer
screening are information gathering, nodule segmentation, and
nodule classification. The classification of nodules is emphasized
as a crucial step in making well-informed choices concerning lung
cancer and CAD management. Researchers have identified a
variety of quantitative image qualities from patient data that
may be used to enhance the accuracy of CAD algorithms. Before
feature extraction and deep learning can occur, CT images undergo
pretreatment therapy. The report’s appendices might include help-
ful ideas for preprocessing. The importance of various preproces-
sing procedures varies with the study’s goals, the nature of the data,
and the model’s design.

One advantage is that they are simple to implement, and
another is that they may interpret user-defined characteristics.
They could infer a 92.3% success rate from the available data
and the characteristics of the effort intensity. When texture and
semantic characteristics were used, the AUC was 0.918, and the

accuracy was 91.8%. Accuracy is achieved just via understanding
of texture. Research suggests that using nodule regions in addition
to the surrounding space may improve classification accuracy since
nodule areas alone do not offer the extra context information that
surrounding space does [21]. Several studies have shown that
considering patients’ age, gender, and ethnicity may improve
decision-making. These methods have shortcomings because of
their dependence on experts’ subjective interpretation and analysis
of the nodular image. Not all of these approaches are universally
applicable, and they are not all standardized. Specialist knowledge
is required since handcrafted variables extract features from no-
dules. It makes too many assumptions and is often dogmatic
because of an excessive reliance on one’s senses. There are
many unproven assumptions, and the fact that it was condensed
and fine-tuned from so few medical imaging samples makes it very
unlikely to be extremely useful [22].

Generalized image features are used to derive intermediate-
level information from a lung nodule. A growing number of
computer scientists and engineers are interested in this area since
it is theoretically expressible and rigorous. These methods have
limitations and cannot be used to create intricate patterns. However,
many of the characteristics produced by broad approaches are
irrelevant to the work or purpose, reducing the classification
accuracy of chosen features compared to other techniques. The

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

2019

2020

2021

2022

Female (Year) Male (Year)

Fig. 9. Efficiency pattern.

18
19

21
23

0

5

10

15

20

25

2019 2020 2021 2022

2019 2020 2021 2022

Fig. 10. Trends of the technology used in this field.

110 Pallavi Deshpande et al.

JAIT Vol. 4, No. 2, 2024



fact that the criteria used to evaluate generic features are not
specific to any application space does not help the situation.
Adding custom characteristics from the user might improve almost
every one of these methods [22].

The overall incidence of lung cancer has been decreasing at a
similar pace for men and women, but the fall has been almost twice
as quick for men. These figures show that men are faring better than
women regarding the number of newly reported cases of the illness.
One’s genetic makeup, the health of one’s family, and one’s
smoking habits are all potential contributors to this disease.
Because of this striking difference, studies must be conducted to
create cancer prevention and treatment strategies tailored to
men and women. An image of a lung nodule is analyzed using
deep features to determine critical information about the lesion.
They may acquire remarkable representational power by
giving them a vast amount of training data and a sophisticated
framework. Deep learning theoretically beats classical machine
learning techniques. This is how the visual cortex of both animals
and humans works. In tests, nodules proved to be almost 100%
accurate [22]. It was found that 5.42% of tumours were wrongly
classified as benign or malignant. When uncommon characteristics
are coupled with more prominent ones, lung nodules may seem
more realistic.

Techniques like multi-scale and multi-view networks are often
used as examples of this. In theory, deep neural networks can never
be surpassed by shallow-layer models. Each successive level of the
representational hierarchy necessitates extracting and representing
an increasingly complex set of features. Since the complexity of the
shown componential feature structure is squared, the structure’s
utility increases exponentially with increasing complexity. For
classification purposes, deep learning’s abstract representation at
a higher level is invaluable. The combination might be used to
simplify the explanation of complex functions. At the most granu-
lar levels of feature representation, the most salient and distin-
guishing information is extracted, while the less crucial ones are
discarded [23].

The “Experimental Results” section is crucial to the research
since it gives the results of the tests in a well-organized fashion. In-
depth data, statistical analysis, and quantitative evaluations are
presented in the “Experimental Results” part, while a more narra-
tive summary is provided in the “Results and Discussion” section.
This section describes the experiments, methods, and accurate
numerical findings achieved to meet the demand for openness
and precision in scientific investigation. If people can judge
whether or not research is valid, reliable, and reproducible, they
will be more likely to accept its findings. Regrettably, there are
some significant limitations to using deep learning with medical
imaging. It is possible for overfitting to occur if there needs to be
more high-quality training data. Even more concerning, deep
learning algorithms are often opaque. Experts’ opinions are chal-
lenging to incorporate into these approaches and difficult to
understand. Meanwhile, balancing training speed, accuracy, and
model size is challenging. They need in-depth computational
planning and skilled tuning specialists [23].

The standard practice also calls for retrieving user-defined and
generic features separately. Innumerable investigations have
shown that the support vector machine is the superior method
of data categorization (SVM). During training, these characteristics
are sent into a support vector machine classifier singly or pooled
(bag of visual words, fisher vector). There needs to be a strategy to
extract and communicate nodule properties on a regional or global
scale, which is the fundamental problem. It is important to note that

the most essential feature extraction and classification forms are
separate. Extracting nodule characteristics using data-driven con-
volutional neural networks (DCNNs) offers a complete technique
[23]. They might try back-propagating the loss to previous layers if
they want to improve feature extraction. Automated recognition of
the hierarchical relationships between attributes might replace the
laborious process of manually generating each one. Typically,
DCNNs have a first layer that extracts the most elementary features
like edges, lines, and points. Integrating these essential character-
istics layer by layer may allow for a more accurate representation of
critical portions of the organ or the whole organ by small neurons at
higher levels. By exchanging parameters and shrinking the data
dimension, DCNNs may preserve local feature relations. Because
big data is pervasive, deep learning is increasingly used in the
healthcare industry [23].

The findings of this research will probably have significant
implications, both clinically and theoretically, for the process by
which lung cancer is diagnosed. For automated lung nodule
classification, where the end aim is to detect possibly malignant
nodules in medical imaging, the use of human-crafted features in
combination with deep learning approaches may prove advanta-
geous. If the diagnostic procedures could be sped up, patients may
start treatment earlier, benefiting everyone involved. This one-of-a-
kind technique has the potential to lay the groundwork for the
creation of innovative computer-aided diagnostic tools that may be
used by oncologists and radiologists in the future. The findings
improved the detection and treatment of lung cancer and the
patient’s overall prognosis. There has been a meteoric rise in the
usage of 3D feature approaches in the last few years as more and
more projects include them in their workflows. They may strive to
take in more of the scene, collect stereoscopic data, and learn
anything new to portray the scene’s features better. Such methods
are compatible with both shallow and deep features and those
chosen by the user. It has been shown that, compared to 2D
approaches, 3D algorithms are both slower and provide no mean-
ingful improvements. Ever since their introduction, scepticism
about the effectiveness of these techniques has been widespread;
addressing this scepticism has been a top focus. One factor
propelling and another slowing industrial expansion is the diffi-
culty of collecting and organizing 3D data sets. Therefore, to
complete the classification of lung nodules, numerous state-of-
the-art deep models use multi-view 2D CNNs or 2D CNNs with
different views to simulate the volume of 3D images [23].

VI. CONCLUSION
This study aimed to evaluate the approaches presently used to
classify lung nodules based on CT scans. The procedure starts with
a literature review, during which temporal issues are recognized,
and datasets are characterized by the literature. The selected works
will be examined thoroughly. It is suggested that CT-detected lung
nodules be classified according to their size, shape, and location.
The methods and factors discussed in the context of lung nodule
categorization may need substantial modification before they can
be applied to other forms of cancer or other medical imaging
endeavours. Imaging findings, tumour development patterns, and
other pertinent parameters may vary significantly among cancer
types, necessitating novel ways of categorization. However, com-
mon classification strategies, such as visual analysis and relevant
traits, may aid in developing classification systems for various
cancers. Changing the system to accommodate each kind of
cancer’s unique characteristics and diagnostic requirements is a
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formidable task. The suggested categorization method has been
developed for lung nodules, but its ideas may inspire comparable
efforts about other malignancies or medical imaging. However,
adjusting well would require contemplation of how to handle the
peculiarities of various healthcare settings.

It is possible to categorize these works into many categories
based on the variety of lung nodule imagery available. The
findings, methods, and benchmark datasets are all described.
Furthermore, some further research recommendations are offered.
This discovery opens up many interesting new lines of inquiry into
the early diagnosis of lung cancer. To make the classification
system more accurate and easier to understand, the first step is
to look into the possibility of adding more advanced deep learning
architectures, such as attention mechanisms and transformer-based
models. Second, its utility would increase if used not only for CT
scans but also for positron emission tomography (PET) and
magnetic resonance imaging (MRI). Broad ramifications for medi-
cal diagnosis might be realized if the suggested combination
approach is demonstrated to be relevant to various forms of cancer
or other medical conditions. Reducing dependence on manually
produced features and incorporating domain-specific information
into the feature engineering process may help increase production.
Finally, collaboration between medical and machine learning
specialists may shed fresh light on long-standing problems.

Results from this research demonstrate that deep learning-
based technologies are currently the gold standard due to their
superior performance. Lung nodules may be represented more
accurately in 3D using a feature-based approach. More robust
models and algorithms are not needed to improve understanding
and interpretation; instead, there must be close cooperation
between academics and medical professionals. The data utilized
to train and evaluate the categorization system in the research
presumably came from medical archives or databases. The re-
searchers looked at these venues for their findings. This action was
taken to improve the system with greater probability. It was made
up of CT scan images of people with lung issues (both malignant
and non-cancerous) and a label that explained the patient’s diag-
nosis. Essential selection criteria included an adequate amount of
data to cover a variety of use cases, the addition of data to increase
diversity, the separation of data into training, validation, and testing
subsets, in-depth annotation by domain-specific experts, prepro-
cessing that included scaling and normalization, and the correction
of class imbalance. After considering these aspects, developing a
deep-learning model that accurately detects lung cancer was a
breeze.

VII. FUTURE SCOPE
CT scan pictures must undergo a series of preprocessing steps,
including manual tumour identification, isotropic rescaling, and
density normalization. The physicians used their own “seed spots”
to zero down on the parts of the tumour that needed attention. After
analysing each transverse slice individually, the open-source 3D
Slicer application finds a seed point in the centre of the tumour
region. They construct 3D volumes with the help of these seed
points and then extract 2D input tiles that are 50 mm by 50 mm in
size from those volumes. The image data were rescaled isotropic
ally with a linear interpolator so there would be less of a chance of
artefacts appearing in the final result. The end outcome is that each
isotropic pixel has a consistent spatial representation of 1 milli-
metre. In addition, linear processing was carried out to obtain a
normalized density by finding the mean and then removing it.
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