Journal of Artificial Intelligence and Technology, 2024, 4, 114-123
https://doi.org/10.37965/jait.2024.0392

'Department of Computer Science & Engineering GSoT, GITAM (Deemed-to-be-University), Rudraram, Telangana, India

Deep Learning for Automatic Diagnosis of Skin Cancer Using
Dermoscopic Images

S. Rama Krishna,' Anand Gudur,? Siddharth Jain,®> Shanmugavel Deivasigamani,* Mohit Tiwari,®
K. G. S. Venkatesan,® and Karthik Raj V’

2Department of Onchology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidya Peeth, Karad, MS, India
SInueron, Flat 401, Natraj Tower, Waltair Uplands, Visakhapatnam, India
“Computer Science and Engineering, Sri Muthukumaran Institute of Technology, Anna University, India
SDepartment of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, A-4,
Rohtak Road, Paschim Vihar, Delhi, India
®Department of Computer Science & Engineering, MEGHA Institute of Engineering & Technology for Women,
Edulabad, Hyderabad, Telangana, India
’Department of Accreditations and Trainings, Andhra Pradesh MedTech Zone Limited (AMTZ), AMTZ Campus,
Pragati Maidan, VM steel Project SO, Visakhapatnam, India

(Received 24 September 2023; Revised 28 November 2023; Accepted 31 December 2023; Published online 23 February 2024)

Abstract: Over the past few years, the healthcare industry has seen a dramatic increase in the use of intelligent automation enabled
by artificial intelligence technology. These developments are made to better the standard of medical decision-making and the
standard of treatment given to patients. Fuzzy boundaries, shifting sizes, and aberrations like hair or ruler lines all provide
difficulties for automatic detection of skin lesions in dermoscopic images, slowing down the otherwise efficient process of
diagnosing skin cancer. However, these difficulties may be conquered by employing image processing software. To address these
issues, the authors of this paper provide a novel intelligent multilevel thresholding with deep learning (IMLT-DL) model for
intelligent dermoscopic image processing. Multilevel thresholding and DL are brought together in this model. Top hat filtering
and inpainting have been included into IMLT-DL for use in image processing. In addition, mayfly optimization has been used in
tandem with multilayer Kapur’s thresholding to identify specific trouble spots. For further investigation, it uses an Inception v3-
based feature extractor, and for data classification, it makes use of gradient boosting trees (GBTs). On the International Skin
Imaging Collaboration (ISIC) dataset, this model was shown to outperform state-of-the-art alternatives by a margin of 0.992%
over the duration of trial iterations. These advances are a major step forward in the quest for faster and more accurate skin lesion
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I. INTRODUCTION

The most prevalent form of skin cancer, melanoma, is also one of
the most frequent forms of cancer overall. Melanoma, squamous
cell carcinoma, basal cell carcinoma, and intraepithelial carcinoma
are the four most frequent forms of skin cancer, although there are
many more. Intraepithelial carcinoma and basal cell carcinoma are
two other kinds. Human skin consists of three layers: the hypoder-
mis, the epidermis, and the dermis. Melanocytes are a kind of cell
that may show up in the dermis, or the top layer of skin. Rapid
melanin production is a unique property of these cells [1]. Exposure
to greater levels of UV radiation from light over a longer period of
time, for instance, may initiate melanin synthesis. The most lethal
kind of skin cancer, known as malignant melanoma, has been
linked to an increase in melanocytes. The American Cancer Society
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has released estimates predicting that there would be 96,480 new
cases of melanoma in 2019 with an associated death toll of 7,230. A
proper treatment plan can only be implemented if an accurate
diagnosis of melanoma has been made. There is a 92% likelihood
of survival for at least five years if melanoma is caught early [1].

Despite this, the similarity between malignant and noncancer-
ous skin lesions is one of the main hurdles to proper melanoma
detection argued by [2]. This means that even for doctors with
extensive experience, detecting melanoma might be difficult.
Visual inspection of a lesion may not always provide clear results
in terms of the lesion’s classification. In recent years, several
imaging techniques have become more popular for capturing
skin. Dermoscopy, which uses an immersion fluid and light
magnification equipment to provide a visual image of the skin’s
surface, is a noninvasive imaging approach. However, as it relies
on the expert’s prior knowledge, the simpler visualization approach
for recognizing melanoma in skin lesions may be prone to subjec-
tivity, failure to repeat, or inaccuracy [1].
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According to Nawaz et al. [3], the success percentage of
dermoscopic images collected by nonspecialists for melanoma
prognosis evaluation is between 75% and 84%. Computer-aided
diagnostic (CAD) techniques are crucial for melanoma diagnosis
because they offer medical professionals with an analytical system.
We cannot expect to solve these problems unless we do this. The
melanoma CAD model incorporates the preprocessing, segmenta-
tion, feature extraction, and classification phases of the diagnostic
procedure [3]. Accurate melanoma detection relies heavily on the
CAD system’s lesion segmentation method. Many different types
of skin lesions may be seen during dermoscopy, and they may be
identified by their size, color, location, and texture. This is an
important stage, but it might be difficult to do because of the variety
argued by [4]. Hair, dark frames, air bubbles, colored illumination,
ruler lines, and blood vessels are just a few of the many distractions
that may make lesion segmentation more challenging. Differenti-
ating skin lesions was a major topic of discussion throughout this
session. A convolutional neural network (CNN) is a recent deep
learning (DL) method that has been used to improve the CAD
model [5]. Alex Net, Mobile Net, and ResNet are three well-known
examples of popular DL architectures. Numerous factors, including
the widespread interest in the Inception film series, led to the
trilogies being chosen as the theoretical basis for this investigation.
Because of its low processing efficiency, the model utilized in
Inception only partially and inconsistently realizes all of its param-
eters. It boosts efficiency, makes efficient use of computer re-
sources, and contributes very little to the network’s total
computational load, all of which contribute to Inception’s impres-
sively powerful performance [3].

We use intelligent multilevel thresholding in conjunction with
DL to build a model for the segmentation and classification of skin
lesions in dermoscopic images (IMLT-DL). The relevant intelli-
gent multilevel thresholding with deep learning (IMLT-DL) model
employs top hat filtering and in painting to perform preliminary
image processing on dermoscopic images. To pinpoint the dam-
aged regions even further, we use a technique called mayfly
optimization (MFO), which is based on multilayer Kapur’s thresh-
olding-based segmentation [6]. The segmented image is then sent
into an Inception v3-based feature extractor, which draws out
relevant information to form a set of feature vectors [7]. The
last phase involves classifying the dermoscopic images using a
technique adapted from the gradient boosting tree (GBT) model. A
simulation is run using data from the International Skin Imaging
Collaboration (ISIC) to test the IMLT-DL model proposed, and the
results are analyzed using many criteria. Following this plan will
give you a general idea of how to structure the paper you are
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writing. In the next section, we’ll have a look at the state-of-the-art
methods for segmenting skin lesions [7]. The submitted IMLT-DL
model will be analyzed in Section III, and Section IV will check the
simulation results. At this moment, the IMLT-DL model has
reached its final stage [6].

To illustrate the findings of a study on the detection of skin
lesions, we provide the following sample comparison analy-
sis table.

The purpose of this table is to provide a synopsis of the
methods employed and the results obtained in studies of skin lesion
detection. The purpose of this table is to provide an overview of the
research methods and results. New information or research may
need a reorganization of the document’s content and appearance.

Il. LITERATURE REVIEW

Daghrir et al. [8] argue that a variety of approaches for identifying
and categorizing skin lesions are described. An overview of the
Grab cut and K-means clustering algorithm-based semi-supervised
approach to skin lesion segmentation is presented. After the
melanoma has been segmented using graph cuts, K-means cluster-
ing is used to refine the lesion’s margins. Prior to being read in, the
picture undergoes preprocessing steps including noise reduction
and image normalization [8]. The image is then prepared for pixel
classification. Features were extracted using a scale-invariant
feature transform approach. In order to classify medical images,
CNN s have been used. The artificial bee colony (ABC) approach is
used in a similar way when segmenting lesions [9]. Before a digital
picture can be analyzed using the swarm-based method, it must go
through certain preliminary processing. Otsu thresholding is used
to determine the best threshold value after the segmentation of a
melanoma lesion. Delaunay triangulation is used to create a final
picture, and this technique may be used to divide up the final image
(DTM) [8].

Shorfuzzaman [9] argue that this technique uses a parallel
segmentation strategy to generate two images that are then fused
into a single lesion mask. The next step is to apply this design as a
mask on the image. After the artifacts have been removed, the skin
is filtered out of the image using a single model to provide a binary
mask of the lesions. DTM offers the ability to reduce time
compared to other approaches due to its fully automated nature
and lack of need on a trained model [10]. In this work, we provide a
new automated method for image segmentation by combining
image-wise supervised learning (ISL) with multi-scale super
pixel-based cellular automata (MSCA). The researchers eliminated
the need for the user to submit a description of the seed selection

Study Methodology

Key findings

Wei et al. [1] Visual inspection, dermoscopy.

Tahir et al. [2] Comparative study of carcinogenic and

benign tumors.

Nawaz et al. [3] Analysis of dermoscopic images by inexpe-

rienced observers, computer-aided design.
S M et al. [4]
Fraiwan and Faouri [5]

Lesion segmentation issues in dermoscopy.
CAD models based on CNN.

Waheed et al. [6] Multi-threshold mayfly optimization.

Improved prognosis is associated with earlier diagnosis of melanoma.
Inaccuracy and subjectivity in less complex visualization approaches.

Identifying subtypes is challenging even for seasoned medical professionals.

The average success percentage for those who are not experts is 75% to 84%.
The value of CAD in early diagnosis.

Segmentation is complicated by visual noise such as hair, bubbles, and lines.

Enhancing CAD using Convolution Neural Network (CNN) Architectures
(AlexNet, MobileNet, and ResNet).

Lesion segmentation using multi-field optimization and multilayer
thresholding.
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process by using probability maps. The MSCA method was then
used to segment the skin lesions [11]. A fully convolutional
networks (FCNs)-based method is employed to accurately segment
the skin lesion. Accurate segmentation of skin lesions is achieved
(compared to prior challenges) without the customary preproces-
sing procedures since several phases of the FCN are included
within the picture features to be learned (such as improving
contrast, removing hair, and so on) [9].

Ameri [12] argue that convolutional and DE convolutional
neural networks (CDNNG5) are used for the purpose of mechanically
segmenting skin lesions. This technique has an advantage over
others that need several pre- and postprocessing steps since it
largely depends on training methodologies. This approach encodes
the likelihood that a group of pixels will acquire melanoma as a
function of their location on the map. A 10-fold cross-validation
method is used to train the algorithm, and a U-Net framework is
then used to segment skin lesions based on a probabilistic mapping
of the image’s dimensions [12].

Reshma er al. [13] argue that artificial intelligence (AI) has
gone a long way in the preceding decade, notably in the domains of
DL and CNNs, enabling for the creation of trustworthy image-
based medical systems for screening and diagnosis. Recently,
automated classification using DL as the major technique of
research has supplanted image segmentation (the separation of
relevant areas in an image) and feature extraction [14]. Recently,
this tendency has become clear. Similar patterns have been seen in
the study of skin cancer detection and screening, with the use of
sophisticated DL Al replacing the more traditional approach of
image processing to filter out noise (such as hair). This direction
was adopted by the majority of studies. These more contemporary
algorithms are typically invulnerable to picture noise and do not
require the explicit extraction of characteristics. However, they are
typically computationally time-consuming [13].

Arif et al. [15] argue that using digital hair removal (DHS),
hair was eliminated from the skin lesion picture, and the impact of
the hair removal was analyzed using intra-structural similarities
(Intra-SSIM). An original technique for the segmentation of lesion
pictures according to areas of interest was created utilizing DL
(ROI). With the aid of trained neural networks, we developed a
novel representation of intermediate features to extract information
from the ROI (such as ResNet and DenseNet). CNNs were
employed to differentiate dermoscopic characteristics and lesions
[8], instead of utilizing a pertained model or excessive augmenta-
tion [15]. A unique approach for data separation leverages high-
resolution convolutional neural networks. The suggested technique
beats the other DL segmentation algorithms without the need for
any further image processing, and the results were statistically
significant. A new technique for segmentation is based on a deep
fully convolutional network with 29 total layers [16]. CNN seg-
mentation of dermoscopy pictures using attention approach main-
tains edge features. An innovative DL model is based on Gabor
wavelets for distinguishing between melanoma and seborrheic
keratosis. Seven separate CNN models that made use of Gabor
wavelets were integrated to form the ensemble used to construct
this model. More specifically, their technique combines a Gabor
wavelets-based model with a CNN model for images [8]. Perfor-
mance assessment findings showed that a collection of image and
Gabor wavelet-based models performed better than any of the
individual models. This ensemble performed better than a subset of
CNN models constructed just using Gabor wavelets [8].

Kaur et al. [17] argue that recently it has been shown that deep
transfer learning may be used for robust automated internal feature

extraction in the field of medical imaging. There were three phases
to find melanoma. The first thing to do is to make sure the dataset is
error-free and resize the photographs to the right dimensions.
Subsequently, feature extraction is improved with the help of
deep transfer learning [18]. It compared the performance of six
different transfer learning networks in classifying multiclass le-
sions using these characteristics to train a set of classic classifica-
tion methods, including support vector machine (SVM), logistic
label propagation (LLP), and k-nearest neighbors (KNN). How-
ever, their findings were contingent on a larger dataset [19]. The
primary objective of picture augmentation is to enhance existing
photographs without producing duplicates. Creating many variants
of the same picture in the dataset with varying degrees of improve-
ment confuses findings and does not accurately reflect the effec-
tiveness of the system [20].

lll. METHODOLOGY

The technique through which images of skin lesions were used in
the process of establishing a classification system for skin cancer is
shown in Fig. 1. The approaches that were employed in this inquiry
did not require the extraction of features or the segmentation of
data [21].

Rather, both of these tasks were performed automatically
(i.e., separation of lesions from the rest of the image). The several
layers and procedures that are included inside the DL model are
responsible for automatically resolving each and every one of these
issues. An in-depth description of each component is provided in
the following passages [21].

A. DATASET

For this paper, the authors used the dataset HAM1000 (Human
against Machine), which contains dermatoscopic pictures of the
most prevalent skin malignancies [22]. Seven classes may be used
to classify each set of pictures: there were 1113 melanomas, 6705
nevi, and 142 vascular lesions altogether. Random x-y scaling in
the range and random x-y translation in the pixel range were
utilized as enhancing techniques [7].

B. DEEP LEARNING MODELS

Numerous applications, especially those involving medical imag-
ing, have shown the efficacy of transfer learning. This is accom-
plished by swapping out poorly constructed and tested ad hoc deep
CNN architectures with more robust pretrained models [23]. These
models’ bottom layers are taught to recognize and respond to
common visual cues like color and brightness [24]. The layers that
follow the input must be retrained and customized to account for
the unique aspects of the job they perform. This method has been
proved to be useful in a wide range of studies. Thirteen DL models
were tweaked, retrained, tested, and compared in this study for
their ability to classify skin lesions into the aforementioned
seven categories from the HAM1000 dataset. This was done to
find out which model was the most efficient at solving the
problem [7].

C. METRICS AND FRAMEWORK FOR PROGRAM
EVALUATION

According to [10], a performance’s F1 rating is based on how well
it performs across four criteria: accuracy, precision, recall, and
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Fig. 1. A diagrammatic summary of the overarching procedures discussed in this article.

specificity. Accuracy is ranked by how many photos out of a total
set were correctly labeled [23]. The accuracy of a test is defined as
the percentage of true positives. In consideration of all important
factors, we calculate the proportion of correct answers (as assessed
by recall, also called sensitivity). A photograph’s specificity,
sometimes called its selectivity, is the proportion of negative
photos relative to the total number of images. Classification
performance on imbalanced datasets is measured using the F1
score, the harmonic mean of the recall, and accuracy scores. The
ratio of confirmed to suspected negative pictures is often accepted
as the most accurate measure of precision. Definitions are provided
for the following five types of quantitative research: if all goes
according to plan, the reported scores for each course will be the
class mean [25]. The data were successfully divided into separate
datasets for research and development using three different meth-
ods. The models’ ability to generalize without becoming too
particular to the input photographs will be evaluated using these.
When we talk about “random axis translation,” we were referring to
the process of arbitrarily shifting an image along the x and y
axes [7]:

TP+ TN
Accuracy = ————— 9]
P+N
TP
Precision = ——— 2)
TP + FP
TP
Recall = —— 3)
TP + FN
TN
Specificity = ———— 4
pecificity TN £ FP )

Recall X Precision
Fl1=2x% 5
Recall + Precision ©®)

IV. EXPERIMENTAL RESULTS

From the results of the experiments, it was determined that the
IMLT-DL model accurately detected and classified photos of skin
lesions. For instance, while trying to classify instances into the
“Angioma” category, the IMLT-DL model has a sensitivity of
0.952, specification of 1, accuracy of 0.997, precision of 1, and
G-measure of 0.976. The IMLT-DL method successfully classified
the “Nevus” subset with a sensitivity of 0.957, specificity of 0.996,
accuracy of 0.991, precision of 0.978, and a G-measure of 0.967.
The IMLT-DL method successfully classified the ‘“Melanoma”
category with a sensitivity of 0.980, specificity of 1, acc. of 0.997,
accuracy of 1, and G-measure of 0.990 [26].

In the end, the DLN model has shown even better results than
the CDNN model, with a sensitivity of 0.732, a specificity of 0.754,
and an accuracy of 0.743. More recently, the CDNN model has
demonstrated a sensitivity of 0.825, a specificity of 0.975, and an
accuracy of 0.934. The ResNets model has improved sensitivity by
0.02, specificity by 0.985, and accuracy by 0.934%. The findings of
the DCCN-GC model are similarly rather good: sensitivity =
0.908, specificity =0.927, and acc. =0.934. As an added bonus,
the DL-ANFC model has been used to provide almost optimal
results, with a sensitivity of 0.934, specificity of 0.987, and
accuracy of 0.979. Comparable approaches are only 0.97 sensitive,
0.99 specific, and 0.99 trustworthy, according to the IMLT-DL
model [27]. Figure 2 shows the comparative result analysis of
accuracy, specificity, and sensitivity.

V. RESULTS

Correctly classifying photos of skin lesions into one of two
categories (benign vs. melanoma) or three groups has been shown
in the past (benign, melanoma, and nonmelanoma). One such
instance is as follows: this has been shown by previous research
to be correct. The purpose of this research was to test the ability of
deep convolutional network models to generalize their knowledge
of skin lesions from one dataset to another [28]. Ten training
iterations were run, and the average results were provided, to allow
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Fig. 2. Results analysis.

Table I. Graphs illustration for the texture model
76 7 19 2 54 66% 33%
45 47 76 4 32 7 68% 38%
65 13 76 24 3 58% 41%
3 633 32 15 52% 47%
58 12 14 237 5 71% 29%
19 8 7 76 34 1733 4 82% 17%
15 11 100 43 34 43 22 58% 41%

for any variations caused by the random distribution of data. This
action was taken to guarantee more uniform outcomes. The training
and validation times were taken into account in addition to the high
computing cost of DL models [10].

For ease of comparison, Table I summarizes the average
performance metrics from 10 iterations of each of the 13 DL
models, using 70% of the data for training. All of the models
performed rather well in terms of accuracy; however, Resnet101
performed best (76.7%). Sample rows and columns from a confu-
sion matrix are summarized in Fig. 3 for in-depth analysis. The
imbalance between the number of images in each category and the
accuracy values causes the F1 score to be lower than the accuracy
values. There is also evidence that shows smaller class sizes lead to
less precision overall [29]. The bulk of the pictures were assigned
to the NV class because they had the highest levels of accuracy
(92.5%) and recall (see NV summary for details on the NV
columns) (82.5 percent; see NV summary for more information
about the NV rows). However, only 43.1% of melanoma patients
were properly identified according to their specific subtype, despite
the fact that 71% of patients were correctly categorized overall
(recall). The gaps in accuracy and recall between the other groups
are less pronounced, but they still exist [30] (Table II).

Figure 3 depicts a progress curve for training and validation
that was created for Resnet101 by dividing the data into 70/30
halves. This graph implies two things:

(a) The model is not able to consistently minimize loss and
provide high testing accuracy, even when the number of
epochs is raised [29].

(b) The disparity between validation and testing performance is
noticeable since there are less photos available for most
classes (DL requires large datasets).

Compare and contrast the IMLT-DL model’s performance metrics
with those of other available techniques. Emphasize the model’s
usefulness and the areas in which it advances upon prior methods.
The improvement amounted to 0.992%. In the case of skin cancer,
when early identification is critical for improving patient outcomes,
please outline the significance that even tiny percentage gains in
diagnostic accuracy may have on patient outcomes and the efficacy
of therapy. Please elaborate on the implications of incremental
improvements in diagnosis accuracy in the context of skin cancer.
Analyze and report on the causes of the IMLT-DL model’s
excellent algorithmic performance. Describe how the model’s
efficiency and accuracy were improved by including multilevel
thresholding, DL, and optimization techniques. Challenges and
Restriction: take note of the difficulties that arose throughout the
process of evaluating the IMLT-DL model. Discuss how to cope
with the computational complexity of the model, as well as any
potential biases it may have and any application circumstances in
which it may still be unsuccessful. What Comes Next? Suggest
some avenues that may be explored in the future of this field of
study. There have been considerable developments in Al technol-
ogy, as well as improvements in datasets and clinical validation.
The opportunities presented by these variables for further improve-
ment of the IMLT-DL model should be underlined. Talk about how
the IMLT-DL model may be used in clinical settings and whether
or not it is ready for widespread adoption. There are a number of
considerations that need to be made, including scalability, clarity,
and interoperability with current healthcare infrastructures. In
addition to an analysis of the data, the discussion of the study’s
findings may include an examination of the implications of the
study’s findings and predictions for the future of skin lesion
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Fig. 3. A strength and conditioning curve illustration using Resnet101 and a 70/30 split of the data.

Table Il. The mean values for each deep learning model’s overall accuracy, F-score, precision, recall, and specificity with 70/30
data split

Model F1 Score (%) Precision (%) Recall (%) Specificity (%) Accuracy (%)
SqueezeNet 49.2 60.1 50.6 89.8 72.7
GoogLeNet 45.4 60.2 53.4 93.3 72.0
Inceptionv3 59.5 62.5 59.7 93.5 73.2
DenseNet201 60 69.9 59.7 93.7 76.8
MobileNetv2 61.0 70.2 60.4 93.1 72.6
Resnet101 62.3 70.6 59.8 94.0 71.7
Resnet50 59.4 69.5 594 93.7 76.4
Resnet18 61.3 65.7 60.8 93.6 72.3
Xception 57.9 65.5 60.2 93.7 71.4
Inception-ResNet-v2 58.4 66.3 59.8 93.4 74.5
ShuffleNet 59.6 63.9 60.7 92.5 72.6
DarkNet-53 62.9 62.8 59.9 93.5 75.6
EfficientNetb( 60.6 69.3 55.7 92.1 76.8

diagnosis and healthcare Al. One way to do this would be to
elaborate on the themes brought up in the results section.

6. Discussions

The mean overall performance metrics for each of the 13 DL
models are provided in Table IV; these metrics are based on 10

separate runs, with 80% of the available data being used for training
purposes [31]. Because the highest possible F1 score that could be
achieved was 66.1%, this indicates that increasing the size of the
training set by 10% had no impact on the performance measures.
The confusion matrix that may be seen in Table III demonstrates
that a substantial source of mistakes was the incorrect categoriza-
tion of NV pictures as melanoma [16]. The vast majority of courses
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Table lll. The following is an example of a confusion matrix

for the DenseNet201 model and the 80/20 data split
35 20 7 5 5 56% 43%
34 59 21 1 3 3 34 58% 40%
23 34 119 29 1 24 48% 41%
13 21 21 42 53 52% 41%
12 1 10 11 188 15 71% 30%
3 12 22 52 78% 15%
8 3 4 31 21 56% 31%

were effective in attaining a high level of accuracy but only
managed to get a low level of recall. Figure 4 demonstrates, in
addition, the same propensity toward training and overfitting that
was shown previously in the paper [31].

According to Jojoa et al. [32], the ratio of test pictures to train
images ended up being 90% after an additional 10% was added to
both the testing dataset and the training dataset. The frequency with
which each of the 13 DL models was executed is summarized in
Table III, along with the models’ average overall performance
metrics. When compared to ResNetl01 and DarkNet53, both of
these networks scored more than 70% in F1. The table indicates
that the majority of models get more accurate as additional training
data is used, with the exception of the fragile SqueezeNet model.
DL models, as opposed to more conventional machine learning
models, could gain more from larger datasets [32]. This might be
the reason why DL models seem to have superior performance. The

Tralning Progress (25-May-2022 12:37:39)

Fpoch 6

conventional machine learning models do not gain any advantage
from using more extensive datasets. Figure 5 is an illustration of an
example of the confusion matrix that may be constructed using
DarkNet-53. In comparison to past iterations, there has been a
considerable increase in the number of rows and columns in this
matrix that include at least one inaccurate classification. This trend
can be seen both horizontally and vertically. A training/validation
progress curve that demonstrates overfitting is depicted even if it
has been reduced [32].

According to Naeem et al. [7], even though a larger size of
the training dataset showed some signals of promise, there is still
more work to be done before a trustworthy diagnostic system that
goes beyond the criterion of screening can be established. On the
other hand, some of the findings were skewed since there were so
few photographs available to represent each category. Even a
little inaccuracy may have a significant impact on how well a DL
model performs overall, despite the fact that the baseline pre-
requisites for a successful DL model are fairly simple. You can
get more information by looking at Table IV, but in a nutshell, it
demonstrates how much time each model required to train,
divided down according to how it separates the data. In most
cases, the amount of time necessary to complete a task rises in a
linear fashion in proportion to the size of the training dataset,
with increments of less than 10% for each order of magni-
tude [33].

The major contributions of this research are as follows:

* A novel approach for evaluating dermoscopy pictures is
discussed in the study titled “Model Improvement Using
Multi-Level Thresholding and Deep Learning” (IMLT-DL).
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Table IV. Mean overall performance metrics for 13 deep learning models

Model F1 Score (%) Precision (%) Recall (%) Specificity (%) Accuracy (%)
SqueezeNet 49.6 60.0 49.8 89.4 58.0
GooglLeNet 53.2 69.0 52.8 83.4 58.5
Inceptionv3 59.1 63.2 59.6 84.0 58.8
DenseNet201 59.1 69.7 59.3 84.3 53.5
MobileNetv2 59.5 55.9 58.2 83.9 53.0
Resnet101 52.3 59.0 58.2 84.2 60.2
Resnet50 53.2 60.7 58.8 83.9 57.7
Resnet18 52.2 62.7 53.2 83.8 59.6
Xception 46.1 59.3 49.9 84.0 60.2
Inception-ResNet-v2 48.5 56.9 53.7 83.8 57.4
ShuffleNet 51.2 69.2 47.8 83.3 60.0
DarkNet-53 514 69.7 48.5 83.6 60.2
EfficientNetb( 49.0 59.8 42.6 83.6 62.2

» Complex image processing methods, such as top hat filtering,
inpainting, MFO, and multilayer Kapur’s thresholding, are
used to precisely locate problem areas in skin diseases. MFO
and multilayer Kapur’s thresholding are two further methods.

* Dermoscopy image classification using a feature extractor
built on top of Inception v3 and GBTs to generate fast,
high-quality feature vectors.

* In a comprehensive test conducted on the ISIC dataset, the
suggested IMLT-DL model displayed improved performance
when compared to state-of-the-art approaches for the segmen-
tation and classification of skin lesions by a margin of 0.992%.

* The research provides a clear and organized foundation for
comprehending the methods and results through its structured
approach to paper organization. The framework includes a
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discussion of the state-of-the-art methods, a presentation of the
IMLT-DL model, and an analysis of the simulation results.

This study’s main contribution is the development and testing of
the IMLT-DL model for dermoscopy image processing in skin
lesion identification. This model was used to identify skin lesions.
Based on an evaluation with data from the ISIC, our model
outperformed state-of-the-art techniques by a margin of 0.992%.
Multi-level thresholding, DL methods, and optimization algo-
rithms like MFO and top hat filtering are all a part of the
IMLT-DL model, allowing it to significantly improve the speed
and accuracy of skin lesion detection for the purpose of identifying
skin cancer. In the search for more accurate, efficient, and trust-
worthy medical diagnostics, the development of this conclusion
represents a major breakthrough.

Vil. CONCLUSION

Building a diagnostic system that is more accurate than the screening
approaches that are now in use will need a significant amount of
effort. It has been shown that encouraging results may be achieved
by using a larger training sample, but there are still a number of
obstacles to overcome. On the other hand, some of the assumptions
were incorrect since there were not enough images to accurately
portray each category. Even if there are not many variables in a good
DL model, even a little piece of inaccurate information could have a
substantial impact on how well the model works. Table IV presents a
summary of the required training time for each model, divided down
according to the manner in which it separates the data, as well as
potential connections to more material on this subject. Across orders
of magnitude, task completion durations have a tendency to rise in a
linear fashion in proportion to the size of the training dataset, often
by a margin of less than 10%. This is accurate in almost every
circumstance. DarkNet-53 is the most effective model in terms of
both the amount of time needed for training and the accuracy of
categorization. Resnetl01 is now in the position of runner-up.
DarkNet-53 may have an advantage during training, but SqueezeNet
is the superior model in terms of both speed and throughput.

VIll. FUTURE SCOPE

“Smart labs” and “smart imaging systems’” have emerged as a result
of the increasing prevalence of digitalization, roboticization, and
automation in recent years. These companies are able to quickly
and economically react to the expanding expectations that the
healthcare sector places on them. The results of our research reveal
that some new technologies are already making diagnostics better,
while other technologies have the potential to completely revolu-
tionize the area in the not too distant future. The widespread use of
biosensors and the expanded use of companion diagnostics are two
major developments that will define the future of diagnostics. Other
major trends that will have an impact on the future of diagnostics
include the increased use of liquid biopsies, direct to consumer
testing, automation, and the transformation of pathology and
radiology via the application of Al and sophisticated analytics.
Partnerships with companies that specialize in consumer technol-
ogy will be of considerable assistance in the creation of new
treatments and the modification of existing regimens. Because
the new value-based payment models will reward all participants
for successful management of preventive care, early detection, and
wellness, the only way they can be constructed is via partnerships.
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