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Abstract: Continuum manipulators have important applications in the human–machine interaction fields. The kinematics,
dynamics, and control issues of the continuum manipulators are rather different from a conventional rigid-link manipulator. By
the aid of Lie groups theory and exponential coordinate representations, the kinematics of the continuum manipulators with
piecewise constant curvatures and actuated by tendons is investigated in this paper. On the basis of differential kinematics
analysis, the complete Jacobian of the continuummanipulators is derived analytically, and then a newmotion planning approach,
named as “dynamic coordination method” is presented for the multisegments continuum manipulators, which is a class of super-
redundant manipulators. The novel motion planning approach is featured by some appealing properties, and the feasibility of the
modeling and the motion planning method is demonstrated by some numerical simulations.
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I. INTRODUCTION
Real-world robotics applications, such as minimally invasive
surgeries [1], home services [2], endoscope detection [3], on-orbit
servicing [4], and field rescues [5], are different from the applica-
tions of conventional rigid-link manipulators, while in these cases
the operation compliance, dexterity, and safety of the robot manip-
ulators are more important than the operation accuracy. Driven by a
large number of new application requirements, in the past three
decades, developing the continuum manipulators have been given
more attention in the robotics field.

By classifying the continuum manipulators according to their
drive types, four classes of continuum manipulators, including
continuously bending actuators [6], tendons [3], [7], [8], active
cannulas [9], [10], and steerable needle [11], have been presented to
date. Similar to rigid-link manipulators, the kinematics of the
continuum manipulators are also related to three spaces, which
are actuation space, configuration space, and task space. For many
manipulator systems, the actuation space and the configuration
space are not identical. Therefore, as presented by [11] and [12],
in general, we should set up two level maps to describe the relation-
ships of the three spaces and then to derive the kinematics model of
the manipulators, which is commonly necessary to control the
manipulators and realize the given operation task. Since the shape
and the structure of a continuum manipulator are featured by an
infinite degree of freedom (DOF) elastic member, parameterizing
the configuration space of the continuum manipulators by a set of
generalized coordinates is not as straightforward as that of rigid-link
manipulators. For instance, Yang et al. [7] employed the finite
element method to analyze the deformations of a flexible elephant
trunk manipulator. Although the finite element method can provide
good calculation accuracy, the high-dimensional system model is
difficult to be utilized to control the manipulator in real time. Jones

and Walker [13] presented a modified Denavit–Hartenberg (D–H)
method to obtain the kinematics model of multisection continuum
manipulators. However, the D–Hmethod-based approaches are hard
to be developed to modeling a variant curvature continuum manip-
ulator. In [14], Hannan and Walker applied the Frenet–Serret (F–S)
frames to get the forward kinematics of continuum manipulators.
Under the assumption of constant-curvature, the F–S formulas-
based model can be explicitly integrated, and the derived model
agrees with that obtained by the other methods. However, F–S fame
is undefined when the curvature of an elastic body equals zero.

Relatively, using exponential coordinates based on Lie group
theory is a more general method for modeling the kinematics of
continuum manipulators [11], [12]. Murray et al. [15] provided a
thorough treatment of exponential coordinates on the basis of Lie
group theory formodeling and analysis of different rigid-body robots.
Webster et al. [11] developed this methodology to build the model
and analyze the motions of flexible needles that have bevel tip.
Closely related to the continuummanipulators, Wang et al. [16] used
the same methodology to analyze the workspace of hyper-redundant
manipulators. With the help of the concept of twists, which is the
infinitesimal generator of the Euclidean group, and matrix exponen-
tial, which maps a twist into the corresponding screw motion, the
inherent nonlinear characteristics of motions in the non-Euclidean
configuration space of the continuum manipulators can be globally
revealed more thoroughly, while without suffering from singularities
due to the use of local coordinates, such as that arisen in the F–S
frames and D–H method. In addition, the exponential coordinates-
based methods provide a very geometric description of body’s
motions, which greatly simplify the analysis of the differential
kinematics of multibody mechanical systems. He [17] investigated
the motion planning and saturation feedback control of endoscopic
operations of continuum manipulators using screw theory.

Since the concentric tube robots [9], [10], [18], [19] and
steerable needle robots [11], [12] are primarily developed for
some specific applications of minimally invasive surgeries, the
rather small bending stiffness makes it difficult for them to beCorresponding author: Guangping He (e-mail: hegp55@ncut.edu.cn).
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applied to other fields. The continuously bending actuators-based
continuummanipulators include two types. One type is actuated by
flexible rods [6], [20], and the other type is actuated by pneumatic
tubes [21], [22]. The former is commonly an elastic member with
single or double segments and, thereby, shows certain poor
manipulability in mechanisms. While the latter is generally limited
by their rather heavy power supply systems and strong noises from
the air compressor, so that they are not applicable to hospitals,
schools, nursing homes, or other similar occasions. By comparison,
the continuum manipulators actuated by tendons generally show
more flexibility in mechanical systems design [1]–[4], [7], [12],
larger range adjustable dynamic characteristics [2], and better
adaptability in applications [2]–[4], [7], [23]–[25]. Considering
these factors and our aim of developing a rehabilitation nursing
robot, of which the main capabilities should at least include
variable stiffness in compliant operation, large motion range,
certain load capability, and dexterous manipulability. Therefore,
we are interested in developing a continuum manipulator with
multielastic segments and actuated by tendons.

The contributions of this paper are that, by applying the
exponential coordinates based on the Lie group theory, a complete
kinematics modeling process for general N-segment continuum
manipulators actuated by tendons is presented. In [11] and [16],
similar methods had also been applied to build the kinematics
model of other type manipulators, which are different from the
study object of this paper. On the basis of the inverse differential
kinematics model, a novel motion planning approach is further
presented, which is named as “dynamic coordination method”
(DCM), for the continuum manipulators. The novel motion plan-
ning approach is featured by the follwing appealing properties: it is
a programming method in global task space; it does not depend on
any convex index function or convex assumption of the searching
space; and it permits online dynamically adjust the characteristic
points of concerns so that the calculation efficiency of the approach
can be effectively improved for simple operation tasks.

This paper is organized as follows. In Section II, the forward
kinematics of the continuum manipulators with piecewise constant
curvatures are presented. In Section III, the differential kinematics
is derived, and the complete Jacobian of the continuum manip-
ulators is obtained. In Section IV, the motion planning of the
continuum manipulators is discussed, and a novel approach named
as DCM is presented. In Section V, the conclusions of this paper
and some research directions in the future are presented.

II. KINEMATICS MODELING OF A
CONTINUUM MANIPULATOR WITH

PIECEWISE CONSTANT CURVATURES
Even though the tendon driven continuum manipulators show
certain attractive features in design and applications, a drawback
of this kind of robot is that the configuration space and the actuation
space of the robot are not identical. From the viewpoint of kine-
matics modeling, this point brings some inconveniences, and two-
level maps have been built, one from configuration space to task
space and the other from actuation space to configuration space.
And then the complete forward kinematics could be obtained.

A. THE KINEMATICS MODELING FROM
CONFIGURATION SPACE TO TASK SPACE

Suppose that the continuum manipulator has segments, and every
elastic segment deforms under a constant curvature along the

backbone of the same segment. Note here the constant curvature
means the curvature of single segment is instantaneously uniform,
but it does not mean that the curvatures of all segments of the
continuum manipulator are instantaneously uniform, and also does
not mean the curvatures are invariant about time.

Fig. 1 shows a segment oi−1 − oi, where the frame
P

i−1ðoi−1−
xi−1yi−1zi−1Þ is the base frame, which is fixed to the center of the
cross section closing to the base,

P
iðoi − xiyiziÞ is the body frame,

which is fixed to the center of the cross section far away from the
base, the axes zi−1 and zi are tangential to the backbone arc, the
dihedral angle θi−1 is defined to be the angle between the top
and bottom cross-sections, the torsion angle of the body with
respect to the axis zi−1 is ϕi−1, the backbone’s arc length li−1 of
all segments of the continuum manipulator can neither be
compressed nor extended, and the frames

P
iði = 1,2, · · · ,mÞ

are established according to the left-hand rule. Thus, the elastic
segments can be parameterized in configuration space as Θi−1 =
½ κi−1 ϕi−1 li−1 �T. By these assumptions, it is straightforward
that the motion of the top cross section of the elastic segment
oi−1 − oi can be decomposed into a rotation about the axis zi−1 and
an in-plane curl deformation. Associated with the two decomposed
motions, the corresponding twist coordinates can be written as

ξrot =
h υrot
ωrot

i
= ½ 0 0 0 0 0 1 �T (1)

and

ξinp =
h υinp
ωinp

i
= ½ 0 0 1 0 κi−1 0 �T, (2)

where υ ∈ ℜ3 and ω ∈ ℜ3 are linear and angular differential
motions, respectively, and κi−1 is the curvature of the elastic
segment oi−1 − oi. The twists of the twist coordinates (1) and (2)
can be written as

ξ̂rot =
h ω̂rot υrot

0 0

i
=

2
64
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3
75 (3)

and

ξ̂inp =
h ω̂inp υinp

0 0

i
=

2
64

0 0 κi−1 0
0 0 0 0

−κi−1 0 0 1
0 0 0 0

3
75, (4)
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Fig. 1. Parameters of a segment of a continuum manipulator in configur-
ation space.
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respectively, where the symbol “∧” indicates the wedge operator
[15], which maps a vector from ℜ3 to the Lie algebra soð3Þ of the
Lie group SOð3Þ, or maps a vector fromℜ6 to the Lie algebra seð3Þ
of the Lie group SEð3Þ. By applying the product of exponentials
formula [12], [15], the transformation from the tip frame

P
i to the

base frame
P

i−1 is given by

Ti−1
i = expðξ̂rotϕi−1Þ expðξ̂inpli−1Þ, (5)

where the matrix exponential of the net rotation in (5) is given by

expðξ̂rotϕi−1Þ =
�
eðω̂rotϕi−1Þ 0

0 1

�
, (6)

while the matrix exponential of the in-plane motion in (5) is given
by

expðξ̂inpli−1Þ =
�
eðω̂inpli−1Þ ðI−eðω̂inpli−1ÞÞω̂inpυinpþωinpωT

inpυinpli−1
kωinpk2

0 1

�
: (7)

Then, substituting (6) and (7) into (5), the transformation (5)
can be written as

Ti−1
i =

�
Ri−1
i Pi−1

i
0 1

�
, (8)

where

Ri−1
i = eðω̂rotϕi−1Þeðω̂inpli−1Þ (9)

and

Pi−1
i = eðω̂rotϕi−1Þ

×
�
ðI− eðω̂inpli−1ÞÞ ω̂inp

kωinpk2
υinp þ

1

kωinpk2
ωinpωT

inpυinpli−1

�
: (10)

Note that kωrotk = 1, thus by using the Rodrigues’ formula
[15], the special orthogonal group eðω̂rotϕi−1Þ ∈ SOð3Þ can be calcu-
lated by

eðω̂rotϕi−1Þ = I þ ω̂rot sinϕi−1 þ ω̂2
rotð1 − cosϕi−1Þ

=

2
64
cosϕi−1 − sinϕi−1 0

sinϕi−1 cosϕi−1 0

0 0 1

3
75 (11)

and owing to

kωinpk = κi−1 ≠ 1, κi−1 = 1=ri−1,

θi−1 = κi−1li−1, and dli−1=dt = 0: (12)

The special Euclidean group eðω̂inpli−1Þ ∈ SEð3Þis calculated by

eðω̂inpli−1Þ = I þ ω̂inp

kωinpk
sinðkωinpkli−1Þ

þ ω̂2
inp

kωinpk2
½1 − cosðkωinpkli−1Þ�

=

2
64

cos θi−1 0 sin θi−1

0 1 0

− sin θi−1 0 cos θi−1

3
75: (13)

Thus by using (11) and (13), the rotation group (9) can be
calculated as

Ri−1
i =

" cosϕi−1 cos θi−1 − sinϕi−1 cosϕi−1 sin θi−1
sinϕi−1 cos θi−1 cosϕi−1 sinϕi−1 sin θi−1

− sin θi−1 0 cos θi−1

#
: (14)

To get the explicit expression of the position vector Pi−1
i in

(10), it can be shown that the second term of the right-hand side of
(10) satisfies

eðω̂rotϕi−1ÞωinpωT
inpυinpli−1 = 0

due to ωT
inpυinp = ½ 0 κi-1 0 �½ 0 0 1 �T = 0, thus from (10) we

have

Pi−1
i = eðω̂rotϕi−1ÞðI − eðω̂inpli−1ÞÞ ω̂inp

kωinpk2
υinp

=
1

κi−1

2
64
cosϕi−1ð1 − cos θi−1Þ
sinϕi−1ð1 − cos θi−1Þ

sin θi−1

3
75: (15)

Considering (14) and (15), the homogeneous transformation
matrix (8) of a segment from the configuration space to task space
can be obtained. For overall the manipulator, the corresponding
homogeneous transformation matrix can be written as

T0
m = T0

1T
1
2T

2
3 · · · · · · Tm−1

m =
�
R0
m P0

m

0 1

�
: (16)

It is worth mentioning that the homogeneous transformation
matrix Ti−1

i ∈ ℜ4×4 is also a Euclidean group Ti−1
i ∈ SEð3Þ.

Equations (8) and (16) are just the homogeneous representations
of the Euclidean groups Ti−1

i ∈ SEð3Þ and T0
m ∈ SEð3Þ, respec-

tively. From the viewpoint of Lie groups and with the help of
exponential coordinates of twists, the inverse differential kinemat-
ics of the continuum manipulators can be analyzed more handily
than by directly using the homogeneous representations (16), as
will be shown in section III.

B. THE KINEMATICS MODELING FROM
ACTUATION SPACE TO CONFIGURATION SPACE

In this paper, the segments oi−1 − oiði = 1,2,3, · · · ,mÞ of the
continuum manipulators are assumed to be actuated by three
tendons, which are uniformly distributed with regard to the cross
sections of all segments, then in the actuation space, the elastic
segments can be parameterized as qi−1 = ½ li−1,1 li−1,2 li−1,3 �T.
In Fig. 2, let ϕi−1,jðj = 1,2,3Þ be the angles between the radius at the
passing through points of the tendons in the base cross section and
the plane A − oi−1 − oi, then it is not difficult to show that

ri−1,j = ri−1 − Ri−1 cosϕi−1,j for j = 1,2,3: (17)

Considering the passing through points of the tendons which
are distributed uniformly around the base cross section, without
loss of generality, we have

ϕi−1,1 =
π

2
þ ϕi−1, ϕi−1,2 =

7π
6
þ ϕi−1, and

ϕi−1,3 =
11π
6

þ ϕi−1: (18)

JAIT Vol. 1, No. 1, 2021

30 Zhang et al.



Owing to ri−1,jθi−1 = li−1,j and ri−1θi−1 = li−1 under the
assumption of piecewise constant curvatures, from (17) it follows
that

li−1,j = li−1 − Ri−1θi−1 cosϕi−1,j for j = 1,2,3: (19)

From (18) it is straightforward that
P

3
j=1 cosϕi−1,j = 0,

thereby, from (19) we have

li−1 =
1
3

X3
j=1

li−1,j: (20)

By the first two equations of (19) (for j = 1,2), it can be
obtained that

Ri−1θi−1 =
li−1,2 − li−1,1

cosϕi−1,1 − cosϕi−1,2

=
li−1,2 − li−1,1

− 3
2 sinϕi−1 þ

ffiffi
3

p
2 cosϕi−1

, (21)

and by the first and the third equations of (19) (for j = 1,3), it also
can be found that

Ri−1θi−1 =
li−1,3 − li−1,1

cosϕi−1,1 − cosϕi−1,3
=

li−1,3 − li−1,1

− 3
2 sinϕi−1 −

ffiffi
3

p
2 cosϕi

: (22)

From (21) and (22), we have

tanϕi−1 =
2li−1,1 − li−1,2 − li−1,3ffiffiffi

3
p ðli−1,2 − li−1,3Þ

: (23)

As shown in Fig. 2 and given by Fig. 3, if tendon’s planes
parallel to plane A − oi−1 − oi of the elastic segments are drawn, the
following equations can be obtained:

li−1,j = ri−1,jθi−1 =
li−1,j

2 sin θi−1
2

θi−1 =
�

θi−1
2 sin θi−1

2

�
li−1,j (24)

Define the coefficient λi−1 =
θi−1

2 sinðθi−1=2Þ, from (24) we have

li−1,j = λi−1li−1,j: (25)

Substituting (25) into (23), it can be obtained the arc parameter
ϕi−1 that is a function of the length of tendons, so from (23) it
follows that

ϕi−1ðqi−1Þ = tan−1
�
2li−1,1 − li−1,2 − li−1,3ffiffiffi

3
p ðli−1,2 − li−1,3Þ

�
for i = 1,2,3, · · · ,m: (26)

To obtain the curvature represented by the parameters of
actuation space, from (19) it can be shown that

θi−1 =
li−1 − li−1,j

Ri−1 cosϕi−1,j
: (27)

Considering the fact θi−1 = κi−1li−1, so (27) for j = 1 can be
rewritten as

κi−1 =
li−1 − li−1,1

Ri−1li−1 cosϕi−1,1
: (28)

In (18), we note that ϕi−1,1 = π
2 þ ϕi−1, thereby, cosϕi−1,1 =

− 1
2 sinϕi−1, and then (28) can be rewritten as

κi−1 =
2ðli−1,1 − li−1Þ
Ri−1li−1 sinϕi−1

: (29)

By applying (20) and (25), and considering the following fact:

sinϕi−1 = sin

�
tan−1

�
y

x

��
=

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p (30)

The curvature (28) represented by the length of the tendons can be
obtained as

κi−1ðqi−1Þ

=
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2i−1,1 þ l2i−1,2 þ l2i−1,3 − li−1,1li−1,2 − li−1,1li−1,3 − li−1,2li−1,3

q
Ri−1ðli−1,1 þ li−1,2 þ li−13Þ

(31)

for i = 1,2,3, · · · ,m. Then, the forward kinematics from actuation
space to configuration space of the continuum manipulators are
given by (26) and (31).

1−i 1−ir
1,1−ir

1−iθ 1−iθ
1,1−iφ

1,1−i

2,1−i

3,1−i

1−iφ
1−io

io

A

Fig. 2. The relationship between the actuation space and the configur-
ation space.

2
1−iθ

ji ,1− jil ,1−

jir ,1−

1−iθ

Fig. 3. The geometric relationship of the tendon’s planes that are
paralleling to the flexure plane of the elastic segments.
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This paper supposes that the continuum manipulator with a
flexible backbone that is neither compressible nor extendable
along the axial direction, and the arc length li−1 of a segment’s
backbone cannot be adjusted by the three independent actuation
inputs qi−1 ∈ ℜ3. Therefore, every segment of the continuum
manipulator is an over-actuated system. The major advantages of
adopting an over-actuation scheme are that the stiffness of the
“soft” manipulators in configuration space can be dexterously
adjusted by controlling the non-zero internal forces of the elastic
segments, and the structure clearances of the manipulators and
the hysteresis effects caused by friction can be effectively
reduced or even eliminated. As shown in [6] about a multi-
backbone continuum robot, these capabilities provided by over-
actuation scheme for the continuum manipulators are appealing
in practice.

III. DIFFERENTIAL KINEMATICS OF THE
CONTINUUM MANIPULATORS

For a full actuation manipulator system, regardless of whether the
mechanism of the manipulator is open linkage or closed linkage,
searching for the inverse kinematics at coordinate variables level is
commonly useful [15], since the dimension of the configuration
space and that of the actuation space are identical, except a few of
singularity points that possibly exist in either configuration space or
actuation space. Thus, except these singularity points there always
exists global inverse maps of the forward kinematics, such that
under certain conditions the inverse kinematics is solvable, and the
inverse solution is unique at most of configurations of the manip-
ulators in their accessible configuration space. However, for an
over-actuation mechanism, since the dimension of the actuation
space is greater than that of the configuration space, there does not
exist globally invertible maps between the actuation space and
configuration space. Therefore, with regard to either a redundant
DOFs manipulator or an over-actuated manipulator, the inverse
kinematics need to be locally solved by the aids of the differential
kinematics. Neppali et al. [26] presented an approach to solve the
closed-form inverse kinematics of continuum manipulators. It is
worth noting that the inverse kinematics from the task space to
configuration space had just been considered in [26], and the
approach is only valid for three segment continuum manipulators,
since under this condition the inverse kinematics is unique, except
for a few of singularity points.

Now let’s consider the Euclidean groups T0
m ∈ SEð3Þ that are

given by (16),

T0
m =

�
R0
m P0

m

0 1

�
(32)

and

Ṫ0
mðT0

mÞ−1 =
�
Ṙ0
m Ṗ0

m

0 0

�� ðR0
mÞT −ðR0

mÞTP0
m

0 1

�

=
�
Ṙ0
mðR0

mÞT −Ṙ0
mðR0

mÞTP0
m þ Ṗ0

m

0 0

�
: (33)

It is interesting that the right-hand side of (33) shows a form of
a twist, and the twist happens to be the velocity twist V̂0

m ∈ seð3Þ
associated with the Euclidean groups T0

m ∈ SEð3Þ. From (33),
the velocity vector of the tip frame

P
m represented in the inertial

frame
P

0 can be written as a form in twist coordinates, that is
given by

V0
m =

�
υ0m
ω0

m

�
=
�
−Ṙ0

mðR0
mÞTP0

m þ Ṗ0
m

ðṘ0
mðR0

mÞTÞ∨
�
, (34)

where the symbol “∨” indicate the “vee” operator, which is the inverse
operator of the “wedge” operator “∧.” In principle, the Jacobian of the
manipulators can be obtained from (34); however, this will be a rather
involved task for a multisegments continuum manipulator. Another
approach to obtain the Jacobian of the manipulators is to use the
definition of Jacobian. From (33) and (34), we have

V̂0
m = Ṫ0

mðT0
mÞ−1 =

Xm
i=1

�
∂T0

i

∂Θi−1
ðT0

mÞ−1
�
Θ̇i−1: (35)

In twist coordinates, (35) can be written as

V0
m = J0mΘ̇i−1, (36)

where the Jacobian is given by

J0m =
��

∂T0
i

∂Θ0
ðT0

mÞ−1
�

∨
· · ·

�
∂T0

i
∂Θm−1

ðT0
mÞ−1

�
∨
�
, (37)

and the elements of (37) can be calculated by

∂T0
i

∂Θi−1
ðT0

mÞ−1 = T0
i−1

∂Ti−1
i

∂Θi−1
Ti
mðT0

mÞ−1

= T0
i−1

∂Ti−1
i

∂Θi−1
Ti
mðTi

mÞ−1ðT0
i−1Þ−1

= T0
i−1

∂Ti−1
i

∂Θi−1
ðT0

i−1Þ−1: (38)

By converting to twist coordinates, it follows that�
∂T0

i

∂Θi−1
ðT0

mÞ−1
�

∨
= AdT0

i−1

�
∂Ti−1

i

∂Θi−1

�∨
, (39)

where AdT0
i−1

∈ ℜ6×6 is defined to be the adjoint transformation of

the group T0
i−1 ∈ ℜ4×4, and that is given by

AdT0
i−1

=
�
R0
i−1 P̂0

i−1R0
i−1

0 R0
i−1

�
, (40)

and ð∂Ti−1
i

∂Θi−1
Þ∨ is the local Jacobian ½Jc�i−1i of the segment oi−1 − oi in

the frame
P

i−1, where the subscript “c” of ½Jc�i−1i indicates the
Jacobian maps the velocity Θ̇i−1 from configuration space to task
space. It is obvious that calculating the Jacobian (37) can be
effectively simplified with the help of adjoint transformation
AdT0

i−1
. To calculate the Jacobian ½Jc�i−1i , the velocity Vi−1

i of
the segment oi−1 − oi is analyzed in the frame

P
i−1. From (33)

and (34), it is straightforward that

V̂i−1
i = Ṫi−1

i ðTi−1
i Þ−1

=
�
Ṙi−1
i ðRi−1

i ÞT −Ṙi−1
i ðRi−1

i ÞTPi−1
i þ Ṗi−1

i

0 1

�
, (41)

where

Ṙi−1
i =

d
dt
½eðω̂rotϕi−1Þeðω̂inpli−1Þ�

= ω̂rotϕ̇i−1e
ðω̂rotϕi−1Þeðω̂inpli−1Þ

þ li−1κ̇i−1e
ðω̂rotϕi−1Þ ∂ω̂inp

∂κi−1
eðω̂inpli−1Þ: (42)
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If we define ej ∈ ℜ3 for j = 1,2,3 to be the unit vectors of the
frame

P
i−1, then we have

ω̂rot = ê3 and ω̂inp = κi−1ê2, (43)

and thereby, the twists have forms

ξ̂inp =
h κi−1ê2 e3

0 1

i
and ξ̂rot =

�
ê3 0
0 1

�
: (44)

Thus the element Ṙi−1
i ðRi−1

i ÞT of (41) can be given as

ω̂i−1
i = Ṙi−1

i ðRi−1
i ÞT

= ê3ϕ̇i−1 þ ê2li−1 cosϕi−1κ̇i−1 − ê1li−1 sinϕi−1κ̇i−1: (45)

From (10), the term−Ṙi−1
i ðRi−1

i ÞTPi−1
i in (41) can be calculated

by

− Ṙi−1
i ðRi−1

i ÞTPi−1
i = −ω̂i−1

i Pi−1
i

= −ðê3ϕ̇i−1 þ li−1κ̇i−1Adeðê3ϕi−1Þ ê2Þeðω̂rotϕi−1ÞðI − eðω̂inpli−1ÞÞ 1
κi−1

e1

= −ê3eðω̂rotϕi−1ÞðI − eðω̂inpli−1ÞÞ 1
κi−1

e1ϕ̇i−1

− li−1Adeðê3ϕi−1Þ ê2e
ðω̂rotϕi−1ÞðI − eðω̂inpli−1ÞÞ 1

κi−1
e1κ̇i−1, (46)

and the velocity Ṗi−1
i in (41) can be calculated as

Ṗi−1
i =

d
dt

�
eðω̂rotϕi−1ÞðI − eðω̂inpli−1ÞÞ ê2

κi−1
e3

�

= ê3eðω̂rotϕi−1ÞðI − eðω̂inpli−1ÞÞ 1
κi−1

e1ϕ̇i−1

− li−1e
ðω̂rotϕi−1Þê2eðω̂inpli−1Þ 1

κi−1
e1κ̇i−1

− eðω̂rotϕi−1ÞðI − eðω̂inpli−1ÞÞ 1

κ2i−1
e1κ̇i−1: (47)

Substituting (45), (46), and (47) into (41), it follows that

Vi−1
i = ½Jc�i−1i

�
κ̇i−1
ϕ̇i−1

�
, (48)

where

½Jc�i−1i =

2
666666664

cosϕi−1ðcos θi−1−1Þ
κ2i−1

0
sinϕi−1ðcos θi−1−1Þ

κ2i−1
0

κi−1li−1−sin θi−1
κ2i−1

0

−li−1 sinϕi−1 0
li−1 cosϕi−1 0

0 1

3
777777775
: (49)

Since the actuation space and the configuration space of the
continuum manipulators considered in this paper are different, for
the segment oi−1 − oi, there exists another local Jacobian ½Ja�i−1i
that maps the velocity q̇i−1 from actuation space into configuration
space. By reviewing (26) and (31), we have

Θ̇i−1 = ½Ja�i−1i q̇i−1, (50)

and the local Jacobian ½Ja�i−1i in (50) can be derived as

½Ja�i−1i =
� ∂κi−1
∂li−1,1

∂κi−1
∂li−1,2

∂κi−1
∂li−1,3

∂ϕi−1
∂li−1,1

∂ϕi−1
∂li−1,2

∂ϕi−1
∂li−1,3

�
, (51)

where
∂κi−1
∂li−1,1

=
Λ1ð2li−1,1 − li−1,2 − li−1,3Þ

3Ri−1li−1
,

∂κi−1
∂li−1,2

=
Λ1ð2li−1,2 − li−1,1 − li−1,3Þ

3Ri−1li−1
,

∂κi−1
∂li−1,3

=
Λ1ð2li−1,3 − li−1,1 − li−1,2Þ

3Ri−1li−1
,

∂ϕi−1

∂li−1,1
=

2
Λ2

,

∂ϕi−1

∂li−1,2
=

4ðli−1,3 − li−1,1Þffiffiffi
3

p ðli−1,2 − li−1,3Þ2Λ2

, and

∂ϕi−1

∂li−1,3
=

4ðli−1,1 − li−1,2Þffiffiffi
3

p ðli−1,2 − li−1,3Þ2Λ2

,

with

Λ1 = ðl2i−1,1 þ l2i−1,2 þ l2i−1,3 − li−1,1li−1,2 − li−1,1li−1,3

− li−1,2li−1,3Þ−1
2

and

Λ2 =
�
2li−1,1 − li−1,2 − li−1,3ffiffiffi

3
p ðli−1,2 − li−1,3Þ

�
2
þ 1:

By combining (48) and (50), the complete differential kine-
matics of the segment oi−1 − oi can be obtained as

Vi−1
i = Ji−1i q̇i−1, (52)

where

Ji−1i = ½Jc�i−1i ½Ja�i−1i : (53)

Thus from (37), the global Jacobian ðJcÞ0m can be obtained, that
is given by

ðJcÞ0m = ½ ½Jc�01 AdT0
1
½Jc�12 AdT0

2
½Jc�23 · · · AdT0

m
½Jc�m−1m �,

(54)

which maps the velocity Θ̇i−1 from configuration space to task
space, and the complete Jacobian of the manipulator can be
presented as

Jrob = ½ J01 AdT0
1
J12 AdT0

2
J23 · · · AdT0

m
Jm−1m �, (55)

which maps the velocity q̇i−1 from actuation space to task space.

IV. MOTION PLANNING OF THE
CONTINUUM MANIPULATORS

An important application of the continuum manipulators is endo-
scope detection or carrying out maintenance works for accuracy or
complex porous mechanical structures [3]. Therefore, investigating
motion planning approaches for the continuum manipulators in
confined space is useful in practice. For the rehabilitation nursing
robots as our study object in this paper, motion planning for the
compliant continuum manipulators in complex circumstances is
also an important investigation task. During the rehabilitation
training stage, commonly there are some instruments or devices
around a patient. For taking care of the living life of the patients or
take a massage for the patients with the help of robot manipulators,
the continuummanipulators have to accomplish some operations in
tight space. To this end, in this section, a novel motion planning
approach—DCM—for the continuum manipulators is presented.
The main idea of the approach is that, besides the end-effector, we

JAIT Vol. 1, No. 1, 2021

Kinematics Modeling and Motion Planning 33



also dynamically select single or multi-intermediate points on the
bodies of the manipulator, directly plan the motions of the relevant
chosen points in the task space, and take the intermediate points as
virtual end-effectors to build the corresponding virtual manipula-
tors. By the inverse kinematics presented in Section III, we can
obtain the feasible velocity trajectories in configuration space
associated with these virtual manipulators, and selecting (coordi-
nation) these velocity trajectories of the virtual manipulators to be
the free vector (self-motion) of the inverse kinematics of the whole
continuum manipulator, and then by properly adjusting the scale
factors, both the motion of the end-effector and that of the overall
arm of the manipulator will be stable with regard to our given
trajectories. In more detail, the DCM can be described as following:

(1) For a given manipulation task, suppose Pm = PmðtÞ to be a
given feasible trajectory of the end-effector of the
manipulator;

(2) Selecting a set of characteristic points Pk (k = 1,2, · · · ,s) on
the manipulators, without loss of generality, the characteristic
points can be selected as the origin of the frames

P
k

for k = 1,2, · · · ,m − 1;

(3) Similar to the strategy of planning the end-effector’s trajec-
tory Pm = PmðtÞ, present the trajectories Pk = PkðtÞ for the
characteristic points Pk(k = 1,2, · · · ,s);

(4) Substituting PmðtÞ into Θ̇endðtÞ = ðJ0mÞþṖmðtÞ, the velocity
Θ̇endðtÞ ∈ ℜ2m can be obtained in configuration space with
regard to the end-effector velocity ṖmðtÞ ∈ ℜn in task space;

(5) Substituting PkðtÞ into Θ̇k−pointðtÞ = ðJ0kÞþṖkðtÞ, we get the
velocity Θ̇k−pointðtÞ ∈ ℜ2k in configuration space associated
with the k − th characteristic point in task space;

(6) Finally, using the following command to control the manip-
ulators

Θ̇ðtÞ = Θ̇endðtÞ þ ðI − ðJ0mÞþJ0mÞ
Xs

k=1

ðαk
˙
Θ
∼
k−pointðtÞÞ, (56)

whereαk ∈ R for k = 1,2, · · · ,s are a set of given scale factors,
˙
Θ
∼
k−pointðtÞ =

� ðΘ̇k−pointðtÞÞT 0 · · · 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2m−2k

�
T
∈ ℜ2m, and the

Moore–Penrose generalized inverse matrix is calculated
by ðJ0mÞþ = ðJ0mÞTðJ0mðJ0mÞTÞ−1.

From the DCM given above, it is obvious that the major
features of the method include:

(1) The motion planning for the continuum manipulators are
carried out in the global task space for a given task. Even
the motions are realized in the configuration space on the basis
of the self-motion velocity vector v =

P
s
k=1 αkΘ̇k−pointðtÞ, the

target trajectories PkðtÞ are given from the overall feasible task
space. Previous related researches about the motion planning
for redundant manipulators generally depend on local optimi-
zationmethods, such as the artificial potential fields [27], spline-
curves-based methods [28], gradient-based methods [29], etc.

(2) The presented approach DCM does not depend on an opti-
mization index of any convex functions [27] and does not
depend on any convex space [28]. Thus, the motion planning
approach belongs to a class of methodology of non-convex
programming. In [30], a progressive motion planning
method had been presented for continuum manipulators,
and the method is useful in non-convex space. Nevertheless,
the method just fits in enveloping grasp operations in tight

space, and it is not clear how the method could be modified to
apply in trajectory control tasks.

(3) Given a set of scale factors αkðk = 1,2, · · · ,sÞ, then the
optimized motions of the manipulators correspond to a
specific optimizing mode. By continuously or discontinu-
ously changing the given parameters αk, then the optimizing
mode is variant, and the dynamical optimizing modes do not
affect the stability of the end-effector’s motions because of
the fact J0mðI − ðJ0mÞþJ0mÞv = 0 for all v ∈ ℜ2m, and thereby,
the relative motions v =

P
s
k=1 αkΘ̇k−pointðtÞ about the char-

acteristic points Pkðk = 1,2, · · · ,sÞ are also stable due to the
equation J0mðI − ðJ0mÞþJ0mÞv = 0.

(4) By setting some parameters αkðk ∈ f1,2, · · · ,sgÞ to zero,
then the corresponding additional operation tasks PkðtÞ can
be removed if the relevant operation tasks are inessential, and
thereby, the motion planning tasks can be simplified.

The main step of DCM is to first select a set of characteristic
points and assign different weights to these points according to the
given motion planning task. Then, the motion speed of each
characteristic point of the manipulator is dynamically adjusted
based on the weights, so as to realize the motion planning of the
configuration space of the continuum manipulator with redundant
DOFs, and the manipulator is capable of completing complex
constraint operation in task space. Adjustment of these weighted
scale factors can be dynamic based on the sensitivity magnitude of
their effect on motion at specific characteristic points. For example,
with the aid of the artificial potential field method, a functional
relationship is established between these scale factors and the
motion velocity of the characteristic points, so that the sensitivity
of scale factors to the motion velocity of the characteristic points
can be obtained using gradient method. Artificial intelligence
theory, such as fuzzy neural networks, can also be used to optimize
these factors for practical applications.

By applying the presented motion planning approach, two
numerical simulations are illustrated in Figs. 4 and 5, where a five-
segment continuum manipulator follows a straight line along the
direction z of the task space. As a comparison, in Fig. 4, the static
obstacle is not considered. While in Fig. 5, the static obstacle is
considered by selecting single characteristic point at the origin of
the frame that is far away from the base on the second segment, and
by adjusting the scale parameter α1 in (56), then the manipulator
does not contact the obstacle during the given operation task. It is
worth pointing out that the orientation of the end-effector of the
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Fig. 4. Linear trajectory control of a five-segment continuummanipulator
without considering a static obstacle.
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manipulators was generally not controlled in the motion planning
of obstacle avoidance in the previous relevant researches [28]–[30].
However, the orientation control for the continuum manipulator is
crucial in some operations, such as delivering a cup of water to a
patient, massage and acupoint press following a special manipula-
tive reduction for the patients, keeping the focus of optical instru-
ments in endoscope detections, etc. Thanks to the mathematical
tool of exponential coordinates of Lie group for modeling the
kinematics of the continuum manipulators. Both the forward
kinematics and the differential kinematics presented in the previous
sections are complete (include position and orientation simulta-
neously), so that the position and orientation of the manipulator
could be simultaneously controlled by the inverse differential
kinematics.

Furthermore, a six-segment continuum manipulator passing
through a tight space between multiobstacles is also presented in
Fig. 6. In this numerical simulation, the single intermediate char-
acteristic point is selected to be the origin of the base frame of the
last segment. By selecting a proper scale factor α1, the six-segment
continuum manipulator passes through the gap between the three
obstacles while the orientation of the end-effector remains
unchanged, which is similar to the operation tasks illustrated in
Figs. 4 and 5.

V. CONCLUSIONS
By applying exponential coordinates based on the Lie group
theory, this paper presented a complete kinematics modeling
process for the tendon driven continuum manipulators and a novel
motion planning method—DCM—for the hyper-redundant con-
tinuum manipulators. The remarkable features of the present
motion planning approach included: it was a motion plan method
in global task space; it did not require any optimization index made
up of convex functions; it did not require the task space to be a
convex space; and the method provided a very flexible way of
realizing the target motion optimization by dynamically adjusting
the scale factors of the free velocity vectors.
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